code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _lowerCamelCase = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _lowerCamelCase = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _lowerCamelCase = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _lowerCamelCase = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _lowerCamelCase = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _lowerCamelCase = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModel) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class UpperCamelCase_ ( _BaseAutoModelClass ): lowerCamelCase_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
6
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = 384 if "tiny" in model_name: SCREAMING_SNAKE_CASE__ = [3, 3, 9, 3] SCREAMING_SNAKE_CASE__ = [96, 192, 384, 768] if "small" in model_name: SCREAMING_SNAKE_CASE__ = [3, 3, 27, 3] SCREAMING_SNAKE_CASE__ = [96, 192, 384, 768] if "base" in model_name: SCREAMING_SNAKE_CASE__ = [3, 3, 27, 3] SCREAMING_SNAKE_CASE__ = [128, 256, 512, 1_024] SCREAMING_SNAKE_CASE__ = 512 if "large" in model_name: SCREAMING_SNAKE_CASE__ = [3, 3, 27, 3] SCREAMING_SNAKE_CASE__ = [192, 384, 768, 1_536] SCREAMING_SNAKE_CASE__ = 768 if "xlarge" in model_name: SCREAMING_SNAKE_CASE__ = [3, 3, 27, 3] SCREAMING_SNAKE_CASE__ = [256, 512, 1_024, 2_048] SCREAMING_SNAKE_CASE__ = 1_024 # set label information SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = ConvNextConfig( depths=UpperCamelCase__ , hidden_sizes=UpperCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = UperNetConfig( backbone_config=UpperCamelCase__ , auxiliary_in_channels=UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , ) return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } SCREAMING_SNAKE_CASE__ = model_name_to_url[model_name] SCREAMING_SNAKE_CASE__ = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" )["""state_dict"""] SCREAMING_SNAKE_CASE__ = get_upernet_config(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = UperNetForSemanticSegmentation(UpperCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = state_dict.pop(UpperCamelCase__ ) if "bn" in key: SCREAMING_SNAKE_CASE__ = key.replace("""bn""" , """batch_norm""" ) SCREAMING_SNAKE_CASE__ = val # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify on image SCREAMING_SNAKE_CASE__ = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = SegformerImageProcessor() SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) if model_name == "upernet-convnext-tiny": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
6
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 847 SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 171 SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 133 SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 65 SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ ) # load original state_dict with open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase__ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 65_535 else: SCREAMING_SNAKE_CASE__ = 255 SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
1
from ..utils import DummyObject, requires_backends class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :Dict , *__A :List[str] , **__A :Dict ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :Dict , *__A :Dict , **__A :Union[str, Any] ) -> Dict: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :Tuple , *__A :Optional[Any] , **__A :str ) -> Any: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :Dict , *__A :List[str] , **__A :str ) -> List[str]: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :Any , *__A :Tuple , **__A :Optional[int] ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :int , *__A :Optional[Any] , **__A :Any ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :List[Any] , *__A :Any , **__A :List[Any] ) -> Optional[int]: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :Tuple , *__A :Optional[Any] , **__A :List[Any] ) -> Any: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :Any , *__A :List[str] , **__A :int ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :int , *__A :Tuple , **__A :str ) -> str: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :List[str] , *__A :List[str] , **__A :Optional[Any] ) -> Dict: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :List[Any] , *__A :Any , **__A :List[Any] ) -> Dict: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :Any , *__A :List[Any] , **__A :int ) -> str: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :Union[str, Any] , *__A :Dict , **__A :str ) -> List[str]: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :List[str] , *__A :Tuple , **__A :List[str] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :Optional[Any] , *__A :Optional[int] , **__A :Union[str, Any] ) -> int: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :Dict , *__A :Any , **__A :Union[str, Any] ) -> Any: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :Optional[Any] , *__A :List[Any] , **__A :Dict ) -> List[str]: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :Any , *__A :int , **__A :str ) -> List[str]: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :str , *__A :int , **__A :Any ) -> Tuple: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :int , *__A :List[Any] , **__A :Dict ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :int , *__A :Optional[Any] , **__A :str ) -> Optional[int]: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :int , *__A :str , **__A :int ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :Any , *__A :Union[str, Any] , **__A :int ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :Optional[Any] , *__A :Optional[Any] , **__A :Optional[Any] ) -> str: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :Tuple , *__A :List[str] , **__A :int ) -> List[str]: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :Dict , *__A :List[Any] , **__A :Any ) -> Tuple: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :Dict , *__A :Optional[Any] , **__A :List[str] ) -> Dict: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :Any , *__A :List[Any] , **__A :Dict ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :List[Any] , *__A :Optional[int] , **__A :List[str] ) -> Tuple: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :Any , *__A :Optional[Any] , **__A :List[Any] ) -> Tuple: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :Dict , *__A :Optional[Any] , **__A :Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :Union[str, Any] , *__A :str , **__A :str ) -> int: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :int , *__A :List[str] , **__A :Optional[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :List[Any] , *__A :Optional[Any] , **__A :Tuple ) -> int: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :List[str] , *__A :Optional[Any] , **__A :Any ) -> Tuple: """simple docstring""" requires_backends(cls , ["""flax"""] ) class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["flax"] def __init__( self :Tuple , *__A :Dict , **__A :List[Any] ) -> str: """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def _snake_case ( cls :Optional[int] , *__A :Any , **__A :int ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def _snake_case ( cls :int , *__A :Tuple , **__A :List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""flax"""] )
6
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0XE0_00 _lowerCamelCase = 0XE0_01 _lowerCamelCase = 0XE0_02 _lowerCamelCase = 0XE0_03 _lowerCamelCase = 0XE0_04 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self._unicode_vocab_size def _snake_case ( self :Tuple , __A :str ) -> List[str]: """simple docstring""" return list(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> int: """simple docstring""" try: return ord(__A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self :str , __A :int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any: """simple docstring""" return "".join(__A ) def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: result += ([0] * len(__A )) + [1] return result def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any: """simple docstring""" return ()
6
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
6
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = False if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') _lowerCamelCase = parser.parse_args() _lowerCamelCase = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } _lowerCamelCase = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } _lowerCamelCase = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: _lowerCamelCase = reader.read() _lowerCamelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): _lowerCamelCase = UNetaDModel(**config) else: _lowerCamelCase = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel _lowerCamelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _lowerCamelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _lowerCamelCase = config[key] del config[key] _lowerCamelCase = [k.replace('UNetRes', '') for k in config['down_block_types']] _lowerCamelCase = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: _lowerCamelCase = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) _lowerCamelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue _lowerCamelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: _lowerCamelCase = param_value _lowerCamelCase = True if not has_changed: _lowerCamelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
6
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
1
_lowerCamelCase = 8.31_4462 # Unit - J mol-1 K-1 def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
6
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _lowerCamelCase = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } _lowerCamelCase = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) SCREAMING_SNAKE_CASE__ = bs[:] SCREAMING_SNAKE_CASE__ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE__ = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ = char return pairs class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ["input_ids", "attention_mask"] def __init__( self :Dict , __A :Tuple , __A :Union[str, Any] , __A :int="replace" , __A :int="<s>" , __A :str="</s>" , __A :Dict="</s>" , __A :List[str]="<s>" , __A :Dict="<unk>" , __A :Optional[Any]="<pad>" , __A :Tuple="<mask>" , __A :List[Any]=False , **__A :List[Any] , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="""utf-8""" ) as vocab_handle: SCREAMING_SNAKE_CASE__ = json.load(__A ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE__ = bytes_to_unicode() SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="""utf-8""" ) as merges_handle: SCREAMING_SNAKE_CASE__ = merges_handle.read().split("""\n""" )[1:-1] SCREAMING_SNAKE_CASE__ = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE__ = dict(zip(__A , range(len(__A ) ) ) ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE__ = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" return len(self.encoder ) def _snake_case ( self :Tuple ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self :int , __A :List[Any] ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ = tuple(__A ) SCREAMING_SNAKE_CASE__ = get_pairs(__A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = bigram SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while i < len(__A ): try: SCREAMING_SNAKE_CASE__ = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ = tuple(__A ) SCREAMING_SNAKE_CASE__ = new_word if len(__A ) == 1: break else: SCREAMING_SNAKE_CASE__ = get_pairs(__A ) SCREAMING_SNAKE_CASE__ = """ """.join(__A ) SCREAMING_SNAKE_CASE__ = word return word def _snake_case ( self :Union[str, Any] , __A :List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for token in re.findall(self.pat , __A ): SCREAMING_SNAKE_CASE__ = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(""" """ ) ) return bpe_tokens def _snake_case ( self :Union[str, Any] , __A :Union[str, Any] ) -> Tuple: """simple docstring""" return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _snake_case ( self :int , __A :Tuple ) -> Union[str, Any]: """simple docstring""" return self.decoder.get(__A ) def _snake_case ( self :Any , __A :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """""".join(__A ) SCREAMING_SNAKE_CASE__ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def _snake_case ( self :List[Any] , __A :str , __A :Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + """\n""" ) SCREAMING_SNAKE_CASE__ = 0 with open(__A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) SCREAMING_SNAKE_CASE__ = token_index writer.write(""" """.join(__A ) + """\n""" ) index += 1 return vocab_file, merge_file def _snake_case ( self :str , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _snake_case ( self :Any , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self :Optional[int] , __A :Union[str, Any] , __A :int=False , **__A :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE__ = """ """ + text return (text, kwargs) def _snake_case ( self :Any , __A :List[int] , __A :Optional[List[int]] = None ) -> Union[str, Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def _snake_case ( self :Any , __A :"Conversation" ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(__A ) SCREAMING_SNAKE_CASE__ = """ """.join(__A ) SCREAMING_SNAKE_CASE__ = self.encode(__A ) if len(__A ) > self.model_max_length: SCREAMING_SNAKE_CASE__ = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
6
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ): model.train() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ): set_seed(42 ) SCREAMING_SNAKE_CASE__ = RegressionModel() SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] , UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = checkpoints.load_tax_checkpoint(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": SCREAMING_SNAKE_CASE__ = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": SCREAMING_SNAKE_CASE__ = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): SCREAMING_SNAKE_CASE__ = f'''layers_{str(UpperCamelCase__ )}''' # Self-Attention SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning SCREAMING_SNAKE_CASE__ = flax_model.params["""encoder"""]["""block"""][str(UpperCamelCase__ )]["""layer"""] SCREAMING_SNAKE_CASE__ = tax_attention_key SCREAMING_SNAKE_CASE__ = tax_attention_out SCREAMING_SNAKE_CASE__ = tax_attention_query SCREAMING_SNAKE_CASE__ = tax_attention_value SCREAMING_SNAKE_CASE__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = tax_global_layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a else: SCREAMING_SNAKE_CASE__ = tax_mlp_wi SCREAMING_SNAKE_CASE__ = tax_mlp_wo SCREAMING_SNAKE_CASE__ = tax_mlp_layer_norm SCREAMING_SNAKE_CASE__ = flax_model_encoder_layer_block # Only for layer 0: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T SCREAMING_SNAKE_CASE__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T SCREAMING_SNAKE_CASE__ = tax_encoder_global_rel_embedding # Assigning SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] SCREAMING_SNAKE_CASE__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): SCREAMING_SNAKE_CASE__ = f'''layers_{str(UpperCamelCase__ )}''' # Self-Attention SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module["""key"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module["""out"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module["""query"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning SCREAMING_SNAKE_CASE__ = flax_model.params["""decoder"""]["""block"""][str(UpperCamelCase__ )]["""layer"""] SCREAMING_SNAKE_CASE__ = tax_attention_key SCREAMING_SNAKE_CASE__ = tax_attention_out SCREAMING_SNAKE_CASE__ = tax_attention_query SCREAMING_SNAKE_CASE__ = tax_attention_value SCREAMING_SNAKE_CASE__ = tax_pre_attention_layer_norm SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_key SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_out SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_query SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_value SCREAMING_SNAKE_CASE__ = tax_cross_layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a else: SCREAMING_SNAKE_CASE__ = tax_mlp_wi SCREAMING_SNAKE_CASE__ = tax_mlp_wo SCREAMING_SNAKE_CASE__ = txa_mlp_layer_norm SCREAMING_SNAKE_CASE__ = flax_model_decoder_layer_block # Decoder Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] SCREAMING_SNAKE_CASE__ = txa_decoder_norm # Only for layer 0: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T SCREAMING_SNAKE_CASE__ = tax_decoder_rel_embedding # Token Embeddings SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""token_embedder"""]["""embedding"""] SCREAMING_SNAKE_CASE__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(UpperCamelCase__ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _lowerCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
6
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=None ): if subparsers is not None: SCREAMING_SNAKE_CASE__ = subparsers.add_parser("""test""" ) else: SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=UpperCamelCase__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: SCREAMING_SNAKE_CASE__ = script_name else: SCREAMING_SNAKE_CASE__ = f'''--config_file={args.config_file} {script_name}''' SCREAMING_SNAKE_CASE__ = ["""accelerate-launch"""] + test_args.split() SCREAMING_SNAKE_CASE__ = execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = test_command_parser() SCREAMING_SNAKE_CASE__ = parser.parse_args() test_command(UpperCamelCase__ ) if __name__ == "__main__": main()
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase = 'src/diffusers' _lowerCamelCase = '.' # This is to make sure the diffusers module imported is the one in the repo. _lowerCamelCase = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCamelCase = spec.loader.load_module() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] ): return line.startswith(UpperCamelCase__ ) or len(UpperCamelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCamelCase__ ) is not None def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = object_name.split(""".""" ) SCREAMING_SNAKE_CASE__ = 0 # First let's find the module where our object lives. SCREAMING_SNAKE_CASE__ = parts[i] while i < len(UpperCamelCase__ ) and not os.path.isfile(os.path.join(UpperCamelCase__ , f'''{module}.py''' ) ): i += 1 if i < len(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , parts[i] ) if i >= len(UpperCamelCase__ ): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(UpperCamelCase__ , f'''{module}.py''' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE__ = f.readlines() # Now let's find the class / func in the code! SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCamelCase__ ) and re.search(Rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCamelCase__ ): raise ValueError(f''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). SCREAMING_SNAKE_CASE__ = line_index while line_index < len(UpperCamelCase__ ) and _should_continue(lines[line_index] , UpperCamelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE__ = lines[start_index:line_index] return "".join(UpperCamelCase__ ) _lowerCamelCase = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') _lowerCamelCase = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') _lowerCamelCase = re.compile(R'<FILL\s+[^>]*>') def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = code.split("""\n""" ) SCREAMING_SNAKE_CASE__ = 0 while idx < len(UpperCamelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCamelCase__ ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = len(get_indent(UpperCamelCase__ ) ) > 0 if has_indent: SCREAMING_SNAKE_CASE__ = f'''class Bla:\n{code}''' SCREAMING_SNAKE_CASE__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = black.format_str(UpperCamelCase__ , mode=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = style_docstrings_in_code(UpperCamelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: str=False ): with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE__ = f.readlines() SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = search.groups() SCREAMING_SNAKE_CASE__ = find_code_in_diffusers(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = get_indent(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = line_index + 1 if indent == theoretical_indent else line_index + 2 SCREAMING_SNAKE_CASE__ = theoretical_indent SCREAMING_SNAKE_CASE__ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. SCREAMING_SNAKE_CASE__ = True while line_index < len(UpperCamelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCamelCase__ ): break SCREAMING_SNAKE_CASE__ = lines[line_index] SCREAMING_SNAKE_CASE__ = _should_continue(UpperCamelCase__ , UpperCamelCase__ ) and re.search(f'''^{indent}# End copy''' , UpperCamelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE__ = lines[start_index:line_index] SCREAMING_SNAKE_CASE__ = """""".join(UpperCamelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies SCREAMING_SNAKE_CASE__ = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCamelCase__ ) is None] SCREAMING_SNAKE_CASE__ = """\n""".join(UpperCamelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCamelCase__ ) > 0: SCREAMING_SNAKE_CASE__ = replace_pattern.replace("""with""" , """""" ).split(""",""" ) SCREAMING_SNAKE_CASE__ = [_re_replace_pattern.search(UpperCamelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pattern.groups() SCREAMING_SNAKE_CASE__ = re.sub(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if option.strip() == "all-casing": SCREAMING_SNAKE_CASE__ = re.sub(obja.lower() , obja.lower() , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = re.sub(obja.upper() , obja.upper() , UpperCamelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line SCREAMING_SNAKE_CASE__ = blackify(lines[start_index - 1] + theoretical_code ) SCREAMING_SNAKE_CASE__ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: SCREAMING_SNAKE_CASE__ = lines[:start_index] + [theoretical_code] + lines[line_index:] SCREAMING_SNAKE_CASE__ = start_index + 1 if overwrite and len(UpperCamelCase__ ) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCamelCase__ ) return diffs def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = glob.glob(os.path.join(UpperCamelCase__ , """**/*.py""" ) , recursive=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [] for filename in all_files: SCREAMING_SNAKE_CASE__ = is_copy_consistent(UpperCamelCase__ , UpperCamelCase__ ) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(UpperCamelCase__ ) > 0: SCREAMING_SNAKE_CASE__ = """\n""".join(UpperCamelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase = 256 class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["melgan"] def __init__( self :List[Any] , __A :SpectrogramNotesEncoder , __A :SpectrogramContEncoder , __A :TaFilmDecoder , __A :DDPMScheduler , __A :OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: """simple docstring""" super().__init__() # From MELGAN SCREAMING_SNAKE_CASE__ = math.log(1E-5 ) # Matches MelGAN training. SCREAMING_SNAKE_CASE__ = 4.0 # Largest value for most examples SCREAMING_SNAKE_CASE__ = 128 self.register_modules( notes_encoder=__A , continuous_encoder=__A , decoder=__A , scheduler=__A , melgan=__A , ) def _snake_case ( self :str , __A :List[Any] , __A :Optional[int]=(-1.0, 1.0) , __A :Optional[Any]=False ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = output_range if clip: SCREAMING_SNAKE_CASE__ = torch.clip(__A , self.min_value , self.max_value ) # Scale to [0, 1]. SCREAMING_SNAKE_CASE__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _snake_case ( self :Dict , __A :Tuple , __A :str=(-1.0, 1.0) , __A :List[str]=False ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input_range SCREAMING_SNAKE_CASE__ = torch.clip(__A , __A , __A ) if clip else outputs # Scale to [0, 1]. SCREAMING_SNAKE_CASE__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _snake_case ( self :Union[str, Any] , __A :Any , __A :List[Any] , __A :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = input_tokens > 0 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.notes_encoder( encoder_input_tokens=__A , encoder_inputs_mask=__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.continuous_encoder( encoder_inputs=__A , encoder_inputs_mask=__A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _snake_case ( self :Any , __A :int , __A :str , __A :Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = noise_time if not torch.is_tensor(__A ): SCREAMING_SNAKE_CASE__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__A ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE__ = self.decoder( encodings_and_masks=__A , decoder_input_tokens=__A , decoder_noise_time=__A ) return logits @torch.no_grad() def __call__( self :Dict , __A :List[List[int]] , __A :Optional[torch.Generator] = None , __A :int = 100 , __A :bool = True , __A :str = "numpy" , __A :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A :int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__A , __A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__A )}.''' ) SCREAMING_SNAKE_CASE__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = np.zeros([1, 0, self.n_dims] , np.floataa ) SCREAMING_SNAKE_CASE__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__A , device=self.device ) for i, encoder_input_tokens in enumerate(__A ): if i == 0: SCREAMING_SNAKE_CASE__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. SCREAMING_SNAKE_CASE__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. SCREAMING_SNAKE_CASE__ = ones SCREAMING_SNAKE_CASE__ = self.scale_features( __A , output_range=[-1.0, 1.0] , clip=__A ) SCREAMING_SNAKE_CASE__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__A , continuous_mask=__A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop SCREAMING_SNAKE_CASE__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE__ = self.decode( encodings_and_masks=__A , input_tokens=__A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__A , __A , __A , generator=__A ).prev_sample SCREAMING_SNAKE_CASE__ = self.scale_to_features(__A , input_range=[-1.0, 1.0] ) SCREAMING_SNAKE_CASE__ = mel[:1] SCREAMING_SNAKE_CASE__ = mel.cpu().float().numpy() SCREAMING_SNAKE_CASE__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__A , __A ) logger.info("""Generated segment""" , __A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": SCREAMING_SNAKE_CASE__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: SCREAMING_SNAKE_CASE__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__A )
6
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "encoder-decoder" lowerCamelCase_ = True def __init__( self :Optional[int] , **__A :str ) -> int: """simple docstring""" super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = True @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = f'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCamelCase__ ) if number < 0: return False SCREAMING_SNAKE_CASE__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
6
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase_ = Features({"text": Value("string" )} ) lowerCamelCase_ = Features({"labels": ClassLabel} ) lowerCamelCase_ = "text" lowerCamelCase_ = "labels" def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def _snake_case ( self :str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
6
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) SCREAMING_SNAKE_CASE__ = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(__A ) from datasets import load_dataset SCREAMING_SNAKE_CASE__ = load_dataset("""nielsr/rvlcdip-demo""" ) SCREAMING_SNAKE_CASE__ = dataset["""train"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""pt""" ).to(__A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__A ) SCREAMING_SNAKE_CASE__ = outputs.logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 16) ) self.assertEqual(logits.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=__A , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __A , atol=1E-4 ) )
