code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from maths.prime_check import is_prime def A (__lowerCamelCase :int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = f'Input value of [number={number}] must be an integer' raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : torch.FloatTensor _lowercase : torch.FloatTensor _lowercase : Optional[torch.FloatTensor] = None class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = 2 @register_to_config def __init__( self , _lowercase = 0.02 , _lowercase = 100 , _lowercase = 1.007 , _lowercase = 80 , _lowercase = 0.05 , _lowercase = 50 , ): """simple docstring""" _lowerCAmelCase = sigma_max # setable values _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None # sigma(t_i) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" return sample def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = num_inference_steps _lowerCAmelCase = np.arange(0 , self.num_inference_steps )[::-1].copy() _lowerCAmelCase = torch.from_numpy(_lowercase ).to(_lowercase ) _lowerCAmelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _lowerCAmelCase = torch.tensor(_lowercase , dtype=torch.floataa , device=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = None ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _lowerCAmelCase = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase = self.config.s_noise * randn_tensor(sample.shape , generator=_lowercase ).to(sample.device ) _lowerCAmelCase = sigma + gamma * sigma _lowerCAmelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): """simple docstring""" _lowerCAmelCase = sample_hat + sigma_hat * model_output _lowerCAmelCase = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): """simple docstring""" _lowerCAmelCase = sample_prev + sigma_prev * model_output _lowerCAmelCase = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" raise NotImplementedError()
5
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] _lowercase = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } _lowercase = {F"""funnel-transformer/{name}""": 512 for name in _model_names} _lowercase = {F"""funnel-transformer/{name}""": {"""do_lower_case""": True} for name in _model_names} class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = VOCAB_FILES_NAMES _lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowercase : Any = PRETRAINED_INIT_CONFIGURATION _lowercase : List[str] = FunnelTokenizer _lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : int = 2 def __init__( self , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase="<unk>" , _lowercase="<sep>" , _lowercase="<pad>" , _lowercase="<cls>" , _lowercase="<mask>" , _lowercase="<s>" , _lowercase="</s>" , _lowercase=True , _lowercase=True , _lowercase=None , _lowercase="##" , **_lowercase , ): """simple docstring""" super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , clean_text=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , wordpieces_prefix=_lowercase , **_lowercase , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowercase ) != tokenize_chinese_chars ): _lowerCAmelCase = getattr(_lowercase , normalizer_state.pop("""type""" ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = tokenize_chinese_chars _lowerCAmelCase = normalizer_class(**_lowercase ) _lowerCAmelCase = do_lower_case def _lowercase ( self , _lowercase , _lowercase=None ): """simple docstring""" _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_lowercase , vae=_lowercase , scheduler=_lowercase ) # create a imagenet -> id dictionary for easier use _lowerCAmelCase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): _lowerCAmelCase = int(_lowercase ) _lowerCAmelCase = dict(sorted(self.labels.items() ) ) def _lowercase ( self , _lowercase ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): _lowerCAmelCase = list(_lowercase ) for l in label: if l not in self.labels: raise ValueError( F'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , _lowercase , _lowercase = 4.0 , _lowercase = None , _lowercase = 50 , _lowercase = "pil" , _lowercase = True , ): """simple docstring""" _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.transformer.config.sample_size _lowerCAmelCase = self.transformer.config.in_channels _lowerCAmelCase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_lowercase , device=self.device , dtype=self.transformer.dtype , ) _lowerCAmelCase = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _lowerCAmelCase = torch.tensor(_lowercase , device=self.device ).reshape(-1 ) _lowerCAmelCase = torch.tensor([1_000] * batch_size , device=self.device ) _lowerCAmelCase = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _lowerCAmelCase = latent_model_input[: len(_lowercase ) // 2] _lowerCAmelCase = torch.cat([half, half] , dim=0 ) _lowerCAmelCase = self.scheduler.scale_model_input(_lowercase , _lowercase ) _lowerCAmelCase = t if not torch.is_tensor(_lowercase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowerCAmelCase = latent_model_input.device.type == """mps""" if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = torch.floataa if is_mps else torch.floataa else: _lowerCAmelCase = torch.intaa if is_mps else torch.intaa _lowerCAmelCase = torch.tensor([timesteps] , dtype=_lowercase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _lowerCAmelCase = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _lowerCAmelCase = self.transformer( _lowercase , timestep=_lowercase , class_labels=_lowercase ).sample # perform guidance if guidance_scale > 1: _lowerCAmelCase , _lowerCAmelCase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowerCAmelCase , _lowerCAmelCase = torch.split(_lowercase , len(_lowercase ) // 2 , dim=0 ) _lowerCAmelCase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowerCAmelCase = torch.cat([half_eps, half_eps] , dim=0 ) _lowerCAmelCase = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowerCAmelCase , _lowerCAmelCase = torch.split(_lowercase , _lowercase , dim=1 ) else: _lowerCAmelCase = noise_pred # compute previous image: x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample if guidance_scale > 1: _lowerCAmelCase , _lowerCAmelCase = latent_model_input.chunk(2 , dim=0 ) else: _lowerCAmelCase = latent_model_input _lowerCAmelCase = 1 / self.vae.config.scaling_factor * latents _lowerCAmelCase = self.vae.decode(_lowercase ).sample _lowerCAmelCase = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_lowercase )