6
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = model.config SCREAMING_SNAKE_CASE__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) SCREAMING_SNAKE_CASE__ = MBartConfig( is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): if "encoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: SCREAMING_SNAKE_CASE__ = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias""" return name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(key_split[3] ) SCREAMING_SNAKE_CASE__ = int(key_split[5] ) SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE__ = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ): # load original model SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify results on scanned document SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" ) SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" SCREAMING_SNAKE_CASE__ = """When is the coffee break?""" SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE__ = """hello world""" else: raise ValueError("""Model name not supported""" ) SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[ """input_ids""" ] SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) _lowerCamelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
6
1
_lowerCamelCase = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} _lowerCamelCase = ['a', 'b', 'c', 'd', 'e'] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = start # add current to visited visited.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE__ = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase__ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE__ = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # return sort return sort if __name__ == "__main__": _lowerCamelCase = topological_sort('a', [], []) print(sort)
6
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
6
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :List[str] , **__A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__(**__A ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self :Optional[Any] , __A :Union[str, List[str], "Image", List["Image"]] , **__A :Any ) -> Tuple: """simple docstring""" return super().__call__(__A , **__A ) def _snake_case ( self :Tuple , **__A :List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _snake_case ( self :List[Any] , __A :Optional[Any] , __A :str=None , __A :Dict="This is a photo of {}." ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image(__A ) SCREAMING_SNAKE_CASE__ = self.image_processor(images=[image] , return_tensors=self.framework ) SCREAMING_SNAKE_CASE__ = candidate_labels SCREAMING_SNAKE_CASE__ = [hypothesis_template.format(__A ) for x in candidate_labels] SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=self.framework , padding=__A ) SCREAMING_SNAKE_CASE__ = [text_inputs] return inputs def _snake_case ( self :str , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = model_inputs.pop("""candidate_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __A ): SCREAMING_SNAKE_CASE__ = text_inputs[0] else: # Batching case. SCREAMING_SNAKE_CASE__ = text_inputs[0][0] SCREAMING_SNAKE_CASE__ = self.model(**__A , **__A ) SCREAMING_SNAKE_CASE__ = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def _snake_case ( self :Dict , __A :Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = model_outputs.pop("""candidate_labels""" ) SCREAMING_SNAKE_CASE__ = model_outputs["""logits"""][0] if self.framework == "pt": SCREAMING_SNAKE_CASE__ = logits.softmax(dim=-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = probs.tolist() if not isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = [scores] elif self.framework == "tf": SCREAMING_SNAKE_CASE__ = stable_softmax(__A , axis=-1 ) SCREAMING_SNAKE_CASE__ = probs.numpy().tolist() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) SCREAMING_SNAKE_CASE__ = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__A , __A ) , key=lambda __A : -x[0] ) ] return result
6
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
6
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "efficientnet" def __init__( self :Tuple , __A :int = 3 , __A :int = 600 , __A :float = 2.0 , __A :float = 3.1 , __A :int = 8 , __A :List[int] = [3, 3, 5, 3, 5, 5, 3] , __A :List[int] = [32, 16, 24, 40, 80, 112, 192] , __A :List[int] = [16, 24, 40, 80, 112, 192, 320] , __A :List[int] = [] , __A :List[int] = [1, 2, 2, 2, 1, 2, 1] , __A :List[int] = [1, 2, 2, 3, 3, 4, 1] , __A :List[int] = [1, 6, 6, 6, 6, 6, 6] , __A :float = 0.2_5 , __A :str = "swish" , __A :int = 2560 , __A :str = "mean" , __A :float = 0.0_2 , __A :float = 0.0_0_1 , __A :float = 0.9_9 , __A :float = 0.5 , __A :float = 0.2 , **__A :int , ) -> List[Any]: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = width_coefficient SCREAMING_SNAKE_CASE__ = depth_coefficient SCREAMING_SNAKE_CASE__ = depth_divisor SCREAMING_SNAKE_CASE__ = kernel_sizes SCREAMING_SNAKE_CASE__ = in_channels SCREAMING_SNAKE_CASE__ = out_channels SCREAMING_SNAKE_CASE__ = depthwise_padding SCREAMING_SNAKE_CASE__ = strides SCREAMING_SNAKE_CASE__ = num_block_repeats SCREAMING_SNAKE_CASE__ = expand_ratios SCREAMING_SNAKE_CASE__ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dim SCREAMING_SNAKE_CASE__ = pooling_type SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = batch_norm_eps SCREAMING_SNAKE_CASE__ = batch_norm_momentum SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = drop_connect_rate SCREAMING_SNAKE_CASE__ = sum(__A ) * 4 class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = version.parse("1.11" ) @property def _snake_case ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self :List[str] ) -> float: """simple docstring""" return 1E-5
6
import argparse import datetime def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) SCREAMING_SNAKE_CASE__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator SCREAMING_SNAKE_CASE__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: SCREAMING_SNAKE_CASE__ = y - 1 SCREAMING_SNAKE_CASE__ = m + 12 # maths var SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] ) SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] ) SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 ) SCREAMING_SNAKE_CASE__ = int(c / 4 ) SCREAMING_SNAKE_CASE__ = int(k / 4 ) SCREAMING_SNAKE_CASE__ = int(d + k ) SCREAMING_SNAKE_CASE__ = int(t + u + v + x ) SCREAMING_SNAKE_CASE__ = int(z - (2 * c) ) SCREAMING_SNAKE_CASE__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) _lowerCamelCase = parser.parse_args() zeller(args.date_input)
6
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = StableDiffusionSAGPipeline lowerCamelCase_ = TEXT_TO_IMAGE_PARAMS lowerCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase_ = False def _snake_case ( self :List[Any] ) -> str: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(__A ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self :Optional[Any] , __A :List[str] , __A :Optional[int]=0 ) -> Any: """simple docstring""" if str(__A ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(__A ) SCREAMING_SNAKE_CASE__ = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _snake_case ( self :int ) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ = sag_pipe.to(__A ) sag_pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = """.""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sag_pipe( [prompt] , generator=__A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _snake_case ( self :Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sag_pipe.to(__A ) sag_pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = """.""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sag_pipe( [prompt] , generator=__A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _snake_case ( self :List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sag_pipe.to(__A ) sag_pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = """.""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sag_pipe( [prompt] , width=768 , height=512 , generator=__A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape == (1, 512, 768, 3)
6
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
1
from __future__ import annotations from collections.abc import Iterator class UpperCamelCase_ : def __init__( self :Any , __A :int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = value SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None class UpperCamelCase_ : def __init__( self :Dict , __A :Node ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = tree def _snake_case ( self :List[str] , __A :Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self :Tuple ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
6
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "vit_mae" def __init__( self :int , __A :str=768 , __A :str=12 , __A :List[Any]=12 , __A :Optional[Any]=3072 , __A :Optional[int]="gelu" , __A :List[str]=0.0 , __A :Optional[int]=0.0 , __A :Dict=0.0_2 , __A :List[str]=1E-12 , __A :List[Any]=224 , __A :Any=16 , __A :Tuple=3 , __A :Optional[Any]=True , __A :int=16 , __A :int=512 , __A :int=8 , __A :List[str]=2048 , __A :Any=0.7_5 , __A :Dict=False , **__A :int , ) -> List[str]: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = decoder_num_attention_heads SCREAMING_SNAKE_CASE__ = decoder_hidden_size SCREAMING_SNAKE_CASE__ = decoder_num_hidden_layers SCREAMING_SNAKE_CASE__ = decoder_intermediate_size SCREAMING_SNAKE_CASE__ = mask_ratio SCREAMING_SNAKE_CASE__ = norm_pix_loss
6
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "OwlViTImageProcessor" lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): SCREAMING_SNAKE_CASE__ = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A )) SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = input_ids SCREAMING_SNAKE_CASE__ = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values SCREAMING_SNAKE_CASE__ = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process(*__A , **__A ) def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*__A , **__A ) def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: tuple[int, int] , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = position SCREAMING_SNAKE_CASE__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] SCREAMING_SNAKE_CASE__ = [] for position in positions: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCamelCase__ ) return permissible_positions def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] , UpperCamelCase__: tuple[int, int] , UpperCamelCase__: int ): if is_complete(UpperCamelCase__ ): return True for position in get_valid_pos(UpperCamelCase__ , len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = position if board[y][x] == 0: SCREAMING_SNAKE_CASE__ = curr + 1 if open_knight_tour_helper(UpperCamelCase__ , UpperCamelCase__ , curr + 1 ): return True SCREAMING_SNAKE_CASE__ = 0 return False def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = 1 if open_knight_tour_helper(UpperCamelCase__ , (i, j) , 1 ): return board SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
6
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
1
import argparse import struct import unittest class UpperCamelCase_ : def __init__( self :Dict , __A :bytes ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = data # Initialize hash values SCREAMING_SNAKE_CASE__ = [ 0X6A_09_E6_67, 0XBB_67_AE_85, 0X3C_6E_F3_72, 0XA5_4F_F5_3A, 0X51_0E_52_7F, 0X9B_05_68_8C, 0X1F_83_D9_AB, 0X5B_E0_CD_19, ] # Initialize round constants SCREAMING_SNAKE_CASE__ = [ 0X42_8A_2F_98, 0X71_37_44_91, 0XB5_C0_FB_CF, 0XE9_B5_DB_A5, 0X39_56_C2_5B, 0X59_F1_11_F1, 0X92_3F_82_A4, 0XAB_1C_5E_D5, 0XD8_07_AA_98, 0X12_83_5B_01, 0X24_31_85_BE, 0X55_0C_7D_C3, 0X72_BE_5D_74, 0X80_DE_B1_FE, 0X9B_DC_06_A7, 0XC1_9B_F1_74, 0XE4_9B_69_C1, 0XEF_BE_47_86, 0X0F_C1_9D_C6, 0X24_0C_A1_CC, 0X2D_E9_2C_6F, 0X4A_74_84_AA, 0X5C_B0_A9_DC, 0X76_F9_88_DA, 0X98_3E_51_52, 0XA8_31_C6_6D, 0XB0_03_27_C8, 0XBF_59_7F_C7, 0XC6_E0_0B_F3, 0XD5_A7_91_47, 0X06_CA_63_51, 0X14_29_29_67, 0X27_B7_0A_85, 0X2E_1B_21_38, 0X4D_2C_6D_FC, 0X53_38_0D_13, 0X65_0A_73_54, 0X76_6A_0A_BB, 0X81_C2_C9_2E, 0X92_72_2C_85, 0XA2_BF_E8_A1, 0XA8_1A_66_4B, 0XC2_4B_8B_70, 0XC7_6C_51_A3, 0XD1_92_E8_19, 0XD6_99_06_24, 0XF4_0E_35_85, 0X10_6A_A0_70, 0X19_A4_C1_16, 0X1E_37_6C_08, 0X27_48_77_4C, 0X34_B0_BC_B5, 0X39_1C_0C_B3, 0X4E_D8_AA_4A, 0X5B_9C_CA_4F, 0X68_2E_6F_F3, 0X74_8F_82_EE, 0X78_A5_63_6F, 0X84_C8_78_14, 0X8C_C7_02_08, 0X90_BE_FF_FA, 0XA4_50_6C_EB, 0XBE_F9_A3_F7, 0XC6_71_78_F2, ] SCREAMING_SNAKE_CASE__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def _snake_case ( __A :bytes ) -> bytes: """simple docstring""" SCREAMING_SNAKE_CASE__ = b"""\x80""" + (b"""\x00""" * (63 - (len(__A ) + 8) % 64)) SCREAMING_SNAKE_CASE__ = struct.pack(""">Q""" , (len(__A ) * 8) ) return data + padding + big_endian_integer def _snake_case ( self :Dict ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers SCREAMING_SNAKE_CASE__ = list(struct.unpack(""">16L""" , __A ) ) # add 48 0-ed integers words += [0] * 48 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array SCREAMING_SNAKE_CASE__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) SCREAMING_SNAKE_CASE__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) SCREAMING_SNAKE_CASE__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression SCREAMING_SNAKE_CASE__ = self.ror(__A , 6 ) ^ self.ror(__A , 11 ) ^ self.ror(__A , 25 ) SCREAMING_SNAKE_CASE__ = (e & f) ^ ((~e & 0XFF_FF_FF_FF) & g) SCREAMING_SNAKE_CASE__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 SCREAMING_SNAKE_CASE__ = self.ror(__A , 2 ) ^ self.ror(__A , 13 ) ^ self.ror(__A , 22 ) SCREAMING_SNAKE_CASE__ = (a & b) ^ (a & c) ^ (b & c) SCREAMING_SNAKE_CASE__ = (sa + maj) % 0X1_00_00_00_00 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) SCREAMING_SNAKE_CASE__ = [a, b, c, d, e, f, g, h] # Modify final values SCREAMING_SNAKE_CASE__ = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] SCREAMING_SNAKE_CASE__ = """""".join([hex(__A )[2:].zfill(8 ) for value in self.hashes] ) def _snake_case ( self :Any , __A :int , __A :int ) -> int: """simple docstring""" return 0XFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Tuple ) -> None: """simple docstring""" import hashlib SCREAMING_SNAKE_CASE__ = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(__A ).hash , hashlib.shaaaa(__A ).hexdigest() ) def SCREAMING_SNAKE_CASE__ ( ): import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() else: SCREAMING_SNAKE_CASE__ = bytes(UpperCamelCase__ , """utf-8""" ) print(SHAaaa(UpperCamelCase__ ).hash ) if __name__ == "__main__": main()
6
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = jnp.floataa lowerCamelCase_ = True def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A ) SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ): SCREAMING_SNAKE_CASE__ = logits.shape[-1] SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" ) SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ ) return loss SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase_ : lowerCamelCase_ = "google/bigbird-roberta-base" lowerCamelCase_ = 30_00 lowerCamelCase_ = 1_05_00 lowerCamelCase_ = 1_28 lowerCamelCase_ = 3 lowerCamelCase_ = 1 lowerCamelCase_ = 5 # tx_args lowerCamelCase_ = 3e-5 lowerCamelCase_ = 0.0 lowerCamelCase_ = 2_00_00 lowerCamelCase_ = 0.0095 lowerCamelCase_ = "bigbird-roberta-natural-questions" lowerCamelCase_ = "training-expt" lowerCamelCase_ = "data/nq-training.jsonl" lowerCamelCase_ = "data/nq-validation.jsonl" def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 40_96 # no dynamic padding on TPUs def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.collate_fn(__A ) SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A ) return batch def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = { """input_ids""": jnp.array(__A , dtype=jnp.intaa ), """attention_mask""": jnp.array(__A , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _snake_case ( self :Tuple , __A :list ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ): if seed is not None: SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): def loss_fn(UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" ) SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCamelCase_ ( train_state.TrainState ): lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = None def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = model.params SCREAMING_SNAKE_CASE__ = TrainState.create( apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A ) SCREAMING_SNAKE_CASE__ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A ) SCREAMING_SNAKE_CASE__ = train_state.TrainState( step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = data_collator SCREAMING_SNAKE_CASE__ = lr SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A ) return state def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.args SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE__ = running_loss.item() / i SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A ) SCREAMING_SNAKE_CASE__ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A , commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A ) def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size ) SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(__A , params=state.params ) with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) ) with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __A ) print("""DONE""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ): def weight_decay_mask(UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
6
1
from torch import nn class UpperCamelCase_ ( nn.Module ): def __init__( self :List[Any] , __A :List[str] , __A :List[Any] ) -> List[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = class_size SCREAMING_SNAKE_CASE__ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) SCREAMING_SNAKE_CASE__ = nn.Linear(__A , __A ) def _snake_case ( self :Tuple , __A :Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.mlp(__A ) return logits
6
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: int , UpperCamelCase__: Tuple ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Tuple , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} SCREAMING_SNAKE_CASE__ = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} SCREAMING_SNAKE_CASE__ = features.copy() SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: int , UpperCamelCase__: List[Any] ): if issubclass(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = jsonl_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = [jsonl_path] SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] , UpperCamelCase__: Dict=("train",) ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: SCREAMING_SNAKE_CASE__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader({"""train""": jsonl_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] ): if split: SCREAMING_SNAKE_CASE__ = {split: jsonl_path} else: SCREAMING_SNAKE_CASE__ = """train""" SCREAMING_SNAKE_CASE__ = {"""train""": jsonl_path, """test""": jsonl_path} SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): return json.load(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): return [json.loads(UpperCamelCase__ ) for line in buffer] class UpperCamelCase_ : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self :str , __A :int , __A :Optional[Any] , __A :Dict ) -> Tuple: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , lines=__A ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(__A ) assert isinstance(__A , __A ) assert isinstance(exported_content[0] , __A ) assert len(__A ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _snake_case ( self :Optional[int] , __A :Union[str, Any] , __A :Tuple , __A :int , __A :str , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , lines=__A , orient=__A ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(__A ) assert isinstance(__A , __A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__A , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__A ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self :Union[str, Any] , __A :Tuple , __A :Dict , __A :Any ) -> int: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , lines=__A , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(__A ) assert isinstance(__A , __A ) assert isinstance(exported_content[0] , __A ) assert len(__A ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _snake_case ( self :int , __A :List[str] , __A :List[Any] , __A :List[Any] , __A :str , __A :List[Any] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , lines=__A , orient=__A , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(__A ) assert isinstance(__A , __A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__A , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__A ) == 10 def _snake_case ( self :Union[str, Any] , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" with pytest.raises(__A ): with io.BytesIO() as buffer: JsonDatasetWriter(__A , __A , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def _snake_case ( self :Dict , __A :List[Any] , __A :Any , __A :str , __A :Tuple , __A :Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / f'''test.json.{extension}''' SCREAMING_SNAKE_CASE__ = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(__A , __A , compression=__A ).write() with fsspec.open(__A , """rb""" , compression="""infer""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() with fsspec.open(__A , """rb""" , compression="""infer""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() assert exported_content == original_content
6
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 847 SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 171 SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 133 SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 65 SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ ) # load original state_dict with open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase__ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 65_535 else: SCREAMING_SNAKE_CASE__ = 255 SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: int ): return [sentence[i : i + ngram_size] for i in range(len(UpperCamelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
6
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0XE0_00 _lowerCamelCase = 0XE0_01 _lowerCamelCase = 0XE0_02 _lowerCamelCase = 0XE0_03 _lowerCamelCase = 0XE0_04 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self._unicode_vocab_size def _snake_case ( self :Tuple , __A :str ) -> List[str]: """simple docstring""" return list(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> int: """simple docstring""" try: return ord(__A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self :str , __A :int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any: """simple docstring""" return "".join(__A ) def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: result += ([0] * len(__A )) + [1] return result def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any: """simple docstring""" return ()
6
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCamelCase_ : def _snake_case ( self :int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self :List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE__ = inputs["""prompt"""] SCREAMING_SNAKE_CASE__ = inputs["""generator"""] SCREAMING_SNAKE_CASE__ = inputs["""num_inference_steps"""] SCREAMING_SNAKE_CASE__ = inputs["""output_type"""] if "image" in inputs: SCREAMING_SNAKE_CASE__ = inputs["""image"""] else: SCREAMING_SNAKE_CASE__ = None if "mask_image" in inputs: SCREAMING_SNAKE_CASE__ = inputs["""mask_image"""] else: SCREAMING_SNAKE_CASE__ = None if "original_image" in inputs: SCREAMING_SNAKE_CASE__ = inputs["""original_image"""] else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pipe.encode_prompt(__A ) # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE__ = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: SCREAMING_SNAKE_CASE__ = image if mask_image is not None: SCREAMING_SNAKE_CASE__ = mask_image if original_image is not None: SCREAMING_SNAKE_CASE__ = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__A , __A , __A ) SCREAMING_SNAKE_CASE__ = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) SCREAMING_SNAKE_CASE__ = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__A , __A ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE__ = inputs["""generator"""] SCREAMING_SNAKE_CASE__ = inputs["""num_inference_steps"""] SCREAMING_SNAKE_CASE__ = inputs["""output_type"""] # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE__ = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: SCREAMING_SNAKE_CASE__ = image if mask_image is not None: SCREAMING_SNAKE_CASE__ = mask_image if original_image is not None: SCREAMING_SNAKE_CASE__ = original_image SCREAMING_SNAKE_CASE__ = pipe_loaded(**__A )[0] SCREAMING_SNAKE_CASE__ = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 ) def _snake_case ( self :Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE__ = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) SCREAMING_SNAKE_CASE__ = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A ) SCREAMING_SNAKE_CASE__ = pipe_loaded(**__A )[0] SCREAMING_SNAKE_CASE__ = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 )
6
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "unispeech" def __init__( self :Tuple , __A :str=32 , __A :Optional[int]=768 , __A :Optional[int]=12 , __A :Any=12 , __A :List[str]=3072 , __A :Optional[int]="gelu" , __A :Dict=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=0.1 , __A :Union[str, Any]=0.0 , __A :Any=0.0 , __A :List[Any]=0.1 , __A :Any=0.1 , __A :List[str]=0.0_2 , __A :Any=1E-5 , __A :Optional[int]="group" , __A :Tuple="gelu" , __A :Dict=(512, 512, 512, 512, 512, 512, 512) , __A :Dict=(5, 2, 2, 2, 2, 2, 2) , __A :List[Any]=(10, 3, 3, 3, 3, 2, 2) , __A :List[Any]=False , __A :int=128 , __A :int=16 , __A :Any=False , __A :int=True , __A :Tuple=0.0_5 , __A :Optional[int]=10 , __A :List[str]=2 , __A :Dict=0.0 , __A :Optional[Any]=10 , __A :Tuple=0 , __A :Tuple=320 , __A :Tuple=2 , __A :int=0.1 , __A :Optional[Any]=100 , __A :List[Any]=256 , __A :Optional[Any]=256 , __A :Optional[Any]=0.1 , __A :Tuple="mean" , __A :int=False , __A :int=False , __A :Dict=256 , __A :Union[str, Any]=80 , __A :str=0 , __A :Any=1 , __A :str=2 , __A :Dict=0.5 , **__A :List[str] , ) -> int: """simple docstring""" super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = feat_extract_norm SCREAMING_SNAKE_CASE__ = feat_extract_activation SCREAMING_SNAKE_CASE__ = list(__A ) SCREAMING_SNAKE_CASE__ = list(__A ) SCREAMING_SNAKE_CASE__ = list(__A ) SCREAMING_SNAKE_CASE__ = conv_bias SCREAMING_SNAKE_CASE__ = num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ = len(self.conv_dim ) SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = feat_proj_dropout SCREAMING_SNAKE_CASE__ = final_dropout SCREAMING_SNAKE_CASE__ = layerdrop SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_ctc_classes SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = do_stable_layer_norm SCREAMING_SNAKE_CASE__ = use_weighted_layer_sum SCREAMING_SNAKE_CASE__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ = apply_spec_augment SCREAMING_SNAKE_CASE__ = mask_time_prob SCREAMING_SNAKE_CASE__ = mask_time_length SCREAMING_SNAKE_CASE__ = mask_time_min_masks SCREAMING_SNAKE_CASE__ = mask_feature_prob SCREAMING_SNAKE_CASE__ = mask_feature_length SCREAMING_SNAKE_CASE__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE__ = num_codevectors_per_group SCREAMING_SNAKE_CASE__ = num_codevector_groups SCREAMING_SNAKE_CASE__ = contrastive_logits_temperature SCREAMING_SNAKE_CASE__ = feat_quantizer_dropout SCREAMING_SNAKE_CASE__ = num_negatives SCREAMING_SNAKE_CASE__ = codevector_dim SCREAMING_SNAKE_CASE__ = proj_codevector_dim SCREAMING_SNAKE_CASE__ = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE__ = ctc_loss_reduction SCREAMING_SNAKE_CASE__ = ctc_zero_infinity # pretraining loss SCREAMING_SNAKE_CASE__ = replace_prob @property def _snake_case ( self :int ) -> int: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
6
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: list[float] ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) SCREAMING_SNAKE_CASE__ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(UpperCamelCase__ ) ) return round(UpperCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
6
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ): model.train() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ): set_seed(42 ) SCREAMING_SNAKE_CASE__ = RegressionModel() SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _lowerCamelCase = NewType('DataClass', Any) _lowerCamelCase = NewType('DataClassType', Any) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list ): SCREAMING_SNAKE_CASE__ = {str(UpperCamelCase__ ): choice for choice in choices} return lambda UpperCamelCase__ : str_to_choice.get(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( *, UpperCamelCase__: Union[str, List[str]] = None , UpperCamelCase__: str = None , UpperCamelCase__: Any = dataclasses.MISSING , UpperCamelCase__: Callable[[], Any] = dataclasses.MISSING , UpperCamelCase__: dict = None , **UpperCamelCase__: Union[str, Any] , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE__ = {} if aliases is not None: SCREAMING_SNAKE_CASE__ = aliases if help is not None: SCREAMING_SNAKE_CASE__ = help return dataclasses.field(metadata=UpperCamelCase__ , default=UpperCamelCase__ , default_factory=UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 def __init__( self :Dict , __A :Union[DataClassType, Iterable[DataClassType]] , **__A :Optional[Any] ) -> Optional[int]: """simple docstring""" if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE__ = ArgumentDefaultsHelpFormatter super().__init__(**__A ) if dataclasses.is_dataclass(__A ): SCREAMING_SNAKE_CASE__ = [dataclass_types] SCREAMING_SNAKE_CASE__ = list(__A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__A ) @staticmethod def _snake_case ( __A :ArgumentParser , __A :dataclasses.Field ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = f'''--{field.name}''' SCREAMING_SNAKE_CASE__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __A ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""aliases""" , [] ) if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = [aliases] SCREAMING_SNAKE_CASE__ = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(__A , """UnionType""" ) and isinstance(__A , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__A ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" f''' Problem encountered in field \'{field.name}\'.''' ) if type(__A ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE__ = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE__ = ( field.type.__args__[0] if isinstance(__A , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE__ = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE__ = {} if origin_type is Literal or (isinstance(field.type , __A ) and issubclass(field.type , __A )): if origin_type is Literal: SCREAMING_SNAKE_CASE__ = field.type.__args__ else: SCREAMING_SNAKE_CASE__ = [x.value for x in field.type] SCREAMING_SNAKE_CASE__ = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default else: SCREAMING_SNAKE_CASE__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE__ = copy(__A ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE__ = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE__ = """?""" # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE__ = True elif isclass(__A ) and issubclass(__A , __A ): SCREAMING_SNAKE_CASE__ = field.type.__args__[0] SCREAMING_SNAKE_CASE__ = """+""" if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() else: SCREAMING_SNAKE_CASE__ = True parser.add_argument(__A , *__A , **__A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE__ = False parser.add_argument(f'''--no_{field.name}''' , action="""store_false""" , dest=field.name , **__A ) def _snake_case ( self :Tuple , __A :DataClassType ) -> List[str]: """simple docstring""" if hasattr(__A , """_argument_group_name""" ): SCREAMING_SNAKE_CASE__ = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE__ = self try: SCREAMING_SNAKE_CASE__ = get_type_hints(__A ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__A ): SCREAMING_SNAKE_CASE__ = """.""".join(map(__A , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(__A ): if not field.init: continue SCREAMING_SNAKE_CASE__ = type_hints[field.name] self._parse_dataclass_field(__A , __A ) def _snake_case ( self :Optional[Any] , __A :Union[str, Any]=None , __A :Any=False , __A :Union[str, Any]=True , __A :List[str]=None , __A :Union[str, Any]=None , ) -> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE__ = [] if args_filename: args_files.append(Path(__A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE__ = ArgumentParser() args_file_parser.add_argument(__A , type=__A , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = args_file_parser.parse_known_args(args=__A ) SCREAMING_SNAKE_CASE__ = vars(__A ).get(args_file_flag.lstrip("""-""" ) , __A ) if cmd_args_file_paths: args_files.extend([Path(__A ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE__ = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.parse_known_args(args=__A ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(__A ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in vars(__A ).items() if k in keys} for k in keys: delattr(__A , __A ) SCREAMING_SNAKE_CASE__ = dtype(**__A ) outputs.append(__A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _snake_case ( self :Tuple , __A :Dict[str, Any] , __A :bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" SCREAMING_SNAKE_CASE__ = set(args.keys() ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(__A ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE__ = dtype(**__A ) outputs.append(__A ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(__A )}''' ) return tuple(__A ) def _snake_case ( self :str , __A :str , __A :bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" with open(Path(__A ) , encoding="""utf-8""" ) as open_json_file: SCREAMING_SNAKE_CASE__ = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE__ = self.parse_dict(__A , allow_extra_keys=__A ) return tuple(__A ) def _snake_case ( self :str , __A :str , __A :bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.parse_dict(yaml.safe_load(Path(__A ).read_text() ) , allow_extra_keys=__A ) return tuple(__A )
6
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowerCamelCase = None _lowerCamelCase = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowerCamelCase = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class UpperCamelCase_ : lowerCamelCase_ = True lowerCamelCase_ = None # Automatically constructed lowerCamelCase_ = "PIL.Image.Image" lowerCamelCase_ = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCamelCase_ = field(default="Image" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Optional[Any] ) -> Optional[int]: """simple docstring""" return self.pa_type def _snake_case ( self :int , __A :Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = np.array(__A ) if isinstance(__A , __A ): return {"path": value, "bytes": None} elif isinstance(__A , __A ): return {"path": None, "bytes": value} elif isinstance(__A , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__A ) elif isinstance(__A , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__A ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _snake_case ( self :Tuple , __A :dict , __A :Optional[Any]=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(__A ): SCREAMING_SNAKE_CASE__ = PIL.Image.open(__A ) else: SCREAMING_SNAKE_CASE__ = path.split("""::""" )[-1] try: SCREAMING_SNAKE_CASE__ = string_to_dict(__A , config.HUB_DATASETS_URL )["""repo_id"""] SCREAMING_SNAKE_CASE__ = token_per_repo_id.get(__A ) except ValueError: SCREAMING_SNAKE_CASE__ = None with xopen(__A , """rb""" , use_auth_token=__A ) as f: SCREAMING_SNAKE_CASE__ = BytesIO(f.read() ) SCREAMING_SNAKE_CASE__ = PIL.Image.open(bytes_ ) else: SCREAMING_SNAKE_CASE__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _snake_case ( self :str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def _snake_case ( self :List[Any] , __A :Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE__ = pa.array([None] * len(__A ) , type=pa.binary() ) SCREAMING_SNAKE_CASE__ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE__ = pa.array([None] * len(__A ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: SCREAMING_SNAKE_CASE__ = storage.field("""bytes""" ) else: SCREAMING_SNAKE_CASE__ = pa.array([None] * len(__A ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: SCREAMING_SNAKE_CASE__ = storage.field("""path""" ) else: SCREAMING_SNAKE_CASE__ = pa.array([None] * len(__A ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): SCREAMING_SNAKE_CASE__ = pa.array( [encode_np_array(np.array(__A ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ = pa.array([None] * len(__A ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__A , self.pa_type ) def _snake_case ( self :Tuple , __A :pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(__A :Tuple ): with xopen(__A , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() return bytes_ SCREAMING_SNAKE_CASE__ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__A , self.pa_type ) def SCREAMING_SNAKE_CASE__ ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() SCREAMING_SNAKE_CASE__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: "PIL.Image.Image" ): SCREAMING_SNAKE_CASE__ = BytesIO() if image.format in list_image_compression_formats(): SCREAMING_SNAKE_CASE__ = image.format else: SCREAMING_SNAKE_CASE__ = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCamelCase__ , format=UpperCamelCase__ ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: "PIL.Image.Image" ): if hasattr(UpperCamelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCamelCase__ )} def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: np.ndarray ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) SCREAMING_SNAKE_CASE__ = array.dtype SCREAMING_SNAKE_CASE__ = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER SCREAMING_SNAKE_CASE__ = dtype.kind SCREAMING_SNAKE_CASE__ = dtype.itemsize SCREAMING_SNAKE_CASE__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: SCREAMING_SNAKE_CASE__ = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: SCREAMING_SNAKE_CASE__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: SCREAMING_SNAKE_CASE__ = dtype_byteorder + dtype_kind + str(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = np.dtype(UpperCamelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) SCREAMING_SNAKE_CASE__ = PIL.Image.fromarray(array.astype(UpperCamelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCamelCase__ )} def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = first_non_null_value(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCamelCase__ , np.ndarray ): SCREAMING_SNAKE_CASE__ = no_op_if_value_is_null(UpperCamelCase__ ) return [obj_to_image_dict_func(UpperCamelCase__ ) for obj in objs] elif isinstance(UpperCamelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = no_op_if_value_is_null(UpperCamelCase__ ) return [obj_to_image_dict_func(UpperCamelCase__ ) for obj in objs] else: return objs else: return objs
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[Any] ): # Initialise PyTorch model SCREAMING_SNAKE_CASE__ = MobileBertConfig.from_json_file(UpperCamelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE__ = MobileBertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint SCREAMING_SNAKE_CASE__ = load_tf_weights_in_mobilebert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ : def __init__( self :Optional[Any] , __A :int , __A :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = question_encoder SCREAMING_SNAKE_CASE__ = generator SCREAMING_SNAKE_CASE__ = self.question_encoder def _snake_case ( self :Tuple , __A :List[str] ) -> Optional[int]: """simple docstring""" if os.path.isfile(__A ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__A , exist_ok=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(__A , """question_encoder_tokenizer""" ) SCREAMING_SNAKE_CASE__ = os.path.join(__A , """generator_tokenizer""" ) self.question_encoder.save_pretrained(__A ) self.generator.save_pretrained(__A ) @classmethod def _snake_case ( cls :Union[str, Any] , __A :List[Any] , **__A :Any ) -> Union[str, Any]: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer SCREAMING_SNAKE_CASE__ = kwargs.pop("""config""" , __A ) if config is None: SCREAMING_SNAKE_CASE__ = RagConfig.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( __A , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( __A , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=__A , generator=__A ) def __call__( self :Any , *__A :str , **__A :int ) -> str: """simple docstring""" return self.current_tokenizer(*__A , **__A ) def _snake_case ( self :str , *__A :Any , **__A :Tuple ) -> List[str]: """simple docstring""" return self.generator.batch_decode(*__A , **__A ) def _snake_case ( self :Optional[int] , *__A :Optional[Any] , **__A :Dict ) -> Optional[Any]: """simple docstring""" return self.generator.decode(*__A , **__A ) def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.question_encoder def _snake_case ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.generator def _snake_case ( self :Dict , __A :List[str] , __A :Optional[List[str]] = None , __A :Optional[int] = None , __A :Optional[int] = None , __A :str = "longest" , __A :str = None , __A :bool = True , **__A :Union[str, Any] , ) -> BatchEncoding: """simple docstring""" warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , __A , ) if max_length is None: SCREAMING_SNAKE_CASE__ = self.current_tokenizer.model_max_length SCREAMING_SNAKE_CASE__ = self( __A , add_special_tokens=__A , return_tensors=__A , max_length=__A , padding=__A , truncation=__A , **__A , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: SCREAMING_SNAKE_CASE__ = self.current_tokenizer.model_max_length SCREAMING_SNAKE_CASE__ = self( text_target=__A , add_special_tokens=__A , return_tensors=__A , padding=__A , max_length=__A , truncation=__A , **__A , ) SCREAMING_SNAKE_CASE__ = labels["""input_ids"""] return model_inputs
6
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "encoder-decoder" lowerCamelCase_ = True def __init__( self :Optional[int] , **__A :str ) -> int: """simple docstring""" super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = True @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
1
import string def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = """""" for i in sequence: SCREAMING_SNAKE_CASE__ = ord(UpperCamelCase__ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = string.ascii_letters SCREAMING_SNAKE_CASE__ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCamelCase__ )] if c in letters else c for c in sequence ) def SCREAMING_SNAKE_CASE__ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) SCREAMING_SNAKE_CASE__ = """from string import printable ; from __main__ import atbash, atbash_slow""" print(f'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=UpperCamelCase__ )} seconds''' ) print(f'''> atbash(): {timeit('atbash(printable)' , setup=UpperCamelCase__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
6
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase_ = Features({"text": Value("string" )} ) lowerCamelCase_ = Features({"labels": ClassLabel} ) lowerCamelCase_ = "text" lowerCamelCase_ = "labels" def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def _snake_case ( self :str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
6
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[dict, list, tuple, torch.Tensor] ): SCREAMING_SNAKE_CASE__ = [] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for v in tree.values(): shapes.extend(_fetch_dims(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Tuple[int, ...] ): SCREAMING_SNAKE_CASE__ = [] for d in reversed(UpperCamelCase__ ): idx.append(flat_idx % d ) SCREAMING_SNAKE_CASE__ = flat_idx // d return tuple(reversed(UpperCamelCase__ ) ) @torch.jit.ignore def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Sequence[int] , UpperCamelCase__: Sequence[int] , UpperCamelCase__: Sequence[int] , UpperCamelCase__: Optional[Sequence[bool]] = None , UpperCamelCase__: Optional[Sequence[bool]] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(UpperCamelCase__: List[bool] ) -> None: SCREAMING_SNAKE_CASE__ = True for i in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE__ = -1 * (i + 1) l[reversed_idx] &= tally SCREAMING_SNAKE_CASE__ = l[reversed_idx] if start_edges is None: SCREAMING_SNAKE_CASE__ = [s == 0 for s in start] reduce_edge_list(UpperCamelCase__ ) if end_edges is None: SCREAMING_SNAKE_CASE__ = [e == (d - 1) for e, d in zip(UpperCamelCase__ , UpperCamelCase__ )] reduce_edge_list(UpperCamelCase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(UpperCamelCase__ ) == 0: return [()] elif len(UpperCamelCase__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] # Dimensions common to start and end can be selected directly for s, e in zip(UpperCamelCase__ , UpperCamelCase__ ): if s == e: path_list.append(slice(UpperCamelCase__ , s + 1 ) ) else: break SCREAMING_SNAKE_CASE__ = tuple(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) # start == end, and we're done if divergence_idx == len(UpperCamelCase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE__ = start[divergence_idx] return tuple( path + (slice(UpperCamelCase__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE__ = end[divergence_idx] return tuple( path + (slice(UpperCamelCase__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) SCREAMING_SNAKE_CASE__ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: torch.Tensor , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = t.shape[:no_batch_dims] SCREAMING_SNAKE_CASE__ = list(_flat_idx_to_idx(UpperCamelCase__ , UpperCamelCase__ ) ) # _get_minimal_slice_set is inclusive SCREAMING_SNAKE_CASE__ = list(_flat_idx_to_idx(flat_end - 1 , UpperCamelCase__ ) ) # Get an ordered list of slices to perform SCREAMING_SNAKE_CASE__ = _get_minimal_slice_set( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Callable , UpperCamelCase__: Dict[str, Any] , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: bool = False , UpperCamelCase__: Any = None , UpperCamelCase__: bool = False , ): if not (len(UpperCamelCase__ ) > 0): raise ValueError("""Must provide at least one input""" ) SCREAMING_SNAKE_CASE__ = [shape[:no_batch_dims] for shape in _fetch_dims(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ = tuple([max(UpperCamelCase__ ) for s in zip(*UpperCamelCase__ )] ) def _prep_inputs(UpperCamelCase__: torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: SCREAMING_SNAKE_CASE__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) SCREAMING_SNAKE_CASE__ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: SCREAMING_SNAKE_CASE__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t SCREAMING_SNAKE_CASE__ = tensor_tree_map(_prep_inputs , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = None if _out is not None: SCREAMING_SNAKE_CASE__ = tensor_tree_map(lambda UpperCamelCase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) SCREAMING_SNAKE_CASE__ = 1 for d in orig_batch_dims: flat_batch_dim *= d SCREAMING_SNAKE_CASE__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(UpperCamelCase__: torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = prepped_outputs for _ in range(UpperCamelCase__ ): # Chunk the input if not low_mem: SCREAMING_SNAKE_CASE__ = _select_chunk else: SCREAMING_SNAKE_CASE__ = partial( _chunk_slice , flat_start=UpperCamelCase__ , flat_end=min(UpperCamelCase__ , i + chunk_size ) , no_batch_dims=len(UpperCamelCase__ ) , ) SCREAMING_SNAKE_CASE__ = tensor_tree_map(UpperCamelCase__ , UpperCamelCase__ ) # Run the layer on the chunk SCREAMING_SNAKE_CASE__ = layer(**UpperCamelCase__ ) # Allocate space for the output if out is None: SCREAMING_SNAKE_CASE__ = tensor_tree_map(lambda UpperCamelCase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , UpperCamelCase__ ) # Put the chunk in its pre-allocated space if isinstance(UpperCamelCase__ , UpperCamelCase__ ): def assign(UpperCamelCase__: dict , UpperCamelCase__: dict ) -> None: for k, v in da.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): assign(UpperCamelCase__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: SCREAMING_SNAKE_CASE__ = da[k] assign(UpperCamelCase__ , UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): for xa, xa in zip(UpperCamelCase__ , UpperCamelCase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: SCREAMING_SNAKE_CASE__ = xa elif isinstance(UpperCamelCase__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: SCREAMING_SNAKE_CASE__ = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size SCREAMING_SNAKE_CASE__ = tensor_tree_map(lambda UpperCamelCase__ : t.view(orig_batch_dims + t.shape[1:] ) , UpperCamelCase__ ) return out class UpperCamelCase_ : def __init__( self :Optional[Any] , __A :int = 512 , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = max_chunk_size SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def _snake_case ( self :Dict , __A :Callable , __A :tuple , __A :int ) -> int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size SCREAMING_SNAKE_CASE__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] SCREAMING_SNAKE_CASE__ = [c for c in candidates if c > min_chunk_size] SCREAMING_SNAKE_CASE__ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__A :int ) -> bool: try: with torch.no_grad(): fn(*__A , chunk_size=__A ) return True except RuntimeError: return False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = len(__A ) - 1 while i > min_viable_chunk_size_index: SCREAMING_SNAKE_CASE__ = test_chunk_size(candidates[i] ) if not viable: SCREAMING_SNAKE_CASE__ = (min_viable_chunk_size_index + i) // 2 else: SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = (i + len(__A ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _snake_case ( self :Dict , __A :Iterable , __A :Iterable ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE__ = True for aa, aa in zip(__A , __A ): assert type(__A ) == type(__A ) if isinstance(__A , (list, tuple) ): consistent &= self._compare_arg_caches(__A , __A ) elif isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = [v for _, v in sorted(aa.items() , key=lambda __A : x[0] )] SCREAMING_SNAKE_CASE__ = [v for _, v in sorted(aa.items() , key=lambda __A : x[0] )] consistent &= self._compare_arg_caches(__A , __A ) else: consistent &= aa == aa return consistent def _snake_case ( self :int , __A :Callable , __A :tuple , __A :int , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = tree_map(lambda __A : a.shape if isinstance(__A , torch.Tensor ) else a , __A , __A ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__A ) SCREAMING_SNAKE_CASE__ = self._compare_arg_caches(self.cached_arg_data , __A ) else: # Otherwise, we can reuse the precomputed value SCREAMING_SNAKE_CASE__ = False if not consistent: SCREAMING_SNAKE_CASE__ = self._determine_favorable_chunk_size( __A , __A , __A , ) SCREAMING_SNAKE_CASE__ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = model.config SCREAMING_SNAKE_CASE__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) SCREAMING_SNAKE_CASE__ = MBartConfig( is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): if "encoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: SCREAMING_SNAKE_CASE__ = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias""" return name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(key_split[3] ) SCREAMING_SNAKE_CASE__ = int(key_split[5] ) SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE__ = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ): # load original model SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify results on scanned document SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" ) SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" SCREAMING_SNAKE_CASE__ = """When is the coffee break?""" SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE__ = """hello world""" else: raise ValueError("""Model name not supported""" ) SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[ """input_ids""" ] SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) _lowerCamelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
6
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase_ ( unittest.TestCase , UpperCamelCase__ ): def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = load_tool("""text-to-speech""" ) self.tool.setup() def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.tool("""hey""" ) SCREAMING_SNAKE_CASE__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.tool("""hey""" ) SCREAMING_SNAKE_CASE__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
6
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
6
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
1
import os import re import shutil import sys import tempfile import unittest import black _lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCamelCase = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) SCREAMING_SNAKE_CASE__ = self.diffusers_dir shutil.copy( os.path.join(__A , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def _snake_case ( self :List[Any] , __A :Optional[int] , __A :List[str] , __A :Dict , __A :int=None ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE__ = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result SCREAMING_SNAKE_CASE__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) SCREAMING_SNAKE_CASE__ = black.format_str(__A , mode=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(__A , """w""" , newline="""\n""" ) as f: f.write(__A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__A ) with open(__A , """r""" ) as f: self.assertTrue(f.read() , __A ) def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(__A , __A ) def _snake_case ( self :List[str] ) -> Any: """simple docstring""" self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , __A , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , __A ) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE__ = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , __A , __A ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , __A , overwrite_result=re.sub("""DDPM""" , """Test""" , __A ) , )
6
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
6
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "pegasus" lowerCamelCase_ = ["past_key_values"] lowerCamelCase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self :Any , __A :Optional[int]=5_0265 , __A :int=1024 , __A :Union[str, Any]=12 , __A :Union[str, Any]=4096 , __A :Tuple=16 , __A :Union[str, Any]=12 , __A :Tuple=4096 , __A :int=16 , __A :List[Any]=0.0 , __A :Tuple=0.0 , __A :Dict=True , __A :List[str]=True , __A :Optional[int]="gelu" , __A :int=1024 , __A :Optional[Any]=0.1 , __A :List[Any]=0.0 , __A :str=0.0 , __A :List[str]=0.0_2 , __A :str=0 , __A :str=False , __A :List[Any]=0 , __A :int=1 , __A :str=1 , **__A :Tuple , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) @property def _snake_case ( self :int ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _snake_case ( self :str ) -> int: """simple docstring""" return self.d_model
6
import argparse import datetime def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) SCREAMING_SNAKE_CASE__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator SCREAMING_SNAKE_CASE__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: SCREAMING_SNAKE_CASE__ = y - 1 SCREAMING_SNAKE_CASE__ = m + 12 # maths var SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] ) SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] ) SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 ) SCREAMING_SNAKE_CASE__ = int(c / 4 ) SCREAMING_SNAKE_CASE__ = int(k / 4 ) SCREAMING_SNAKE_CASE__ = int(d + k ) SCREAMING_SNAKE_CASE__ = int(t + u + v + x ) SCREAMING_SNAKE_CASE__ = int(z - (2 * c) ) SCREAMING_SNAKE_CASE__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) _lowerCamelCase = parser.parse_args() zeller(args.date_input)