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
'''simple docstring''' def A (__lowerCamelCase :float ): return 10 - x * x def A (__lowerCamelCase :float , __lowerCamelCase :float ): # Bolzano theory in order to find if there is a root between a and b if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("""Wrong space!""" ) _lowerCAmelCase = a while (b - a) >= 0.01: # Find middle point _lowerCAmelCase = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: _lowerCAmelCase = c else: _lowerCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
5
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def A (__lowerCamelCase :Dict ): _lowerCAmelCase = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def A (__lowerCamelCase :Optional[int] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def A (): _lowerCAmelCase = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def A (__lowerCamelCase :Optional[int] , __lowerCamelCase :Dict , __lowerCamelCase :List[str] , __lowerCamelCase :Dict ): _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = 1000 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = num_labels _lowerCAmelCase = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = _lowerCAmelCase = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": _lowerCAmelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": _lowerCAmelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: _lowerCAmelCase = [2, 2, 20] _lowerCAmelCase = [3, 12, 16] _lowerCAmelCase = [192, 768, 1024] _lowerCAmelCase = CvtForImageClassification(__lowerCamelCase ) _lowerCAmelCase = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) _lowerCAmelCase = image_size _lowerCAmelCase = torch.load(__lowerCamelCase , map_location=torch.device("""cpu""" ) ) _lowerCAmelCase = OrderedDict() _lowerCAmelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: _lowerCAmelCase = list_of_state_dict + cls_token(__lowerCamelCase ) _lowerCAmelCase = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): _lowerCAmelCase = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): _lowerCAmelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowercase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" return F'gaussian_noise_s={seed}_shape={"_".join([str(_lowercase ) for s in shape] )}.npy' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() def _lowercase ( self , _lowercase=0 , _lowercase=(4, 4, 64, 64) , _lowercase=False ): """simple docstring""" _lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(_lowercase , _lowercase ) ) , dtype=_lowercase ) return image def _lowercase ( self , _lowercase=False , _lowercase="CompVis/stable-diffusion-v1-4" ): """simple docstring""" _lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _lowerCAmelCase = """bf16""" if fpaa else None _lowerCAmelCase , _lowerCAmelCase = FlaxUNetaDConditionModel.from_pretrained( _lowercase , subfolder="""unet""" , dtype=_lowercase , revision=_lowercase ) return model, params def _lowercase ( self , _lowercase=0 , _lowercase=(4, 77, 768) , _lowercase=False ): """simple docstring""" _lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(_lowercase , _lowercase ) ) , dtype=_lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=_lowercase ) _lowerCAmelCase = self.get_latents(_lowercase , fpaa=_lowercase ) _lowerCAmelCase = self.get_encoder_hidden_states(_lowercase , fpaa=_lowercase ) _lowerCAmelCase = model.apply( {"""params""": params} , _lowercase , jnp.array(_lowercase , dtype=jnp.intaa ) , encoder_hidden_states=_lowercase , ).sample assert sample.shape == latents.shape _lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _lowerCAmelCase = jnp.array(_lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowercase , _lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=_lowercase ) _lowerCAmelCase = self.get_latents(_lowercase , shape=(4, 4, 96, 96) , fpaa=_lowercase ) _lowerCAmelCase = self.get_encoder_hidden_states(_lowercase , shape=(4, 77, 1_024) , fpaa=_lowercase ) _lowerCAmelCase = model.apply( {"""params""": params} , _lowercase , jnp.array(_lowercase , dtype=jnp.intaa ) , encoder_hidden_states=_lowercase , ).sample assert sample.shape == latents.shape _lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _lowerCAmelCase = jnp.array(_lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowercase , _lowercase , atol=1e-2 )
5
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
1
'''simple docstring''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" _lowerCAmelCase = [ [], [], [], ] def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(_lowercase ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def _lowercase ( self ): """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): """simple docstring""" return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" _lowerCAmelCase = [] def _lowercase ( self , _lowercase ): """simple docstring""" if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(_lowercase ) def _lowercase ( self ): """simple docstring""" if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase = min(self.queue ) self.queue.remove(_lowercase ) return data def __str__( self ): """simple docstring""" return str(self.queue ) def A (): _lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(__lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(__lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def A (): _lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(__lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(__lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def A (__lowerCamelCase :Optional[int]=None ): if subparsers is not None: _lowerCAmelCase = subparsers.add_parser("""env""" ) else: _lowerCAmelCase = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=__lowerCamelCase , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=__lowerCamelCase ) return parser def A (__lowerCamelCase :Tuple ): _lowerCAmelCase = torch.