6
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _lowerCamelCase = None _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } _lowerCamelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off _lowerCamelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ["input_ids", "attention_mask"] lowerCamelCase_ = MBartTokenizer lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self :int , __A :Optional[Any]=None , __A :Union[str, Any]=None , __A :Optional[Any]="<s>" , __A :int="</s>" , __A :Tuple="</s>" , __A :int="<s>" , __A :str="<unk>" , __A :str="<pad>" , __A :Dict="<mask>" , __A :Optional[Any]=None , __A :int=None , __A :Tuple=None , **__A :Optional[int] , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( vocab_file=__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , **__A , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) SCREAMING_SNAKE_CASE__ = { lang_code: self.convert_tokens_to_ids(__A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE__ = src_lang if src_lang is not None else """en_XX""" SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self :Union[str, Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self :Tuple , __A :str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self :Any , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self :Any , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self :List[str] , __A :Dict , __A :str , __A :Optional[str] , __A :Optional[str] , **__A :int ) -> Dict: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(__A ) SCREAMING_SNAKE_CASE__ = tgt_lang_id return inputs def _snake_case ( self :Optional[int] , __A :List[str] , __A :str = "en_XX" , __A :Optional[List[str]] = None , __A :str = "ro_RO" , **__A :Optional[int] , ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def _snake_case ( self :List[str] ) -> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self :Optional[int] ) -> List[Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self :Any , __A :Tuple ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(__A ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self :Any , __A :str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(__A ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self :str , __A :str , __A :Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
6
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "marian" lowerCamelCase_ = ["past_key_values"] lowerCamelCase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self :Tuple , __A :Union[str, Any]=5_8101 , __A :Dict=None , __A :str=1024 , __A :Optional[int]=12 , __A :Optional[int]=4096 , __A :Union[str, Any]=16 , __A :List[Any]=12 , __A :int=4096 , __A :Dict=16 , __A :Optional[Any]=0.0 , __A :Any=0.0 , __A :str=True , __A :int=True , __A :Union[str, Any]="gelu" , __A :str=1024 , __A :List[Any]=0.1 , __A :Tuple=0.0 , __A :str=0.0 , __A :Dict=0.0_2 , __A :Tuple=5_8100 , __A :Optional[Any]=False , __A :Dict=5_8100 , __A :int=0 , __A :str=0 , __A :Union[str, Any]=True , **__A :Dict , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ = share_encoder_decoder_embeddings super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) class UpperCamelCase_ ( UpperCamelCase__ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _snake_case ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ = {0: """batch"""} SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """decoder_sequence"""} SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__A , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.num_layers for i in range(__A ): SCREAMING_SNAKE_CASE__ = {0: """batch""", 2: """past_sequence + sequence"""} SCREAMING_SNAKE_CASE__ = {0: """batch""", 2: """past_sequence + sequence"""} else: SCREAMING_SNAKE_CASE__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _snake_case ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ = super().outputs else: SCREAMING_SNAKE_CASE__ = super(__A , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.num_layers for i in range(__A ): SCREAMING_SNAKE_CASE__ = {0: """batch""", 2: """past_sequence + sequence"""} SCREAMING_SNAKE_CASE__ = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _snake_case ( self :List[Any] , __A :PreTrainedTokenizer , __A :int = -1 , __A :int = -1 , __A :bool = False , __A :Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._generate_dummy_inputs_for_encoder_and_decoder( __A , __A , __A , __A , __A ) # Generate decoder inputs SCREAMING_SNAKE_CASE__ = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE__ = self._generate_dummy_inputs_for_encoder_and_decoder( __A , __A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE__ = dict(**__A , **__A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = common_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE__ = common_inputs["""decoder_input_ids"""].shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.num_attention_heads SCREAMING_SNAKE_CASE__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ = decoder_seq_length + 3 SCREAMING_SNAKE_CASE__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE__ = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__A , __A )] , dim=1 ) SCREAMING_SNAKE_CASE__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.num_layers SCREAMING_SNAKE_CASE__ = min(__A , __A ) SCREAMING_SNAKE_CASE__ = max(__A , __A ) - min_num_layers SCREAMING_SNAKE_CASE__ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__A ): common_inputs["past_key_values"].append( ( torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE__ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__A , __A ): common_inputs["past_key_values"].append((torch.zeros(__A ), torch.zeros(__A )) ) return common_inputs def _snake_case ( self :Dict , __A :PreTrainedTokenizer , __A :int = -1 , __A :int = -1 , __A :bool = False , __A :Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._generate_dummy_inputs_for_encoder_and_decoder( __A , __A , __A , __A , __A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ = seqlen + 2 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.num_layers SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.num_attention_heads SCREAMING_SNAKE_CASE__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ = common_inputs["""attention_mask"""].dtype SCREAMING_SNAKE_CASE__ = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__A , __A , dtype=__A )] , dim=1 ) SCREAMING_SNAKE_CASE__ = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(__A ) ] return common_inputs def _snake_case ( self :int , __A :PreTrainedTokenizer , __A :int = -1 , __A :int = -1 , __A :bool = False , __A :Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ = tokenizer.num_special_tokens_to_add(__A ) SCREAMING_SNAKE_CASE__ = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ = dict(tokenizer(__A , return_tensors=__A ) ) return common_inputs def _snake_case ( self :Optional[Any] , __A :PreTrainedTokenizer , __A :int = -1 , __A :int = -1 , __A :bool = False , __A :Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) else: SCREAMING_SNAKE_CASE__ = self._generate_dummy_inputs_for_causal_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) return common_inputs def _snake_case ( self :Union[str, Any] , __A :List[Any] , __A :Tuple , __A :Dict , __A :Any ) -> str: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ = super()._flatten_past_key_values_(__A , __A , __A , __A ) else: SCREAMING_SNAKE_CASE__ = super(__A , self )._flatten_past_key_values_( __A , __A , __A , __A ) @property def _snake_case ( self :Tuple ) -> float: """simple docstring""" return 1E-4
6
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = b.T SCREAMING_SNAKE_CASE__ = np.sum(np.square(UpperCamelCase__ ) , axis=1 ) SCREAMING_SNAKE_CASE__ = np.sum(np.square(UpperCamelCase__ ) , axis=0 ) SCREAMING_SNAKE_CASE__ = np.matmul(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = x.reshape(-1 , 3 ) SCREAMING_SNAKE_CASE__ = squared_euclidean_distance(UpperCamelCase__ , UpperCamelCase__ ) return np.argmin(UpperCamelCase__ , axis=1 ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["pixel_values"] def __init__( self :int , __A :Optional[Union[List[List[int]], np.ndarray]] = None , __A :bool = True , __A :Dict[str, int] = None , __A :PILImageResampling = PILImageResampling.BILINEAR , __A :bool = True , __A :bool = True , **__A :int , ) -> None: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = size if size is not None else {"""height""": 256, """width""": 256} SCREAMING_SNAKE_CASE__ = get_size_dict(__A ) SCREAMING_SNAKE_CASE__ = np.array(__A ) if clusters is not None else None SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = do_color_quantize def _snake_case ( self :str , __A :np.ndarray , __A :Dict[str, int] , __A :PILImageResampling = PILImageResampling.BILINEAR , __A :Optional[Union[str, ChannelDimension]] = None , **__A :List[str] , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __A , size=(size["""height"""], size["""width"""]) , resample=__A , data_format=__A , **__A ) def _snake_case ( self :List[Any] , __A :np.ndarray , __A :Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ = rescale(image=__A , scale=1 / 1_2_7.5 , data_format=__A ) SCREAMING_SNAKE_CASE__ = image - 1 return image def _snake_case ( self :Optional[int] , __A :ImageInput , __A :bool = None , __A :Dict[str, int] = None , __A :PILImageResampling = None , __A :bool = None , __A :Optional[bool] = None , __A :Optional[Union[List[List[int]], np.ndarray]] = None , __A :Optional[Union[str, TensorType]] = None , __A :Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__A :List[str] , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(__A ) SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE__ = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE__ = np.array(__A ) SCREAMING_SNAKE_CASE__ = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(__A ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ = [self.normalize(image=__A ) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(__A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE__ = np.array(__A ) SCREAMING_SNAKE_CASE__ = color_quantize(__A , __A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE__ = images.shape[0] SCREAMING_SNAKE_CASE__ = images.reshape(__A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE__ = list(__A ) else: SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(__A , __A ) for image in images] SCREAMING_SNAKE_CASE__ = {"""input_ids""": images} return BatchFeature(data=__A , tensor_type=__A )
6
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "OwlViTImageProcessor" lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): SCREAMING_SNAKE_CASE__ = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A )) SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = input_ids SCREAMING_SNAKE_CASE__ = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values SCREAMING_SNAKE_CASE__ = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process(*__A , **__A ) def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*__A , **__A ) def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
1
import json import sys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] ): with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = results[benchmark_name] SCREAMING_SNAKE_CASE__ = benchmark_name.split("""/""" )[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''' ) SCREAMING_SNAKE_CASE__ = """| metric |""" SCREAMING_SNAKE_CASE__ = """|--------|""" SCREAMING_SNAKE_CASE__ = """| new / old (diff) |""" for metric_name in sorted(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = benchmark_res[metric_name] SCREAMING_SNAKE_CASE__ = metric_vals["""new"""] SCREAMING_SNAKE_CASE__ = metric_vals.get("""old""" , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = metric_vals.get("""diff""" , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = f''' {new_val:f}''' if isinstance(UpperCamelCase__ , (int, float) ) else """None""" if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(UpperCamelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(UpperCamelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(UpperCamelCase__ ) ) if __name__ == "__main__": _lowerCamelCase = sys.argv[1] _lowerCamelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
6
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = jnp.floataa lowerCamelCase_ = True def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A ) SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ): SCREAMING_SNAKE_CASE__ = logits.shape[-1] SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" ) SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ ) return loss SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase_ : lowerCamelCase_ = "google/bigbird-roberta-base" lowerCamelCase_ = 30_00 lowerCamelCase_ = 1_05_00 lowerCamelCase_ = 1_28 lowerCamelCase_ = 3 lowerCamelCase_ = 1 lowerCamelCase_ = 5 # tx_args lowerCamelCase_ = 3e-5 lowerCamelCase_ = 0.0 lowerCamelCase_ = 2_00_00 lowerCamelCase_ = 0.0095 lowerCamelCase_ = "bigbird-roberta-natural-questions" lowerCamelCase_ = "training-expt" lowerCamelCase_ = "data/nq-training.jsonl" lowerCamelCase_ = "data/nq-validation.jsonl" def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 40_96 # no dynamic padding on TPUs def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.collate_fn(__A ) SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A ) return batch def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = { """input_ids""": jnp.array(__A , dtype=jnp.intaa ), """attention_mask""": jnp.array(__A , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _snake_case ( self :Tuple , __A :list ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ): if seed is not None: SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): def loss_fn(UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" ) SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCamelCase_ ( train_state.TrainState ): lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = None def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = model.params SCREAMING_SNAKE_CASE__ = TrainState.create( apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A ) SCREAMING_SNAKE_CASE__ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A ) SCREAMING_SNAKE_CASE__ = train_state.TrainState( step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = data_collator SCREAMING_SNAKE_CASE__ = lr SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A ) return state def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.args SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE__ = running_loss.item() / i SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A ) SCREAMING_SNAKE_CASE__ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A , commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A ) def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size ) SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(__A , params=state.params ) with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) ) with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __A ) print("""DONE""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ): def weight_decay_mask(UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
6
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = (IPNDMScheduler,) lowerCamelCase_ = (("num_inference_steps", 50),) def _snake_case ( self :int , **__A :Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""num_train_timesteps""": 1000} config.update(**__A ) return config def _snake_case ( self :Union[str, Any] , __A :int=0 , **__A :str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""num_inference_steps""" , __A ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**__A ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] if time_step is None: SCREAMING_SNAKE_CASE__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(__A ) new_scheduler.set_timesteps(__A ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , **__A ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , **__A ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self :List[str] ) -> Union[str, Any]: """simple docstring""" pass def _snake_case ( self :Optional[Any] , __A :Union[str, Any]=0 , **__A :Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""num_inference_steps""" , __A ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] if time_step is None: SCREAMING_SNAKE_CASE__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(__A ) # copy over dummy past residuals new_scheduler.set_timesteps(__A ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , **__A ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , **__A ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self :List[Any] , **__A :int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**__A ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(__A , __A ) SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A ).prev_sample for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(__A , __A ) SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A ).prev_sample return sample def _snake_case ( self :Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""num_inference_steps""" , __A ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample if num_inference_steps is not None and hasattr(__A , """set_timesteps""" ): scheduler.set_timesteps(__A ) elif num_inference_steps is not None and not hasattr(__A , """set_timesteps""" ): SCREAMING_SNAKE_CASE__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] SCREAMING_SNAKE_CASE__ = dummy_past_residuals[:] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[5] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[6] SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , **__A ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , **__A ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__A , time_step=__A ) def _snake_case ( self :Optional[Any] ) -> Tuple: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__A , time_step=__A ) def _snake_case ( self :Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop() SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_mean.item() - 254_0529 ) < 10
6
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "table-transformer" lowerCamelCase_ = ["past_key_values"] lowerCamelCase_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self :Any , __A :int=True , __A :List[str]=None , __A :Tuple=3 , __A :Tuple=100 , __A :Union[str, Any]=6 , __A :Tuple=2048 , __A :List[str]=8 , __A :str=6 , __A :List[Any]=2048 , __A :Dict=8 , __A :str=0.0 , __A :List[str]=0.0 , __A :Tuple=True , __A :Tuple="relu" , __A :Dict=256 , __A :str=0.1 , __A :str=0.0 , __A :int=0.0 , __A :Union[str, Any]=0.0_2 , __A :List[str]=1.0 , __A :List[Any]=False , __A :List[Any]="sine" , __A :Dict="resnet50" , __A :str=True , __A :str=False , __A :Tuple=1 , __A :str=5 , __A :Optional[int]=2 , __A :Union[str, Any]=1 , __A :Union[str, Any]=1 , __A :Union[str, Any]=5 , __A :List[Any]=2 , __A :Tuple=0.1 , **__A :str , ) -> Union[str, Any]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE__ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ = config_class.from_dict(__A ) # set timm attributes to None SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None, None, None SCREAMING_SNAKE_CASE__ = use_timm_backbone SCREAMING_SNAKE_CASE__ = backbone_config SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = num_queries SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = init_xavier_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = auxiliary_loss SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = backbone SCREAMING_SNAKE_CASE__ = use_pretrained_backbone SCREAMING_SNAKE_CASE__ = dilation # Hungarian matcher SCREAMING_SNAKE_CASE__ = class_cost SCREAMING_SNAKE_CASE__ = bbox_cost SCREAMING_SNAKE_CASE__ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ = mask_loss_coefficient SCREAMING_SNAKE_CASE__ = dice_loss_coefficient SCREAMING_SNAKE_CASE__ = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ = giou_loss_coefficient SCREAMING_SNAKE_CASE__ = eos_coefficient super().__init__(is_encoder_decoder=__A , **__A ) @property def _snake_case ( self :Tuple ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self.d_model class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = version.parse("1.11" ) @property def _snake_case ( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self :int ) -> float: """simple docstring""" return 1E-5 @property def _snake_case ( self :Optional[int] ) -> int: """simple docstring""" return 12
6
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 847 SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 171 SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 133 SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 65 SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ ) # load original state_dict with open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase__ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 65_535 else: SCREAMING_SNAKE_CASE__ = 255 SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
1
import math import sys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): if number != int(UpperCamelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 SCREAMING_SNAKE_CASE__ = [-1] * (number + 1) SCREAMING_SNAKE_CASE__ = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE__ = sys.maxsize SCREAMING_SNAKE_CASE__ = int(math.sqrt(UpperCamelCase__ ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE__ = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
6
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0XE0_00 _lowerCamelCase = 0XE0_01 _lowerCamelCase = 0XE0_02 _lowerCamelCase = 0XE0_03 _lowerCamelCase = 0XE0_04 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self._unicode_vocab_size def _snake_case ( self :Tuple , __A :str ) -> List[str]: """simple docstring""" return list(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> int: """simple docstring""" try: return ord(__A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self :str , __A :int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any: """simple docstring""" return "".join(__A ) def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: result += ([0] * len(__A )) + [1] return result def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any: """simple docstring""" return ()
6
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Tuple , __A :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = data def __iter__( self :Union[str, Any] ) -> int: """simple docstring""" for element in self.data: yield element def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=True ): SCREAMING_SNAKE_CASE__ = Accelerator(even_batches=UpperCamelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Accelerator , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: bool = False ): if iterable: SCREAMING_SNAKE_CASE__ = DummyIterableDataset(torch.as_tensor(range(UpperCamelCase__ ) ) ) else: SCREAMING_SNAKE_CASE__ = TensorDataset(torch.as_tensor(range(UpperCamelCase__ ) ) ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) return dl def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Accelerator , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: List[int] , UpperCamelCase__: List[int] , ): SCREAMING_SNAKE_CASE__ = create_dataloader(accelerator=UpperCamelCase__ , dataset_size=UpperCamelCase__ , batch_size=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator(even_batches=UpperCamelCase__ ) verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator(even_batches=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE__ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = ddp_model(batch[0].float() ) SCREAMING_SNAKE_CASE__ = output.sum() loss.backward() batch_idxs.append(UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): with warnings.catch_warnings(record=UpperCamelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCamelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = create_accelerator(even_batches=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE__ = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = train_dl.batch_sampler.even_batches SCREAMING_SNAKE_CASE__ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = create_accelerator(even_batches=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator() SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCamelCase__ ) with warnings.catch_warnings(record=UpperCamelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase__ ): pass assert issubclass(w[-1].category , UpperCamelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) SCREAMING_SNAKE_CASE__ = accelerator.state.distributed_type SCREAMING_SNAKE_CASE__ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = original_state if __name__ == "__main__": main()
6
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.weight.shape SCREAMING_SNAKE_CASE__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase__ , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] SCREAMING_SNAKE_CASE__ = mam_aaa["""model"""] remove_ignore_keys_(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] SCREAMING_SNAKE_CASE__ = MaMaaaConfig( vocab_size=UpperCamelCase__ , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) SCREAMING_SNAKE_CASE__ = state_dict["""decoder.embed_tokens.weight"""] SCREAMING_SNAKE_CASE__ = MaMaaaForConditionalGeneration(UpperCamelCase__ ) model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _lowerCamelCase = parser.parse_args() _lowerCamelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
6
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = LongformerTokenizer lowerCamelCase_ = True lowerCamelCase_ = LongformerTokenizerFast lowerCamelCase_ = True def _snake_case ( self :int ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE__ = dict(zip(__A , range(len(__A ) ) ) ) SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE__ = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__A ) ) def _snake_case ( self :str , **__A :Tuple ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self :Union[str, Any] , **__A :str ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self :List[Any] , __A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = """lower newer""" return input_text, output_text def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__A ) # , add_prefix_space=True) self.assertListEqual(__A , __A ) SCREAMING_SNAKE_CASE__ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def _snake_case ( self :int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__A ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__A ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def _snake_case ( self :Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode( """sequence builders""" , add_special_tokens=__A , add_prefix_space=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__A , add_prefix_space=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__A ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case ( self :List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = """Encode this sequence.""" SCREAMING_SNAKE_CASE__ = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A , add_special_tokens=__A , add_prefix_space=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__A , __A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A , add_special_tokens=__A , add_prefix_space=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__A , __A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A , add_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__A , __A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE__ = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__A , lstrip=__A , rstrip=__A )} ) # mask token has a left space SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(__A ) SCREAMING_SNAKE_CASE__ = """Encode <mask> sequence""" SCREAMING_SNAKE_CASE__ = """Encode <mask>sequence""" SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A ) SCREAMING_SNAKE_CASE__ = encoded.index(__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__A , __A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A ) SCREAMING_SNAKE_CASE__ = encoded.index(__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__A , __A ) def _snake_case ( self :Tuple ) -> Union[str, Any]: """simple docstring""" pass def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(__A , **__A ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(__A , **__A ) SCREAMING_SNAKE_CASE__ = """A, <mask> AllenNLP sentence.""" SCREAMING_SNAKE_CASE__ = tokenizer_r.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) SCREAMING_SNAKE_CASE__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _snake_case ( self :Optional[int] ) -> List[str]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __A ) self.assertEqual(post_processor_state["""trim_offsets"""] , __A ) def _snake_case ( self :Optional[int] ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE__ = f'''{text_of_1_token} {text_of_1_token}''' SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ) + 1, len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ) + 1, len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ), len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ), len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) , )
6
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ): model.train() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ): set_seed(42 ) SCREAMING_SNAKE_CASE__ = RegressionModel() SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ : def __init__( self :List[Any] , __A :List[str] , __A :Tuple=13 , __A :List[str]=30 , __A :List[Any]=2 , __A :Optional[Any]=3 , __A :Dict=True , __A :Any=True , __A :int=32 , __A :Any=5 , __A :str=4 , __A :str=37 , __A :Optional[Any]="gelu" , __A :str=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=10 , __A :Dict=0.0_2 , __A :Union[str, Any]=3 , __A :Union[str, Any]=0.6 , __A :Union[str, Any]=None , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = mask_ratio SCREAMING_SNAKE_CASE__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def _snake_case ( self :Tuple ) -> Any: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _snake_case ( self :Optional[int] , __A :Any , __A :Tuple , __A :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = ViTMAEModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :Tuple , __A :int , __A :Dict , __A :Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase_ = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def _snake_case ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ViTMAEModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def _snake_case ( self :int ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _snake_case ( self :Dict ) -> List[str]: """simple docstring""" pass def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def _snake_case ( self :List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__A ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def _snake_case ( self :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def _snake_case ( self :List[Any] , __A :List[str] , __A :Union[str, Any] , __A :List[str] ) -> Tuple: """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE__ = pt_noise super().check_pt_tf_models(__A , __A , __A ) def _snake_case ( self :Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__A ) model.to(__A ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__A , __A ) ) SCREAMING_SNAKE_CASE__ = outputs[0].cpu().numpy() SCREAMING_SNAKE_CASE__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(__A ) model.to(__A ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__A , __A ) ) # Make sure we don't have nans SCREAMING_SNAKE_CASE__ = after_outputs[0].cpu().numpy() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _snake_case ( self :List[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _snake_case ( self :Tuple ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _snake_case ( self :Dict ) -> Tuple: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case ( self :Any ) -> int: """simple docstring""" pass @slow def _snake_case ( self :Optional[int] ) -> int: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = ViTMAEModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _snake_case ( self :str ) -> str: """simple docstring""" np.random.seed(2 ) SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(__A ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__A , return_tensors="""pt""" ).to(__A ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE__ = ViTMAEConfig() SCREAMING_SNAKE_CASE__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__A , noise=torch.from_numpy(__A ).to(device=__A ) ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__A ) , atol=1E-4 ) )
6
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: int=False ): try: SCREAMING_SNAKE_CASE__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE__ = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE__ = strtobool(UpperCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value _lowerCamelCase = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): return unittest.skip("""Test was skipped""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): return unittest.skipUnless(_run_slow_tests , """test is slow""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] ): return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any]=None , UpperCamelCase__: str=None ): if test_case is None: return partial(UpperCamelCase__ , version=UpperCamelCase__ ) return unittest.skipUnless(is_torch_version(""">=""" , UpperCamelCase__ ) , f'''test requires torch version >= {version}''' )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(UpperCamelCase__ ) _lowerCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(UpperCamelCase__ ) class UpperCamelCase_ ( unittest.TestCase ): lowerCamelCase_ = True @classmethod def _snake_case ( cls :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() @classmethod def _snake_case ( cls :Optional[int] ) -> Tuple: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _snake_case ( self :Optional[int] ) -> Optional[int]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__A ) class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Dict , __A :Union[mock.Mock, List[mock.Mock]] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = mocks if isinstance(__A , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = AcceleratorState() SCREAMING_SNAKE_CASE__ = tensor[None].clone().to(state.device ) SCREAMING_SNAKE_CASE__ = gather(UpperCamelCase__ ).cpu() SCREAMING_SNAKE_CASE__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , UpperCamelCase__ ): return False return True class UpperCamelCase_ : def __init__( self :Any , __A :Optional[Any] , __A :int , __A :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = returncode SCREAMING_SNAKE_CASE__ = stdout SCREAMING_SNAKE_CASE__ = stderr async def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: int ): while True: SCREAMING_SNAKE_CASE__ = await stream.readline() if line: callback(UpperCamelCase__ ) else: break async def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Tuple=None , UpperCamelCase__: Optional[Any]=None , UpperCamelCase__: str=None , UpperCamelCase__: Tuple=False , UpperCamelCase__: Union[str, Any]=False ): if echo: print("""\nRunning: """ , """ """.join(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=UpperCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] def tee(UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Dict , UpperCamelCase__: str="" ): SCREAMING_SNAKE_CASE__ = line.decode("""utf-8""" ).rstrip() sink.append(UpperCamelCase__ ) if not quiet: print(UpperCamelCase__ , UpperCamelCase__ , file=UpperCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=UpperCamelCase__ , ) return _RunOutput(await p.wait() , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[Any]=None , UpperCamelCase__: List[Any]=None , UpperCamelCase__: Union[str, Any]=180 , UpperCamelCase__: Optional[int]=False , UpperCamelCase__: str=True ): SCREAMING_SNAKE_CASE__ = asyncio.get_event_loop() SCREAMING_SNAKE_CASE__ = loop.run_until_complete( _stream_subprocess(UpperCamelCase__ , env=UpperCamelCase__ , stdin=UpperCamelCase__ , timeout=UpperCamelCase__ , quiet=UpperCamelCase__ , echo=UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = """ """.join(UpperCamelCase__ ) if result.returncode > 0: SCREAMING_SNAKE_CASE__ = """\n""".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class UpperCamelCase_ ( UpperCamelCase__ ): pass def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: List[Any]=False ): try: SCREAMING_SNAKE_CASE__ = subprocess.check_output(UpperCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(UpperCamelCase__ , """decode""" ): SCREAMING_SNAKE_CASE__ = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{' '.join(UpperCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = SMALL_MODEL_IDENTIFIER SCREAMING_SNAKE_CASE__ = """pt""" SCREAMING_SNAKE_CASE__ = """tf""" def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__A ) def _snake_case ( self :Optional[int] , __A :Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = TFAutoModel.from_pretrained(self.test_model , from_pt=__A ) model_tf.save_pretrained(__A ) def _snake_case ( self :Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """mock_framework""" # Framework provided - return whatever the user provides SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(self.test_model , __A ) self.assertEqual(__A , __A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(__A , __A ) self.assertEqual(__A , __A ) def _snake_case ( self :Union[str, Any] ) -> str: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__A ) SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__A ) SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(__A ) self.assertEqual(__A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__A ): SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(__A ) def _snake_case ( self :Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = MagicMock(return_value=__A ) with patch("""transformers.onnx.features.is_tf_available""" , __A ): SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow SCREAMING_SNAKE_CASE__ = MagicMock(return_value=__A ) with patch("""transformers.onnx.features.is_torch_available""" , __A ): SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_tf ) # Both in environment -> use PyTorch SCREAMING_SNAKE_CASE__ = MagicMock(return_value=__A ) SCREAMING_SNAKE_CASE__ = MagicMock(return_value=__A ) with patch("""transformers.onnx.features.is_tf_available""" , __A ), patch( """transformers.onnx.features.is_torch_available""" , __A ): SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__A , self.framework_pt ) # Both not in environment -> raise error SCREAMING_SNAKE_CASE__ = MagicMock(return_value=__A ) SCREAMING_SNAKE_CASE__ = MagicMock(return_value=__A ) with patch("""transformers.onnx.features.is_tf_available""" , __A ), patch( """transformers.onnx.features.is_torch_available""" , __A ): with self.assertRaises(__A ): SCREAMING_SNAKE_CASE__ = FeaturesManager.determine_framework(self.test_model )
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( ): # Get the sagemaker specific mp parameters from smp_options variable. SCREAMING_SNAKE_CASE__ = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. SCREAMING_SNAKE_CASE__ = json.loads(UpperCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. SCREAMING_SNAKE_CASE__ = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". SCREAMING_SNAKE_CASE__ = json.loads(UpperCamelCase__ ) if not mpi_options.get("""sagemaker_mpi_enabled""" , UpperCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , __A , ) @cached_property def _snake_case ( self :List[Any] ) -> "torch.device": """simple docstring""" logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: SCREAMING_SNAKE_CASE__ = torch.device("""cpu""" ) SCREAMING_SNAKE_CASE__ = 0 elif is_sagemaker_model_parallel_available(): SCREAMING_SNAKE_CASE__ = smp.local_rank() SCREAMING_SNAKE_CASE__ = torch.device("""cuda""" , __A ) SCREAMING_SNAKE_CASE__ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE__ = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) SCREAMING_SNAKE_CASE__ = torch.device("""cuda""" , self.local_rank ) SCREAMING_SNAKE_CASE__ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 SCREAMING_SNAKE_CASE__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. SCREAMING_SNAKE_CASE__ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE__ = torch.device("""cuda""" , self.local_rank ) SCREAMING_SNAKE_CASE__ = 1 if device.type == "cuda": torch.cuda.set_device(__A ) return device @property def _snake_case ( self :Tuple ) -> int: """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _snake_case ( self :int ) -> int: """simple docstring""" return not is_sagemaker_model_parallel_available() @property def _snake_case ( self :Any ) -> Any: """simple docstring""" return False
6
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "encoder-decoder" lowerCamelCase_ = True def __init__( self :Optional[int] , **__A :str ) -> int: """simple docstring""" super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = True @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'sentencepiece.model'} _lowerCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowerCamelCase = { 'google/rembert': 256, } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :Optional[int] , __A :Any , __A :int=False , __A :Any=True , __A :List[Any]=True , __A :int="[CLS]" , __A :Optional[Any]="[SEP]" , __A :Union[str, Any]="[UNK]" , __A :List[Any]="[SEP]" , __A :Union[str, Any]="[PAD]" , __A :List[str]="[CLS]" , __A :Dict="[MASK]" , **__A :List[str] , ) -> Tuple: """simple docstring""" super().__init__( do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = remove_space SCREAMING_SNAKE_CASE__ = keep_accents SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor() self.sp_model.Load(__A ) @property def _snake_case ( self :Optional[int] ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def _snake_case ( self :Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self :Dict , __A :Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _snake_case ( self :Union[str, Any] , __A :Dict , __A :Optional[Any]=False ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.sp_model.EncodeAsPieces(__A ) return pieces def _snake_case ( self :str , __A :int ) -> int: """simple docstring""" return self.sp_model.PieceToId(__A ) def _snake_case ( self :Optional[Any] , __A :List[str] ) -> int: """simple docstring""" return self.sp_model.IdToPiece(__A ) def _snake_case ( self :Optional[int] , __A :Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.sp_model.decode_pieces(__A ) return out_string def _snake_case ( self :int , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self :Optional[Any] , __A :str , __A :Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__A ): logger.error("""Vocabulary path ({}) should be a directory""".format(__A ) ) return SCREAMING_SNAKE_CASE__ = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
6
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase_ = Features({"text": Value("string" )} ) lowerCamelCase_ = Features({"labels": ClassLabel} ) lowerCamelCase_ = "text" lowerCamelCase_ = "labels" def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def _snake_case ( self :str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
6
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask _lowerCamelCase = logging.getLogger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "token-classification" def __init__( self :Dict , __A :int ) -> Union[str, Any]: """simple docstring""" if type(__A ) == dict: SCREAMING_SNAKE_CASE__ = Namespace(**__A ) SCREAMING_SNAKE_CASE__ = import_module("""tasks""" ) try: SCREAMING_SNAKE_CASE__ = getattr(__A , hparams.task_type ) SCREAMING_SNAKE_CASE__ = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) SCREAMING_SNAKE_CASE__ = self.token_classification_task.get_labels(hparams.labels ) SCREAMING_SNAKE_CASE__ = CrossEntropyLoss().ignore_index super().__init__(__A , len(self.labels ) , self.mode ) def _snake_case ( self :Tuple , **__A :Optional[Any] ) -> List[str]: """simple docstring""" return self.model(**__A ) def _snake_case ( self :int , __A :List[Any] , __A :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE__ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE__ = self(**__A ) SCREAMING_SNAKE_CASE__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _snake_case ( self :List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.hparams for mode in ["train", "dev", "test"]: SCREAMING_SNAKE_CASE__ = self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __A ) SCREAMING_SNAKE_CASE__ = torch.load(__A ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) SCREAMING_SNAKE_CASE__ = self.token_classification_task.read_examples_from_file(args.data_dir , __A ) SCREAMING_SNAKE_CASE__ = self.token_classification_task.convert_examples_to_features( __A , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__A , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , __A ) torch.save(__A , __A ) def _snake_case ( self :Any , __A :int , __A :int , __A :bool = False ) -> DataLoader: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._feature_file(__A ) logger.info("""Loading features from cached file %s""" , __A ) SCREAMING_SNAKE_CASE__ = torch.load(__A ) SCREAMING_SNAKE_CASE__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: SCREAMING_SNAKE_CASE__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: SCREAMING_SNAKE_CASE__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) SCREAMING_SNAKE_CASE__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A ) def _snake_case ( self :List[Any] , __A :Optional[Any] , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" """Compute validation""" "" SCREAMING_SNAKE_CASE__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE__ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE__ = self(**__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs[:2] SCREAMING_SNAKE_CASE__ = logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE__ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self :Optional[int] , __A :List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = torch.stack([x["""val_loss"""] for x in outputs] ).mean() SCREAMING_SNAKE_CASE__ = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.argmax(__A , axis=2 ) SCREAMING_SNAKE_CASE__ = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE__ = dict(enumerate(self.labels ) ) SCREAMING_SNAKE_CASE__ = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) SCREAMING_SNAKE_CASE__ = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(__A , __A ), """precision""": precision_score(__A , __A ), """recall""": recall_score(__A , __A ), """f1""": fa_score(__A , __A ), } SCREAMING_SNAKE_CASE__ = dict(results.items() ) SCREAMING_SNAKE_CASE__ = results return ret, preds_list, out_label_list def _snake_case ( self :str , __A :List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._eval_end(__A ) SCREAMING_SNAKE_CASE__ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self :Any , __A :List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._eval_end(__A ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 SCREAMING_SNAKE_CASE__ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( __A :Optional[int] , __A :int ) -> Tuple: """simple docstring""" BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( """--task_type""" , default="""NER""" , type=__A , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=__A , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=__A , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) _lowerCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) _lowerCamelCase = parser.parse_args() _lowerCamelCase = NERTransformer(args) _lowerCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 _lowerCamelCase = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) _lowerCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
6
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = model.config SCREAMING_SNAKE_CASE__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) SCREAMING_SNAKE_CASE__ = MBartConfig( is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): if "encoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: SCREAMING_SNAKE_CASE__ = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias""" return name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(key_split[3] ) SCREAMING_SNAKE_CASE__ = int(key_split[5] ) SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE__ = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ): # load original model SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify results on scanned document SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" ) SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" SCREAMING_SNAKE_CASE__ = """When is the coffee break?""" SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE__ = """hello world""" else: raise ValueError("""Model name not supported""" ) SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[ """input_ids""" ] SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) _lowerCamelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
6
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } _lowerCamelCase = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Dict ): for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE__ = """lm_head""" SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: int , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) SCREAMING_SNAKE_CASE__ = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(UpperCamelCase__ )[0].split(""".""" )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace("""*""" , UpperCamelCase__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = """weight_g""" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = """weight_v""" elif "bias" in name: SCREAMING_SNAKE_CASE__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE__ = """weight""" else: SCREAMING_SNAKE_CASE__ = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Optional[int] , UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = full_name.split("""conv_layers.""" )[-1] SCREAMING_SNAKE_CASE__ = name.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) SCREAMING_SNAKE_CASE__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any]=None , UpperCamelCase__: Any=None , UpperCamelCase__: Optional[int]=True ): if config_path is not None: SCREAMING_SNAKE_CASE__ = UniSpeechConfig.from_pretrained(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ = Dictionary.load_from_json(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ = target_dict.pad_index SCREAMING_SNAKE_CASE__ = target_dict.bos_index SCREAMING_SNAKE_CASE__ = target_dict.eos_index SCREAMING_SNAKE_CASE__ = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , """vocab.json""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 43 with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = WavaVecaPhonemeCTCTokenizer( UpperCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ = True if config.feat_extract_norm == """layer""" else False SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = UniSpeechForCTC(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ = UniSpeechForPreTraining(UpperCamelCase__ ) if is_finetuned: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE__ = model[0].eval() recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) hf_unispeech.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _lowerCamelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
6
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple , UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = UniSpeechSatForSequenceClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = downstream_dict["""projector.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""projector.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.post_net.linear.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.post_net.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: int , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = downstream_dict["""model.linear.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = UniSpeechSatForXVector.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = downstream_dict["""connector.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE__ = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] SCREAMING_SNAKE_CASE__ = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] SCREAMING_SNAKE_CASE__ = downstream_dict["""objective.W"""] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Any , UpperCamelCase__: Dict , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase__ , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ = checkpoint["""Downstream"""] SCREAMING_SNAKE_CASE__ = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): SCREAMING_SNAKE_CASE__ = convert_classification(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("""ForAudioFrameClassification""" ): SCREAMING_SNAKE_CASE__ = convert_diarization(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("""ForXVector""" ): SCREAMING_SNAKE_CASE__ = convert_xvector(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE__ = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _lowerCamelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
6
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
6
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration SCREAMING_SNAKE_CASE__ : Optional[Any] = pytest.mark.integration SCREAMING_SNAKE_CASE__ : Dict = {"""comet"""} SCREAMING_SNAKE_CASE__ : Dict = importlib.util.find_spec("""fairseq""") is not None SCREAMING_SNAKE_CASE__ : Tuple = {"""code_eval"""} SCREAMING_SNAKE_CASE__ : List[Any] = os.name == """nt""" SCREAMING_SNAKE_CASE__ : Optional[int] = {"""bertscore""", """frugalscore""", """perplexity"""} SCREAMING_SNAKE_CASE__ : Dict = importlib.util.find_spec("""transformers""") is not None def __lowercase ( snake_case ): """simple docstring""" @wraps(snake_case ) def wrapper(self, snake_case ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self, snake_case ) return wrapper def __lowercase ( snake_case ): """simple docstring""" @wraps(snake_case ) def wrapper(self, snake_case ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self, snake_case ) return wrapper def __lowercase ( snake_case ): """simple docstring""" @wraps(snake_case ) def wrapper(self, snake_case ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self, snake_case ) return wrapper def __lowercase ( ): """simple docstring""" __magic_name__ :Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCamelCase , lowerCamelCase , lowerCamelCase ) @local class lowerCamelCase_ ( parameterized.TestCase ): a__ = {} a__ = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Tuple = '''[...]''' __magic_name__ :int = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCAmelCase ) ).module_path ) __magic_name__ :Any = datasets.load.import_main_class(metric_module.__name__ , dataset=__lowerCAmelCase ) # check parameters __magic_name__ :Tuple = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__lowerCAmelCase , metric_module.__name__ ): with self.use_local_metrics(): try: __magic_name__ :Any = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Union[str, Any] = '''[...]''' __magic_name__ :Dict = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCAmelCase ) ).module_path ) # run doctest with self.use_local_metrics(): __magic_name__ :int = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__lowerCAmelCase ): yield else: yield @contextmanager def A ( self ): """simple docstring""" def load_local_metric(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): return load_metric(os.path.join('''metrics''' , __lowerCAmelCase ) , *__lowerCAmelCase , **__lowerCAmelCase ) with patch('''datasets.load_metric''' ) as mock_load_metric: __magic_name__ :Dict = load_local_metric yield @classmethod def A ( cls , __lowerCAmelCase ): """simple docstring""" def wrapper(__lowerCAmelCase ): __magic_name__ :Union[str, Any] = contextmanager(__lowerCAmelCase ) __magic_name__ :Dict = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def __lowercase ( snake_case ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''', '''''', '''''' ) # handle pytest cli flags class lowerCamelCase_ ( lowerCamelCase ): def A ( self , __lowerCAmelCase ): """simple docstring""" assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: __magic_name__ :List[Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def __lowercase ( snake_case ): """simple docstring""" import torch def bert_cos_score_idf(snake_case, snake_case, *snake_case, **snake_case ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: __magic_name__ :Optional[int] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def __lowercase ( snake_case ): """simple docstring""" def load_from_checkpoint(snake_case ): class lowerCamelCase_ : def A ( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" assert len(__lowerCAmelCase ) == 2 __magic_name__ :int = [0.19, 0.92] return scores, sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: __magic_name__ :Optional[int] = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: __magic_name__ :Any = load_from_checkpoint yield def __lowercase ( ): """simple docstring""" __magic_name__ :Optional[int] = load_metric(os.path.join('''metrics''', '''seqeval''' ) ) __magic_name__ :List[str] = '''ERROR''' __magic_name__ :str = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(snake_case, match=re.escape(snake_case ) ): metric.compute(predictions=[], references=[], scheme=snake_case )
0
import argparse import datetime def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) SCREAMING_SNAKE_CASE__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator SCREAMING_SNAKE_CASE__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: SCREAMING_SNAKE_CASE__ = y - 1 SCREAMING_SNAKE_CASE__ = m + 12 # maths var SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] ) SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] ) SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 ) SCREAMING_SNAKE_CASE__ = int(c / 4 ) SCREAMING_SNAKE_CASE__ = int(k / 4 ) SCREAMING_SNAKE_CASE__ = int(d + k ) SCREAMING_SNAKE_CASE__ = int(t + u + v + x ) SCREAMING_SNAKE_CASE__ = int(z - (2 * c) ) SCREAMING_SNAKE_CASE__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) _lowerCamelCase = parser.parse_args() zeller(args.date_input)
6
0
from datetime import datetime import requests def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __UpperCamelCase = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_lowercase ).content if __name__ == "__main__": __snake_case = input('''Enter Video/IGTV url: ''').strip() __snake_case = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
0
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCAmelCase_ = False UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """ybelkada/fonts""" def SCREAMING_SNAKE_CASE_ ( ) -> int: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' '''Pix2StructImageProcessor. Please upgrade torch.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :Optional[int] , _snake_case :int ) -> Any: requires_backends(_snake_case , ['''torch'''] ) _check_torch_version() _A = image_tensor.unsqueeze(0 ) _A = torch.nn.functional.unfold(_snake_case , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _A = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , _snake_case , _snake_case , -1 ) _A = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :int = 36 , _snake_case :str = "black" , _snake_case :str = "white" , _snake_case :int = 5 , _snake_case :int = 5 , _snake_case :int = 5 , _snake_case :int = 5 , _snake_case :Optional[bytes] = None , _snake_case :Optional[str] = None , ) -> Image.Image: requires_backends(_snake_case , '''vision''' ) # Add new lines so that each line is no more than 80 characters. _A = textwrap.TextWrapper(width=80 ) _A = wrapper.wrap(text=_snake_case ) _A = '''\n'''.join(_snake_case ) if font_bytes is not None and font_path is None: _A = io.BytesIO(_snake_case ) elif font_path is not None: _A = font_path else: _A = hf_hub_download(_snake_case , '''Arial.TTF''' ) _A = ImageFont.truetype(_snake_case , encoding='''UTF-8''' , size=_snake_case ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _A = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , _snake_case ) ) _A , _A , _A , _A = temp_draw.textbbox((0, 0) , _snake_case , _snake_case ) # Create the actual image with a bit of padding around the text. _A = text_width + left_padding + right_padding _A = text_height + top_padding + bottom_padding _A = Image.new('''RGB''' , (image_width, image_height) , _snake_case ) _A = ImageDraw.Draw(_snake_case ) draw.text(xy=(left_padding, top_padding) , text=_snake_case , fill=_snake_case , font=_snake_case ) return image def SCREAMING_SNAKE_CASE_ ( _snake_case :np.ndarray , _snake_case :str , **_snake_case :Optional[int] ) -> Any: requires_backends(_snake_case , '''vision''' ) # Convert to PIL image if necessary _A = to_pil_image(_snake_case ) _A = render_text(_snake_case , **_snake_case ) _A = max(header_image.width , image.width ) _A = int(image.height * (new_width / image.width) ) _A = int(header_image.height * (new_width / header_image.width) ) _A = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _A = to_numpy_array(_snake_case ) if infer_channel_dimension_format(_snake_case ) == ChannelDimension.LAST: _A = to_channel_dimension_format(_snake_case , ChannelDimension.LAST ) return new_image class lowerCamelCase__ ( _A): """simple docstring""" a__ : Optional[Any] = ["flattened_patches"] def __init__( self : Any , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : int = 20_48 , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Any , ) -> None: super().__init__(**__lowerCAmelCase ) _A = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} _A = do_normalize _A = do_convert_rgb _A = max_patches _A = is_vqa def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : int , __lowerCAmelCase : dict , **__lowerCAmelCase : str ) -> np.ndarray: requires_backends(self.extract_flattened_patches , '''torch''' ) _check_torch_version() # convert to torch _A = to_channel_dimension_format(__lowerCAmelCase , ChannelDimension.FIRST ) _A = torch.from_numpy(__lowerCAmelCase ) _A , _A = patch_size['''height'''], patch_size['''width'''] _A , _A = get_image_size(__lowerCAmelCase ) # maximize scale s.t. _A = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _A = max(min(math.floor(scale * image_height / patch_height ) , __lowerCAmelCase ) , 1 ) _A = max(min(math.floor(scale * image_width / patch_width ) , __lowerCAmelCase ) , 1 ) _A = max(num_feasible_rows * patch_height , 1 ) _A = max(num_feasible_cols * patch_width , 1 ) _A = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='''bilinear''' , align_corners=__lowerCAmelCase , antialias=__lowerCAmelCase , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _A = torch_extract_patches(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _A = patches.shape _A = patches_shape[1] _A = patches_shape[2] _A = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _A = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _A = torch.arange(__lowerCAmelCase ).reshape([rows, 1] ).repeat(1 , __lowerCAmelCase ).reshape([rows * columns, 1] ) _A = torch.arange(__lowerCAmelCase ).reshape([1, columns] ).repeat(__lowerCAmelCase , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _A = row_ids.to(torch.floataa ) _A = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _A = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _A = torch.nn.functional.pad(__lowerCAmelCase , [0, 0, 0, max_patches - (rows * columns)] ).float() _A = to_numpy_array(__lowerCAmelCase ) return result def snake_case_ ( self : Optional[int] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : str ) -> np.ndarray: if image.dtype == np.uinta: _A = image.astype(np.floataa ) # take mean across the whole `image` _A = np.mean(__lowerCAmelCase ) _A = np.std(__lowerCAmelCase ) _A = max(__lowerCAmelCase , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : ImageInput , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[Dict[str, int]] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : int , ) -> ImageInput: _A = do_normalize if do_normalize is not None else self.do_normalize _A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _A = patch_size if patch_size is not None else self.patch_size _A = max_patches if max_patches is not None else self.max_patches _A = self.is_vqa if kwargs.get('''data_format''' , __lowerCAmelCase ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) _A = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _A = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. _A = [to_numpy_array(__lowerCAmelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) _A = kwargs.pop('''font_bytes''' , __lowerCAmelCase ) _A = kwargs.pop('''font_path''' , __lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _A = [header_text] * len(__lowerCAmelCase ) _A = [ render_header(__lowerCAmelCase , header_text[i] , font_bytes=__lowerCAmelCase , font_path=__lowerCAmelCase ) for i, image in enumerate(__lowerCAmelCase ) ] if do_normalize: _A = [self.normalize(image=__lowerCAmelCase ) for image in images] # convert to torch tensor and permute _A = [ self.extract_flattened_patches(image=__lowerCAmelCase , max_patches=__lowerCAmelCase , patch_size=__lowerCAmelCase ) for image in images ] # create attention mask in numpy _A = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _A = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} , tensor_type=__lowerCAmelCase ) return encoded_outputs
2
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = None UpperCamelCase = None UpperCamelCase = graph self._normalize_graph(A_ , A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = None def UpperCAmelCase_ ( self , A_ , A_ )-> Tuple: '''simple docstring''' if sources is int: UpperCamelCase = [sources] if sinks is int: UpperCamelCase = [sinks] if len(A_ ) == 0 or len(A_ ) == 0: return UpperCamelCase = sources[0] UpperCamelCase = sinks[0] # make fake vertex if there are more # than one source or sink if len(A_ ) > 1 or len(A_ ) > 1: UpperCamelCase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) UpperCamelCase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: UpperCamelCase = max_input_flow UpperCamelCase = 0 UpperCamelCase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: UpperCamelCase = max_input_flow UpperCamelCase = size - 1 def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = algorithm(self ) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ )-> Dict: '''simple docstring''' UpperCamelCase = flow_network UpperCamelCase = flow_network.verticesCount UpperCamelCase = flow_network.sourceIndex UpperCamelCase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that UpperCamelCase = flow_network.graph UpperCamelCase = False def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' if not self.executed: self._algorithm() UpperCamelCase = True def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' pass class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ )-> List[str]: '''simple docstring''' super().__init__(A_ ) # use this to save your result UpperCamelCase = -1 def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ )-> Optional[Any]: '''simple docstring''' super().__init__(A_ ) UpperCamelCase = [[0] * self.verticies_count for i in range(self.verticies_count )] UpperCamelCase = [0] * self.verticies_count UpperCamelCase = [0] * self.verticies_count def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule UpperCamelCase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list UpperCamelCase = 0 while i < len(A_ ): UpperCamelCase = vertices_list[i] UpperCamelCase = self.heights[vertex_index] self.process_vertex(A_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A_ ) ) UpperCamelCase = 0 else: i += 1 UpperCamelCase = sum(self.preflow[self.source_index] ) def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A_ , A_ ) self.relabel(A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> str: '''simple docstring''' UpperCamelCase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase_ ( self , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): UpperCamelCase = self.heights[to_index] if min_height is not None: UpperCamelCase = min_height + 1 if __name__ == "__main__": lowerCAmelCase : int = [0] lowerCAmelCase : Tuple = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowerCAmelCase : List[str] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowerCAmelCase : List[str] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowerCAmelCase : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
3
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "OwlViTImageProcessor" lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): SCREAMING_SNAKE_CASE__ = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A )) SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = input_ids SCREAMING_SNAKE_CASE__ = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values SCREAMING_SNAKE_CASE__ = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process(*__A , **__A ) def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*__A , **__A ) def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[Any] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def A (__lowerCamelCase :int ): if isinstance(__lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCAmelCase_ : '''simple docstring''' def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowercase ) _lowerCAmelCase = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowercase , 1e-5 ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model( input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , output_attentions=_lowercase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowercase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_lowercase , _lowercase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_lowercase ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowercase ) _lowerCAmelCase = model_a(**_lowercase ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowercase , 1e-5 ) @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFViTModel(_lowercase , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_lowercase , name="""text_model""" ) return vision_model, text_model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowercase , _lowercase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowercase , text_model=_lowercase ) _lowerCAmelCase = model( input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , output_attentions=_lowercase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowercase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFDeiTModel(_lowercase , name="""vision_model""" ) _lowerCAmelCase = TFRobertaModel(_lowercase , name="""text_model""" ) return vision_model, text_model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModel(_lowercase , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_lowercase , name="""text_model""" ) return vision_model, text_model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowercase ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowercase , padding=_lowercase , return_tensors="""np""" ) _lowerCAmelCase = model(**_lowercase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowercase , atol=1e-3 ) )
5
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = jnp.floataa lowerCamelCase_ = True def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A ) SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ): SCREAMING_SNAKE_CASE__ = logits.shape[-1] SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" ) SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ ) return loss SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase_ : lowerCamelCase_ = "google/bigbird-roberta-base" lowerCamelCase_ = 30_00 lowerCamelCase_ = 1_05_00 lowerCamelCase_ = 1_28 lowerCamelCase_ = 3 lowerCamelCase_ = 1 lowerCamelCase_ = 5 # tx_args lowerCamelCase_ = 3e-5 lowerCamelCase_ = 0.0 lowerCamelCase_ = 2_00_00 lowerCamelCase_ = 0.0095 lowerCamelCase_ = "bigbird-roberta-natural-questions" lowerCamelCase_ = "training-expt" lowerCamelCase_ = "data/nq-training.jsonl" lowerCamelCase_ = "data/nq-validation.jsonl" def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 40_96 # no dynamic padding on TPUs def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.collate_fn(__A ) SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A ) return batch def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = { """input_ids""": jnp.array(__A , dtype=jnp.intaa ), """attention_mask""": jnp.array(__A , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _snake_case ( self :Tuple , __A :list ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ): if seed is not None: SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): def loss_fn(UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" ) SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCamelCase_ ( train_state.TrainState ): lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = None def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = model.params SCREAMING_SNAKE_CASE__ = TrainState.create( apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A ) SCREAMING_SNAKE_CASE__ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A ) SCREAMING_SNAKE_CASE__ = train_state.TrainState( step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = data_collator SCREAMING_SNAKE_CASE__ = lr SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A ) return state def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.args SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE__ = running_loss.item() / i SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A ) SCREAMING_SNAKE_CASE__ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A , commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A ) def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size ) SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(__A , params=state.params ) with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) ) with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __A ) print("""DONE""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ): def weight_decay_mask(UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
6
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout _A = pre_norm _A = adapter_reduction_factor _A = adapter_layer_norm _A = adapter_reuse_layer_norm _A = ln_before_adapter _A = list(_UpperCAmelCase ) _A = default_language class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Dict ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: if not is_accelerate_available(): return method __A : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(__snake_case ) < version.parse('0.17.0' ): return method def wrapper(self : Optional[int] , *__snake_case : int , **__snake_case : int ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__snake_case , **__snake_case ) return wrapper
8
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 847 SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 171 SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 133 SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 65 SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ ) # load original state_dict with open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase__ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 65_535 else: SCREAMING_SNAKE_CASE__ = 255 SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
0
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0XE0_00 _lowerCamelCase = 0XE0_01 _lowerCamelCase = 0XE0_02 _lowerCamelCase = 0XE0_03 _lowerCamelCase = 0XE0_04 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self._unicode_vocab_size def _snake_case ( self :Tuple , __A :str ) -> List[str]: """simple docstring""" return list(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> int: """simple docstring""" try: return ord(__A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self :str , __A :int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any: """simple docstring""" return "".join(__A ) def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: result += ([0] * len(__A )) + [1] return result def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any: """simple docstring""" return ()
6
0
_lowerCAmelCase = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
10
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowercase_ = (3, 9, -11, 0, 7, 5, 1, -1) lowercase_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __A : '''simple docstring''' __lowerCamelCase : int __lowerCamelCase : Node | None class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = None for i in sorted(A , reverse=A ): _a = Node(A , self.head ) def __iter__(self ) -> Iterator[int]: """simple docstring""" _a = self.head while node: yield node.data _a = node.next_node def __len__(self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__(self ) -> str: """simple docstring""" return " -> ".join([str(A ) for node in self] ) def lowerCAmelCase (__A , __A): """simple docstring""" return SortedLinkedList(list(__A) + list(__A)) if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCamelCase__ : str = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
12
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : Dict = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'time_series_transformer' lowerCamelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "student_t" , SCREAMING_SNAKE_CASE_ = "nll" , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = [1, 2, 3, 4, 5, 6, 7] , SCREAMING_SNAKE_CASE_ = "mean" , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 64 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 1_00 , SCREAMING_SNAKE_CASE_ = 0.0_2 , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Any: # time series specific configuration __lowerCamelCase : Tuple = prediction_length __lowerCamelCase : List[str] = context_length or prediction_length __lowerCamelCase : str = distribution_output __lowerCamelCase : Any = loss __lowerCamelCase : List[str] = input_size __lowerCamelCase : List[str] = num_time_features __lowerCamelCase : str = lags_sequence __lowerCamelCase : List[Any] = scaling __lowerCamelCase : Dict = num_dynamic_real_features __lowerCamelCase : Optional[Any] = num_static_real_features __lowerCamelCase : Optional[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase : Union[str, Any] = cardinality else: __lowerCamelCase : int = [0] if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase : Optional[int] = embedding_dimension else: __lowerCamelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCamelCase : List[Any] = num_parallel_samples # Transformer architecture configuration __lowerCamelCase : Dict = input_size * len(SCREAMING_SNAKE_CASE_ ) + self._number_of_features __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[str] = encoder_attention_heads __lowerCamelCase : List[Any] = decoder_attention_heads __lowerCamelCase : Dict = encoder_ffn_dim __lowerCamelCase : List[str] = decoder_ffn_dim __lowerCamelCase : List[str] = encoder_layers __lowerCamelCase : List[Any] = decoder_layers __lowerCamelCase : Any = dropout __lowerCamelCase : str = attention_dropout __lowerCamelCase : Tuple = activation_dropout __lowerCamelCase : Tuple = encoder_layerdrop __lowerCamelCase : Optional[Any] = decoder_layerdrop __lowerCamelCase : Optional[int] = activation_function __lowerCamelCase : Dict = init_std __lowerCamelCase : Any = use_cache super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def lowercase_ ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
13
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ): model.train() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ): set_seed(42 ) SCREAMING_SNAKE_CASE__ = RegressionModel() SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a__ = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[Any] = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "data2vec-vision" def __init__( self : Tuple , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Union[str, Any]=224 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : str=3 , __lowerCamelCase : int=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , __lowerCamelCase : str=False , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[Any]=[3, 5, 7, 11] , __lowerCamelCase : Union[str, Any]=[1, 2, 3, 6] , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=0.4 , __lowerCamelCase : Dict=256 , __lowerCamelCase : int=1 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Tuple=255 , **__lowerCamelCase : List[str] , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = use_mask_token SCREAMING_SNAKE_CASE = use_absolute_position_embeddings SCREAMING_SNAKE_CASE = use_relative_position_bias SCREAMING_SNAKE_CASE = use_shared_relative_position_bias SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE = out_indices SCREAMING_SNAKE_CASE = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE = use_auxiliary_head SCREAMING_SNAKE_CASE = auxiliary_loss_weight SCREAMING_SNAKE_CASE = auxiliary_channels SCREAMING_SNAKE_CASE = auxiliary_num_convs SCREAMING_SNAKE_CASE = auxiliary_concat_input SCREAMING_SNAKE_CASE = semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : List[Any] ): return 1e-4
16
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''Wav2Vec2FeatureExtractor''' _lowercase : Any = '''AutoTokenizer''' def __init__( self : List[str] , __A : List[Any] , __A : Optional[Any] ): super().__init__(__A , __A ) __A : Optional[Any] = self.feature_extractor __A : str = False @classmethod def lowerCAmelCase_ ( cls : Dict , __A : List[str] , **__A : Optional[Any] ): try: return super().from_pretrained(__A , **__A ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , __A , ) __A : Any = WavaVecaFeatureExtractor.from_pretrained(__A , **__A ) __A : List[str] = WavaVecaCTCTokenizer.from_pretrained(__A , **__A ) return cls(feature_extractor=__A , tokenizer=__A ) def __call__( self : Optional[int] , *__A : Optional[Any] , **__A : List[str] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __A : Any = kwargs.pop("""raw_speech""" ) else: __A : List[str] = kwargs.pop("""audio""" , __A ) __A : int = kwargs.pop("""sampling_rate""" , __A ) __A : Tuple = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : Union[str, Any] = args[0] __A : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __A : Tuple = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if text is not None: __A : Any = self.tokenizer(__A , **__A ) if text is None: return inputs elif audio is None: return encodings else: __A : List[str] = encodings["""input_ids"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__A , **__A ) __A : Any = kwargs.pop("""input_features""" , __A ) __A : Tuple = kwargs.pop("""labels""" , __A ) if len(__A ) > 0: __A : Any = args[0] __A : Union[str, Any] = args[1:] if input_features is not None: __A : str = self.feature_extractor.pad(__A , *__A , **__A ) if labels is not None: __A : Union[str, Any] = self.tokenizer.pad(__A , **__A ) if labels is None: return input_features elif input_features is None: return labels else: __A : Optional[Any] = labels["""input_ids"""] return input_features def lowerCAmelCase_ ( self : List[Any] , *__A : List[Any] , **__A : List[str] ): return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Optional[int] ): return self.tokenizer.decode(*__A , **__A ) @contextmanager def lowerCAmelCase_ ( self : str ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __A : Dict = True __A : List[str] = self.tokenizer yield __A : Tuple = self.feature_extractor __A : int = False
17
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "encoder-decoder" lowerCamelCase_ = True def __init__( self :Optional[int] , **__A :str ) -> int: """simple docstring""" super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = True @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> int: super().__init__(features=_lowerCAmelCase ) _lowerCAmelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , _lowerCAmelCase ) -> str: import torch if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and column: if all( isinstance(_lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_lowerCAmelCase ) return column def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: import torch if isinstance(_lowerCAmelCase , (str, bytes, type(_lowerCAmelCase )) ): return value elif isinstance(_lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowerCAmelCase = {} if isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _lowerCAmelCase = {"dtype": torch.intaa} elif isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowerCAmelCase = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCAmelCase , PIL.Image.Image ): _lowerCAmelCase = np.asarray(_lowerCAmelCase ) return torch.tensor(_lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , _lowerCAmelCase ) -> str: import torch # support for torch, tf, jax etc. if hasattr(_lowerCAmelCase , "__array__" ) and not isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(_lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: return map_nested(self._recursive_tensorize , _lowerCAmelCase , map_list=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Mapping: _lowerCAmelCase = self.numpy_arrow_extractor().extract_row(_lowerCAmelCase ) _lowerCAmelCase = self.python_features_decoder.decode_row(_lowerCAmelCase ) return self.recursive_tensorize(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> "torch.Tensor": _lowerCAmelCase = self.numpy_arrow_extractor().extract_column(_lowerCAmelCase ) _lowerCAmelCase = self.python_features_decoder.decode_column(_lowerCAmelCase , pa_table.column_names[0] ) _lowerCAmelCase = self.recursive_tensorize(_lowerCAmelCase ) _lowerCAmelCase = self._consolidate(_lowerCAmelCase ) return column def _snake_case ( self , _lowerCAmelCase ) -> Mapping: _lowerCAmelCase = self.numpy_arrow_extractor().extract_batch(_lowerCAmelCase ) _lowerCAmelCase = self.python_features_decoder.decode_batch(_lowerCAmelCase ) _lowerCAmelCase = self.recursive_tensorize(_lowerCAmelCase ) for column_name in batch: _lowerCAmelCase = self._consolidate(batch[column_name] ) return batch
18
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase_ = Features({"text": Value("string" )} ) lowerCamelCase_ = Features({"labels": ClassLabel} ) lowerCamelCase_ = "text" lowerCamelCase_ = "labels" def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def _snake_case ( self :str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
6
0
"""simple docstring""" import math def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" _UpperCamelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__snake_case ) def lowerCamelCase__ ( __snake_case = 1 / 1_23_45 ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 3 while True: _UpperCamelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__snake_case ): _UpperCamelCase = int(__snake_case ) total_partitions += 1 if check_partition_perfect(__snake_case ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__snake_case ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
19
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = model.config SCREAMING_SNAKE_CASE__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) SCREAMING_SNAKE_CASE__ = MBartConfig( is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): if "encoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: SCREAMING_SNAKE_CASE__ = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias""" return name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(key_split[3] ) SCREAMING_SNAKE_CASE__ = int(key_split[5] ) SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE__ = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ): # load original model SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify results on scanned document SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" ) SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" SCREAMING_SNAKE_CASE__ = """When is the coffee break?""" SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE__ = """hello world""" else: raise ValueError("""Model name not supported""" ) SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[ """input_ids""" ] SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) _lowerCamelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
6
0
import logging import os import threading import time try: import warnings except ImportError: _lowerCAmelCase: Optional[int] = None try: import msvcrt except ImportError: _lowerCAmelCase: List[str] = None try: import fcntl except ImportError: _lowerCAmelCase: Dict = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _lowerCAmelCase: str = OSError # Data # ------------------------------------------------ _lowerCAmelCase: Optional[Any] = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] _lowerCAmelCase: List[Any] = '3.0.12' _lowerCAmelCase: Any = None def _lowercase( ): global _logger a__ =_logger or logging.getLogger(__name__ ) return _logger class lowercase_ (lowercase__ ): def __init__( self , lowercase_) -> Dict: a__ =lock_file return None def __str__( self) -> Tuple: a__ =F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class lowercase_ : def __init__( self , lowercase_) -> Union[str, Any]: a__ =lock return None def __enter__( self) -> Dict: return self.lock def __exit__( self , lowercase_ , lowercase_ , lowercase_) -> int: self.lock.release() return None class lowercase_ : def __init__( self , lowercase_ , lowercase_=-1 , lowercase_=None) -> Any: a__ =max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long a__ =self.hash_filename_if_too_long(lowercase_ , lowercase_) # The path to the lock file. a__ =lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a__ =None # The default timeout value. a__ =timeout # We use this lock primarily for the lock counter. a__ =threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a__ =0 return None @property def __UpperCamelCase ( self) -> str: return self._lock_file @property def __UpperCamelCase ( self) -> Optional[int]: return self._timeout @timeout.setter def __UpperCamelCase ( self , lowercase_) -> List[str]: a__ =float(lowercase_) return None def __UpperCamelCase ( self) -> Tuple: raise NotImplementedError() def __UpperCamelCase ( self) -> Dict: raise NotImplementedError() @property def __UpperCamelCase ( self) -> int: return self._lock_file_fd is not None def __UpperCamelCase ( self , lowercase_=None , lowercase_=0.05) -> List[str]: # Use the default timeout, if no timeout is provided. if timeout is None: a__ =self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a__ =id(self) a__ =self._lock_file a__ =time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""") self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""") break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""") raise Timeout(self._lock_file) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""") time.sleep(lowercase_) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a__ =max(0 , self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def __UpperCamelCase ( self , lowercase_=False) -> Optional[Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a__ =id(self) a__ =self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""") self._release() a__ =0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""") return None def __enter__( self) -> str: self.acquire() return self def __exit__( self , lowercase_ , lowercase_ , lowercase_) -> List[str]: self.release() return None def __del__( self) -> List[str]: self.release(force=lowercase_) return None def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =os.path.basename(lowercase_) if len(lowercase_) > max_length and max_length > 0: a__ =os.path.dirname(lowercase_) a__ =str(hash(lowercase_)) a__ =filename[: max_length - len(lowercase_) - 8] + '...' + hashed_filename + '.lock' return os.path.join(lowercase_ , lowercase_) else: return path class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_=-1 , lowercase_=None) -> Dict: from .file_utils import relative_to_absolute_path super().__init__(lowercase_ , timeout=lowercase_ , max_filename_length=lowercase_) a__ ='\\\\?\\' + relative_to_absolute_path(self.lock_file) def __UpperCamelCase ( self) -> Tuple: a__ =os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a__ =os.open(self._lock_file , lowercase_) except OSError: pass else: try: msvcrt.locking(lowercase_ , msvcrt.LK_NBLCK , 1) except OSError: os.close(lowercase_) else: a__ =fd return None def __UpperCamelCase ( self) -> List[Any]: a__ =self._lock_file_fd a__ =None msvcrt.locking(lowercase_ , msvcrt.LK_UNLCK , 1) os.close(lowercase_) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_=-1 , lowercase_=None) -> Union[str, Any]: a__ =os.statvfs(os.path.dirname(lowercase_)).f_namemax super().__init__(lowercase_ , timeout=lowercase_ , max_filename_length=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =os.O_RDWR | os.O_CREAT | os.O_TRUNC a__ =os.open(self._lock_file , lowercase_) try: fcntl.flock(lowercase_ , fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(lowercase_) else: a__ =fd return None def __UpperCamelCase ( self) -> Union[str, Any]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition a__ =self._lock_file_fd a__ =None fcntl.flock(lowercase_ , fcntl.LOCK_UN) os.close(lowercase_) return None class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a__ =os.open(self._lock_file , lowercase_) except OSError: pass else: a__ =fd return None def __UpperCamelCase ( self) -> List[str]: os.close(self._lock_file_fd) a__ =None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None _lowerCAmelCase: Any = None if msvcrt: _lowerCAmelCase: int = WindowsFileLock elif fcntl: _lowerCAmelCase: List[str] = UnixFileLock else: _lowerCAmelCase: List[str] = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
20
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_euler""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
6
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : Dict ={ """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __magic_name__ , __magic_name__ : List[Any] =input_paths_and_base_extractors[compression_format] if input_path is None: __magic_name__ : Optional[Any] =F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase ) assert base_extractor.is_extractable(lowerCamelCase ) __magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(lowerCamelCase , lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __magic_name__ : Any =file_path.read_text(encoding="""utf-8""" ) else: __magic_name__ : Any =output_path.read_text(encoding="""utf-8""" ) __magic_name__ : Tuple =text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : List[str] ={ """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __magic_name__ : int =input_paths[compression_format] if input_path is None: __magic_name__ : List[Any] =F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase ) __magic_name__ : Optional[int] =Extractor.infer_extractor_format(lowerCamelCase ) assert extractor_format is not None __magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __magic_name__ : List[str] =file_path.read_text(encoding="""utf-8""" ) else: __magic_name__ : Optional[int] =output_path.read_text(encoding="""utf-8""" ) __magic_name__ : str =text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import tarfile __magic_name__ : Union[str, Any] =tmp_path / """data_dot_dot""" directory.mkdir() __magic_name__ : List[str] =directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( lowerCamelCase ): import tarfile __magic_name__ : Any =tmp_path / """data_sym_link""" directory.mkdir() __magic_name__ : Dict =directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=lowerCamelCase ) with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : int ={ """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __magic_name__ : Optional[int] =insecure_tar_files[insecure_tar_file] __magic_name__ : str =tmp_path / """extracted""" TarExtractor.extract(lowerCamelCase , lowerCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( lowerCamelCase ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __magic_name__ : List[str] =tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __magic_name__ : Any =( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(lowerCamelCase ) assert zipfile.is_zipfile(str(lowerCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase ) # but we're right
21
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict=13 , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=99 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : List[Any]=32 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Tuple=5_12 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[Any]=0.0_2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : str="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=0 , ) -> List[Any]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope _a = bos_token_id def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , ) -> str: """simple docstring""" _a = XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , ) -> int: """simple docstring""" _a = XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , ) -> int: """simple docstring""" _a = XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) _a = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , ) -> Tuple: """simple docstring""" _a = XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) _a = model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) _a = model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((_a) , ) = result_with_labels.to_tuple() _a = model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((_a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , ) -> Dict: """simple docstring""" _a = XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , ) -> Optional[Any]: """simple docstring""" _a = self.num_labels _a = XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , ) -> Any: """simple docstring""" _a = self.num_choices _a = XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class A ( _a ,_a ,_a ,unittest.TestCase ): lowercase_ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase_ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase_ = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> Optional[int]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int=False ) -> List[Any]: """simple docstring""" _a = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _a = XLMModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=1 ) -> int: """simple docstring""" self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = min_length + idx + 1 _a = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=1 ) -> Optional[Any]: """simple docstring""" self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _a = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(lowerCAmelCase_ ) _a = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president _a = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _a = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
22
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
6
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Dict = """Hello world! cécé herlolip""" def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = FairseqRobertaModel.from_pretrained(__lowercase) roberta.eval() # disable dropout UpperCamelCase_ = roberta.model.encoder.sentence_encoder UpperCamelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: UpperCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , __lowercase) UpperCamelCase_ = XLMRobertaXLForSequenceClassification(__lowercase) if classification_head else XLMRobertaXLForMaskedLM(__lowercase) model.eval() # Now let's copy all the weights. # Embeddings UpperCamelCase_ = roberta_sent_encoder.embed_tokens.weight UpperCamelCase_ = roberta_sent_encoder.embed_positions.weight UpperCamelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c RoBERTa doesn't use them. UpperCamelCase_ = roberta_sent_encoder.layer_norm.weight UpperCamelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers): # Encoder: start of layer UpperCamelCase_ = model.roberta.encoder.layer[i] UpperCamelCase_ = roberta_sent_encoder.layers[i] UpperCamelCase_ = layer.attention UpperCamelCase_ = roberta_layer.self_attn_layer_norm.weight UpperCamelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention UpperCamelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ) UpperCamelCase_ = roberta_layer.self_attn.q_proj.weight UpperCamelCase_ = roberta_layer.self_attn.q_proj.bias UpperCamelCase_ = roberta_layer.self_attn.k_proj.weight UpperCamelCase_ = roberta_layer.self_attn.k_proj.bias UpperCamelCase_ = roberta_layer.self_attn.v_proj.weight UpperCamelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCamelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCamelCase_ = roberta_layer.self_attn.out_proj.weight UpperCamelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCamelCase_ = roberta_layer.final_layer_norm.weight UpperCamelCase_ = roberta_layer.final_layer_norm.bias # intermediate UpperCamelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCamelCase_ = roberta_layer.fca.weight UpperCamelCase_ = roberta_layer.fca.bias # output UpperCamelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCamelCase_ = roberta_layer.fca.weight UpperCamelCase_ = roberta_layer.fca.bias # end of layer if classification_head: UpperCamelCase_ = roberta.model.classification_heads['mnli'].dense.weight UpperCamelCase_ = roberta.model.classification_heads['mnli'].dense.bias UpperCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.weight UpperCamelCase_ = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head UpperCamelCase_ = roberta.model.encoder.lm_head.dense.weight UpperCamelCase_ = roberta.model.encoder.lm_head.dense.bias UpperCamelCase_ = roberta.model.encoder.lm_head.layer_norm.weight UpperCamelCase_ = roberta.model.encoder.lm_head.layer_norm.bias UpperCamelCase_ = roberta.model.encoder.lm_head.weight UpperCamelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCamelCase_ = roberta.encode(__lowercase).unsqueeze(0) # batch of size 1 UpperCamelCase_ = model(__lowercase)[0] if classification_head: UpperCamelCase_ = roberta.model.classification_heads['mnli'](roberta.extract_features(__lowercase)) else: UpperCamelCase_ = roberta.model(__lowercase)[0] print(our_output.shape , their_output.shape) UpperCamelCase_ = torch.max(torch.abs(our_output - their_output)).item() print(f"""max_absolute_diff = {max_absolute_diff}""") # ~ 1e-7 UpperCamelCase_ = torch.allclose(__lowercase , __lowercase , atol=1e-3) print('Do both models output the same tensors?' , '🔥' if success else '💩') if not success: raise Exception('Something went wRoNg') pathlib.Path(__lowercase).mkdir(parents=__lowercase , exist_ok=__lowercase) print(f"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(__lowercase) if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) snake_case__ : int = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
23
import argparse import datetime def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) SCREAMING_SNAKE_CASE__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator SCREAMING_SNAKE_CASE__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: SCREAMING_SNAKE_CASE__ = y - 1 SCREAMING_SNAKE_CASE__ = m + 12 # maths var SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] ) SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] ) SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 ) SCREAMING_SNAKE_CASE__ = int(c / 4 ) SCREAMING_SNAKE_CASE__ = int(k / 4 ) SCREAMING_SNAKE_CASE__ = int(d + k ) SCREAMING_SNAKE_CASE__ = int(t + u + v + x ) SCREAMING_SNAKE_CASE__ = int(z - (2 * c) ) SCREAMING_SNAKE_CASE__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) _lowerCamelCase = parser.parse_args() zeller(args.date_input)
6
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCAmelCase ( nn.Module): def __init__( self , __SCREAMING_SNAKE_CASE = 16 , __SCREAMING_SNAKE_CASE = 88 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = None , ) -> Optional[int]: '''simple docstring''' super().__init__() __snake_case = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __snake_case = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __snake_case = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __snake_case = [1, 0] def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = True , ) -> List[str]: '''simple docstring''' __snake_case = hidden_states __snake_case = [] __snake_case = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __snake_case = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __snake_case = self.transformer_index_for_condition[i] __snake_case = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __snake_case = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __snake_case = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
24
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
0
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = old_name if "patch_embed" in old_name: __snake_case , __snake_case , __snake_case : List[Any] = old_name.split(""".""" ) if layer == "0": __snake_case : int = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": __snake_case : List[str] = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": __snake_case : List[str] = old_name.replace("""3""" , """convolution2""" ) else: __snake_case : str = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(R"""\d\.\d""" , _lowerCamelCase ): __snake_case : str = R"""\b\d{2}\b""" if bool(re.search(_lowerCamelCase , _lowerCamelCase ) ): __snake_case : int = re.search(R"""\d\.\d\d.""" , _lowerCamelCase ).group() else: __snake_case : List[Any] = re.search(R"""\d\.\d.""" , _lowerCamelCase ).group() if int(match[0] ) < 6: __snake_case : Dict = old_name.replace(_lowerCamelCase , """""" ) __snake_case : Any = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) __snake_case : Optional[int] = """intermediate_stages.""" + trimmed_name else: __snake_case : Dict = old_name.replace(_lowerCamelCase , """""" ) if int(match[2] ) < num_meta4D_last_stage: __snake_case : Optional[Any] = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: __snake_case : Union[str, Any] = str(int(match[2] ) - num_meta4D_last_stage ) __snake_case : Optional[int] = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: __snake_case : int = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: __snake_case : Optional[int] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: __snake_case : List[Any] = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: __snake_case : List[Any] = trimmed_name.replace("""fc2""" , """linear_out""" ) __snake_case : Any = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R""".\d.""" , _lowerCamelCase ): __snake_case : int = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: __snake_case : Optional[Any] = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __snake_case : Tuple = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __snake_case : Dict = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: __snake_case : str = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: __snake_case : str = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: __snake_case : Union[str, Any] = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: __snake_case : int = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __snake_case : Tuple = new_name.replace("""norm""" , """layernorm""" ) __snake_case : Dict = """efficientformer.""" + new_name else: __snake_case : str = """efficientformer.encoder.""" + new_name return new_name def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for key in checkpoint.copy().keys(): __snake_case : int = checkpoint.pop(_lowerCamelCase ) __snake_case : int = val return checkpoint def _a ( ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : List[Any] = torch.load(_lowerCamelCase , map_location="""cpu""" )["""model"""] __snake_case : Union[str, Any] = EfficientFormerConfig.from_json_file(_lowerCamelCase ) __snake_case : Dict = EfficientFormerForImageClassificationWithTeacher(_lowerCamelCase ) __snake_case : List[Any] = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) __snake_case : Dict = config.depths[-1] - config.num_metaad_blocks + 1 __snake_case : Any = convert_torch_checkpoint(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __snake_case : Optional[int] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image __snake_case : List[str] = prepare_img() __snake_case : Tuple = 256 __snake_case : Dict = 224 __snake_case : Any = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) __snake_case : Dict = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values # original processing pipeline __snake_case : int = Compose( [ Resize(_lowerCamelCase , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(_lowerCamelCase ), ToTensor(), Normalize(_lowerCamelCase , _lowerCamelCase ), ] ) __snake_case : int = image_transforms(_lowerCamelCase ).unsqueeze(0 ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) __snake_case : Dict = model(_lowerCamelCase ) __snake_case : Dict = outputs.logits __snake_case : List[str] = (1, 1000) if "l1" in model_name: __snake_case : Dict = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :10] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __snake_case : int = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :10] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __snake_case : int = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_lowerCamelCase ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add model""" , use_temp_dir=_lowerCamelCase , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add image processor""" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) __UpperCamelCase = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
26
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "OwlViTImageProcessor" lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): SCREAMING_SNAKE_CASE__ = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A )) SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = input_ids SCREAMING_SNAKE_CASE__ = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE__ = BatchEncoding() SCREAMING_SNAKE_CASE__ = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values SCREAMING_SNAKE_CASE__ = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process(*__A , **__A ) def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*__A , **__A ) def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def _snake_case ( self :Any ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
6
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=2 , snake_case_=8 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=16 , snake_case_=5 , snake_case_=2 , snake_case_=36 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase__ ( self ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self ): _A = self.get_config() _A = 300 return config def lowerCAmelCase__ ( self ): ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = MraModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ , token_type_ids=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = True _A = MraModel(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , ) _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = MraForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = MraForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = MraForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_labels _A = MraForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _A = self.num_choices _A = MraForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ( _A ), ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = () def lowerCAmelCase__ ( self ): _A = MraModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = MraModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowerCAmelCase__ ( self ): return @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) _A = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) _A = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = 5_0265 _A = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self ): _A = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) _A = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _A = model(snake_case_ )[0] _A = 5_0265 _A = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) )
27
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
0
'''simple docstring''' def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" assert x is not None assert y is not None SCREAMING_SNAKE_CASE : Dict = len(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = len(__UpperCamelCase ) # declaring the array for storing the dp values SCREAMING_SNAKE_CASE : Optional[Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 ,m + 1 ): for j in range(1 ,n + 1 ): SCREAMING_SNAKE_CASE : Dict = 1 if x[i - 1] == y[j - 1] else 0 SCREAMING_SNAKE_CASE : List[Any] = max(l[i - 1][j] ,l[i][j - 1] ,l[i - 1][j - 1] + match ) SCREAMING_SNAKE_CASE : Dict = '' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = m, n while i > 0 and j > 0: SCREAMING_SNAKE_CASE : Optional[Any] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: SCREAMING_SNAKE_CASE : List[Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": UpperCamelCase_ = "AGGTAB" UpperCamelCase_ = "GXTXAYB" UpperCamelCase_ = 4 UpperCamelCase_ = "GTAB" UpperCamelCase_ , UpperCamelCase_ = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
28
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = jnp.floataa lowerCamelCase_ = True def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" super().setup() SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype ) def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A ) SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ): SCREAMING_SNAKE_CASE__ = logits.shape[-1] SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" ) SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 ) SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ ) return loss SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase_ : lowerCamelCase_ = "google/bigbird-roberta-base" lowerCamelCase_ = 30_00 lowerCamelCase_ = 1_05_00 lowerCamelCase_ = 1_28 lowerCamelCase_ = 3 lowerCamelCase_ = 1 lowerCamelCase_ = 5 # tx_args lowerCamelCase_ = 3e-5 lowerCamelCase_ = 0.0 lowerCamelCase_ = 2_00_00 lowerCamelCase_ = 0.0095 lowerCamelCase_ = "bigbird-roberta-natural-questions" lowerCamelCase_ = "training-expt" lowerCamelCase_ = "data/nq-training.jsonl" lowerCamelCase_ = "data/nq-validation.jsonl" def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=__A ) SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 40_96 # no dynamic padding on TPUs def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.collate_fn(__A ) SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A ) return batch def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = { """input_ids""": jnp.array(__A , dtype=jnp.intaa ), """attention_mask""": jnp.array(__A , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _snake_case ( self :Tuple , __A :list ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ): if seed is not None: SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) // batch_size ): SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): def loss_fn(UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs return state.loss_fn( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" ) SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" ) SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCamelCase_ ( train_state.TrainState ): lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ ) @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = None def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = model.params SCREAMING_SNAKE_CASE__ = TrainState.create( apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A ) SCREAMING_SNAKE_CASE__ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A ) SCREAMING_SNAKE_CASE__ = train_state.TrainState( step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = data_collator SCREAMING_SNAKE_CASE__ = lr SCREAMING_SNAKE_CASE__ = params SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A ) return state def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.args SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE__ = running_loss.item() / i SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A ) SCREAMING_SNAKE_CASE__ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A , commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A ) def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size ) SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = 0 for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ): SCREAMING_SNAKE_CASE__ = self.data_collator(__A ) SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(__A , params=state.params ) with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) ) with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __A ) print("""DONE""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) ) SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ): def weight_decay_mask(UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ ) return tx, lr
6
0
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter A_ = logging.get_logger(__name__) A_ = {} A_ = {} A_ = {} def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = None ,): lowerCamelCase_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) lowerCamelCase_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) lowerCamelCase_ = format_type def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = None ): lowerCamelCase_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowerCamelCase_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: A_ = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: A_ = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: A_ = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def lowercase ( lowerCAmelCase__ ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowercase ( lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = get_format_type_from_alias(lowerCAmelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCAmelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
29
from torch import nn def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
6
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __a = logging.get_logger('transformers.models.encodec') __a = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } __a = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } __a = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } __a = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } __a = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } __a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __a = [] __a = [] def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' for attribute in key.split('''.''' ): UpperCAmelCase_ : Optional[Any] = getattr(_lowercase , _lowercase ) if weight_type is not None: UpperCAmelCase_ : List[Any] = getattr(_lowercase , _lowercase ).shape else: UpperCAmelCase_ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase_ : Tuple = value elif weight_type == "weight_g": UpperCAmelCase_ : Any = value elif weight_type == "weight_v": UpperCAmelCase_ : List[Any] = value elif weight_type == "bias": UpperCAmelCase_ : str = value elif weight_type == "running_mean": UpperCAmelCase_ : Union[str, Any] = value elif weight_type == "running_var": UpperCAmelCase_ : str = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ : List[Any] = value elif weight_type == "weight_ih_l0": UpperCAmelCase_ : str = value elif weight_type == "weight_hh_l0": UpperCAmelCase_ : str = value elif weight_type == "bias_ih_l0": UpperCAmelCase_ : Optional[Any] = value elif weight_type == "bias_hh_l0": UpperCAmelCase_ : int = value elif weight_type == "weight_ih_l1": UpperCAmelCase_ : List[Any] = value elif weight_type == "weight_hh_l1": UpperCAmelCase_ : int = value elif weight_type == "bias_ih_l1": UpperCAmelCase_ : int = value elif weight_type == "bias_hh_l1": UpperCAmelCase_ : List[str] = value else: UpperCAmelCase_ : int = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase_, UpperCAmelCase_ : Dict = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCAmelCase_ : Tuple = MAPPING_24K elif model_name == "encodec_48khz": UpperCAmelCase_ : str = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(_lowercase , _lowercase ): logger.info(f'''{name} was ignored''' ) continue UpperCAmelCase_ : int = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase_ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue UpperCAmelCase_ : int = True if "*" in mapped_key: UpperCAmelCase_ : Optional[int] = name.split(_lowercase )[0].split('''.''' )[-2] UpperCAmelCase_ : Optional[int] = mapped_key.replace('''*''' , _lowercase ) if "weight_g" in name: UpperCAmelCase_ : List[Any] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ : Tuple = '''weight_v''' elif "weight_ih_l0" in name: UpperCAmelCase_ : Optional[int] = '''weight_ih_l0''' elif "weight_hh_l0" in name: UpperCAmelCase_ : Optional[int] = '''weight_hh_l0''' elif "bias_ih_l0" in name: UpperCAmelCase_ : Dict = '''bias_ih_l0''' elif "bias_hh_l0" in name: UpperCAmelCase_ : Any = '''bias_hh_l0''' elif "weight_ih_l1" in name: UpperCAmelCase_ : int = '''weight_ih_l1''' elif "weight_hh_l1" in name: UpperCAmelCase_ : int = '''weight_hh_l1''' elif "bias_ih_l1" in name: UpperCAmelCase_ : Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: UpperCAmelCase_ : Union[str, Any] = '''bias_hh_l1''' elif "bias" in name: UpperCAmelCase_ : List[str] = '''bias''' elif "weight" in name: UpperCAmelCase_ : int = '''weight''' elif "running_mean" in name: UpperCAmelCase_ : Tuple = '''running_mean''' elif "running_var" in name: UpperCAmelCase_ : Dict = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase_ : Tuple = '''num_batches_tracked''' else: UpperCAmelCase_ : Dict = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , ): '''simple docstring''' if config_path is not None: UpperCAmelCase_ : int = EncodecConfig.from_pretrained(_lowercase ) else: UpperCAmelCase_ : List[str] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCAmelCase_ : Union[str, Any] = [8, 5, 4, 4] UpperCAmelCase_ : str = [2.2] UpperCAmelCase_ : Optional[Any] = 64 UpperCAmelCase_ : str = 32000 UpperCAmelCase_ : Tuple = 2048 UpperCAmelCase_ : str = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : int = False elif model_name == "encodec_48khz": UpperCAmelCase_ : List[str] = [8, 5, 4, 2] UpperCAmelCase_ : Optional[int] = [3.0, 6.0, 12.0, 24.0] UpperCAmelCase_ : Optional[int] = 48000 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Any = '''time_group_norm''' UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Union[str, Any] = 1.0 UpperCAmelCase_ : List[Any] = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) UpperCAmelCase_ : int = EncodecModel(_lowercase ) UpperCAmelCase_ : List[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_lowercase ) UpperCAmelCase_ : int = torch.load(_lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCAmelCase_ : Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(_lowercase , _lowercase , _lowercase ) model.save_pretrained(_lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_lowercase ) model.push_to_hub(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __a = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
30
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 847 SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 150 SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 171 SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE__ = 133 SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 19 SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE__ = 65 SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ ) # load original state_dict with open(UpperCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase__ , param.shape ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results SCREAMING_SNAKE_CASE__ = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE__ = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE__ = 65_535 else: SCREAMING_SNAKE_CASE__ = 255 SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
0
import qiskit def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> qiskit.result.counts.Counts: SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator SCREAMING_SNAKE_CASE_ = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
31
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase = 0 _lowerCamelCase = 0XE0_00 _lowerCamelCase = 0XE0_01 _lowerCamelCase = 0XE0_02 _lowerCamelCase = 0XE0_03 _lowerCamelCase = 0XE0_04 # Maps special codepoints to human-readable names. _lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE__ = len(self._special_codepoints ) @property def _snake_case ( self :Optional[Any] ) -> int: """simple docstring""" return self._unicode_vocab_size def _snake_case ( self :Tuple , __A :str ) -> List[str]: """simple docstring""" return list(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> int: """simple docstring""" try: return ord(__A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _snake_case ( self :str , __A :int ) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any: """simple docstring""" return "".join(__A ) def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1] if token_ids_a is not None: result += ([0] * len(__A )) + [1] return result def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any: """simple docstring""" return ()
6
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __UpperCamelCase : def __init__( self ): _UpperCAmelCase = '''''' _UpperCAmelCase = '''''' _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 256 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = cva.imread(_UpperCamelCase , 0 ) _UpperCAmelCase = copy.deepcopy(self.img ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) _UpperCAmelCase = np.sum(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): _UpperCAmelCase = x[i] / self.k self.sk += prk _UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: _UpperCAmelCase = int(last % last ) _UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_UpperCamelCase ) _UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) _UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: _UpperCAmelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def UpperCamelCase( self ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase( self ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCAmelCase_ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") UpperCAmelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
32
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : Optional[int] = MBartConfig __lowercase : Tuple = {} __lowercase : Optional[int] = 'gelu' def __init__( self:Tuple , _a:int , _a:List[Any]=13 , _a:List[str]=7 , _a:Tuple=True , _a:Union[str, Any]=False , _a:Any=99 , _a:List[Any]=32 , _a:List[Any]=2 , _a:int=4 , _a:Dict=37 , _a:int=0.1 , _a:List[str]=0.1 , _a:Any=20 , _a:Any=2 , _a:List[str]=1 , _a:List[str]=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_mbart_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Tuple , _a:Any ): snake_case__ = TFMBartModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() snake_case__ = past_key_values[1] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[str]: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __lowercase : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else () __lowercase : Optional[int] = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Optional[int] = True __lowercase : Tuple = False __lowercase : List[str] = False def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str , _a:Optional[int] , _a:Optional[int] , _a:List[Any] , _a:int ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = TFMBartModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_sentencepiece @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : str = [ ' UN Chief Says There Is No Military Solution in Syria', ] __lowercase : Union[str, Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] __lowercase : Any = 'facebook/mbart-large-en-ro' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def SCREAMING_SNAKE_CASE__ ( self:List[Any] , **_a:Optional[Any] ): snake_case__ = self.translate_src_text(**_a ) self.assertListEqual(self.expected_text , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:Optional[int] ): snake_case__ = self.tokenizer(self.src_text , **_a , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) snake_case__ = self.tokenizer.batch_decode(_a , skip_special_tokens=_a ) return generated_words @slow def SCREAMING_SNAKE_CASE__ ( self:int ): self._assert_generated_batch_equal_expected()
33
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging SCREAMING_SNAKE_CASE_ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ): """simple docstring""" UpperCamelCase = XLNetConfig.from_json_file(_lowercase ) UpperCamelCase = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) UpperCamelCase = finetuning_task UpperCamelCase = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCamelCase = XLNetForSequenceClassification(_lowercase ) elif "squad" in finetuning_task: UpperCamelCase = finetuning_task UpperCamelCase = XLNetForQuestionAnswering(_lowercase ) else: UpperCamelCase = XLNetLMHeadModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowercase ,_lowercase ,_lowercase ) # Save pytorch-model UpperCamelCase = os.path.join(_lowercase ,_lowercase ) UpperCamelCase = os.path.join(_lowercase ,_lowercase ) print(f'Save PyTorch model to {os.path.abspath(_lowercase )}' ) torch.save(model.state_dict() ,_lowercase ) print(f'Save configuration file to {os.path.abspath(_lowercase )}' ) with open(_lowercase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
34
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_lengths SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = gelu_activation SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ = causal SCREAMING_SNAKE_CASE__ = asm SCREAMING_SNAKE_CASE__ = n_langs SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_special SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = summary_type SCREAMING_SNAKE_CASE__ = use_proj SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A , langs=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , ) SCREAMING_SNAKE_CASE__ = model( __A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A ) ((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A ) SCREAMING_SNAKE_CASE__ = model(__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 ) def _snake_case ( self :int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__A ) def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__A ) def _snake_case ( self :str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__A ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__A ) def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__A ) def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__A ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__A ) @slow def _snake_case ( self :Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(config=__A ) SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE__ = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
6
0
def a ( A__ = 1_0_0_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 3 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
35
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ): model.train() SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ): set_seed(42 ) SCREAMING_SNAKE_CASE__ = RegressionModel() SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) # Use a single batch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ): SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
6
0
from __future__ import annotations import time __lowercase : Optional[Any] = list[tuple[int, int]] __lowercase : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase : Optional[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Tuple = pos_x snake_case : List[str] = pos_y snake_case : Optional[int] = (pos_y, pos_x) snake_case : List[str] = goal_x snake_case : str = goal_y snake_case : int = parent class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Union[str, Any] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = [self.start] snake_case : int = False def snake_case_ ( self ): '''simple docstring''' while self.node_queue: snake_case : Any = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case : List[Any] = True return self.retrace_path(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = self.get_successors(SCREAMING_SNAKE_CASE_ ) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.start.pos] return None def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = [] for action in delta: snake_case : Optional[Any] = parent.pos_x + action[1] snake_case : Optional[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE_ ) ) return successors def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = node snake_case : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case : Any = current_node.parent path.reverse() return path class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Any = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : int = False def snake_case_ ( self ): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case : List[str] = self.fwd_bfs.node_queue.pop(0 ) snake_case : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case : Optional[int] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = current_bwd_node snake_case : Any = current_fwd_node snake_case : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) bwd_path.pop() bwd_path.reverse() snake_case : Optional[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase : List[Any] = (0, 0) __lowercase : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase : Optional[int] = time.time() __lowercase : Optional[int] = BreadthFirstSearch(init, goal) __lowercase : Any = bfs.search() __lowercase : List[str] = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase : List[str] = time.time() __lowercase : Dict = BidirectionalBreadthFirstSearch(init, goal) __lowercase : Union[str, Any] = bd_bfs.search() __lowercase : Optional[Any] = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
36
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( A__ ): """simple docstring""" _lowercase = 42 _lowercase = 42 def __init__( self : str , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : KarrasVeScheduler ): super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self : Dict , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , **lowerCamelCase__ : Optional[int] , ): a__ : int = self.unet.config.sample_size a__ : Any = (batch_size, 3, img_size, img_size) a__ : List[Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) a__ : List[Any] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper a__ : Dict = self.scheduler.schedule[t] a__ : List[Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat a__, a__ : List[str] = self.scheduler.add_noise_to_input(lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. a__ : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev a__ : Any = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. a__ : str = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample a__ : Optional[int] = self.scheduler.step_correct( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , step_output.prev_sample , step_output["derivative"] , ) a__ : str = step_output.prev_sample a__ : int = (sample / 2 + 0.5).clamp(0 , 1 ) a__ : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : str = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
37
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE__ = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE__ = s - 2 * j break return diff
6
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A_ : Union[str, Any] = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , ): snake_case__ : str = [file for file in os.listdir(__SCREAMING_SNAKE_CASE ) if os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )] if identifier is not None: snake_case__ : Optional[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for n_ in n_identifier: snake_case__ : Any = [file for file in files if n_ not in file] else: snake_case__ : int = [file for file in files if n_identifier not in file] snake_case__ : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) snake_case__ : str = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __SCREAMING_SNAKE_CASE ) if only_modules: snake_case__ : Optional[int] = file.split(""".""" )[0] try: snake_case__ : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = doctest.DocTestSuite(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = unittest.TextTestRunner().run(__SCREAMING_SNAKE_CASE ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"{module_identifier} is not a module." ) else: snake_case__ : List[Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __UpperCamelCase ( self ): snake_case__ : Any = Path("""src/transformers""" ) snake_case__ : Any = """modeling""" snake_case__ : Optional[int] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = Path("""src/transformers""" ) snake_case__ : Optional[Any] = """tokenization""" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = Path("""src/transformers""" ) snake_case__ : Dict = """configuration""" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = Path("""src/transformers""" ) snake_case__ : Optional[int] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__SCREAMING_SNAKE_CASE , n_identifier=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = Path("""docs/source""" ) snake_case__ : Dict = ["""favicon.ico"""] self.analyze_directory(__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE , only_modules=__SCREAMING_SNAKE_CASE )
38
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
0
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) snake_case_ = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b" snake_case_ = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] snake_case_ = max(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE__ ) , b_binary.zfill(SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
39
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "encoder-decoder" lowerCamelCase_ = True def __init__( self :Optional[int] , **__A :str ) -> int: """simple docstring""" super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = True @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
0
import os def UpperCamelCase ( ) -> Tuple: UpperCamelCase : str = os.path.join(os.path.dirname(snake_case__ ) , 'num.txt' ) with open(snake_case__ ) as file_hand: return str(sum(int(snake_case__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
40
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class UpperCamelCase_ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase_ = Features({"text": Value("string" )} ) lowerCamelCase_ = Features({"labels": ClassLabel} ) lowerCamelCase_ = "text" lowerCamelCase_ = "labels" def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ = self.label_schema.copy() SCREAMING_SNAKE_CASE__ = features[self.label_column] SCREAMING_SNAKE_CASE__ = label_schema return task_template @property def _snake_case ( self :str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
6
0