__version__ _lowerCAmelCase = torch.cuda.is_available() _lowerCAmelCase = is_xpu_available() _lowerCAmelCase = is_npu_available() _lowerCAmelCase = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(__lowerCamelCase ): _lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() _lowerCAmelCase = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f'{pt_version} ({pt_cuda_available})', """PyTorch XPU available""": str(__lowerCamelCase ), """PyTorch NPU available""": str(__lowerCamelCase ), """System RAM""": f'{psutil.virtual_memory().total / 1024 ** 3:.2f} GB', } if pt_cuda_available: _lowerCAmelCase = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f'- {prop}: {val}' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) _lowerCAmelCase = ( """\n""".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else f'\t{accelerate_config}' ) print(__lowerCamelCase ) _lowerCAmelCase = accelerate_config return info def A (): _lowerCAmelCase = env_command_parser() _lowerCAmelCase = parser.parse_args() env_command(__lowerCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' from typing import List import numpy as np def A (__lowerCamelCase :dict ): _lowerCAmelCase = {key: len(__lowerCamelCase ) for key, value in gen_kwargs.items() if isinstance(__lowerCamelCase , __lowerCamelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) _lowerCAmelCase = max(lists_lengths.values() , default=0 ) return max(1 , __lowerCamelCase ) def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = [] for group_idx in range(__lowerCamelCase ): _lowerCAmelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCAmelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCAmelCase = range(__lowerCamelCase , start + num_shards_to_add ) shards_indices_per_group.append(__lowerCamelCase ) return shards_indices_per_group def A (__lowerCamelCase :dict , __lowerCamelCase :int ): _lowerCAmelCase = _number_of_shards_in_gen_kwargs(__lowerCamelCase ) if num_shards == 1: return [dict(__lowerCamelCase )] else: _lowerCAmelCase = _distribute_shards(num_shards=__lowerCamelCase , max_num_jobs=__lowerCamelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowerCamelCase , __lowerCamelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowerCamelCase ) ) ] def A (__lowerCamelCase :List[dict] ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __lowerCamelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A (__lowerCamelCase :np.random.Generator , __lowerCamelCase :dict ): _lowerCAmelCase = {len(__lowerCamelCase ) for value in gen_kwargs.values() if isinstance(__lowerCamelCase , __lowerCamelCase )} _lowerCAmelCase = {} for size in list_sizes: _lowerCAmelCase = list(range(__lowerCamelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCAmelCase = dict(__lowerCamelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = [value[i] for i in indices_per_size[len(__lowerCamelCase )]] return shuffled_kwargs
5
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :np.ndarray , __lowerCamelCase :Union[int, Iterable[int]] , __lowerCamelCase :bool , __lowerCamelCase :int ): def constraint_to_multiple_of(__lowerCamelCase :List[str] , __lowerCamelCase :str , __lowerCamelCase :Optional[int]=0 , __lowerCamelCase :Any=None ): _lowerCAmelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCAmelCase = math.floor(val / multiple ) * multiple if x < min_val: _lowerCAmelCase = math.ceil(val / multiple ) * multiple return x _lowerCAmelCase = (output_size, output_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) else output_size _lowerCAmelCase , _lowerCAmelCase = get_image_size(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = output_size # determine new height and width _lowerCAmelCase = output_height / input_height _lowerCAmelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCAmelCase = scale_width else: # fit height _lowerCAmelCase = scale_height _lowerCAmelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__lowerCamelCase ) _lowerCAmelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__lowerCamelCase ) return (new_height, new_width) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = False , _lowercase = 1 , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = size if size is not None else {"""height""": 384, """width""": 384} _lowerCAmelCase = get_size_dict(_lowercase ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = keep_aspect_ratio _lowerCAmelCase = ensure_multiple_of _lowerCAmelCase = resample _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , _lowercase , _lowercase , _lowercase = False , _lowercase = 1 , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ): """simple docstring""" _lowerCAmelCase = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) _lowerCAmelCase = get_resize_output_image_size( _lowercase , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ): """simple docstring""" return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ): """simple docstring""" return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ): """simple docstring""" _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowercase ) _lowerCAmelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCAmelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowercase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] _lowerCAmelCase = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_lowercase ): _lowerCAmelCase = target_sizes.numpy() _lowerCAmelCase = [] for idx in range(len(_lowercase ) ): _lowerCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_lowercase ) _lowerCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: _lowerCAmelCase = logits.argmax(dim=1 ) _lowerCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' from functools import reduce _lowercase = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def A (__lowerCamelCase :str = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda __lowerCamelCase , __lowerCamelCase : str(int(__lowerCamelCase ) * int(__lowerCamelCase ) ) , n[i : i + 13] ) ) for i in range(len(__lowerCamelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' from datetime import datetime import requests def A (__lowerCamelCase :str ): _lowerCAmelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _lowerCAmelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__lowerCamelCase ).content if __name__ == "__main__": _lowercase = input("""Enter Video/IGTV url: """).strip() _lowercase = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
5
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _lowercase = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list[int] ): if not nums: return 0 _lowerCAmelCase = nums[0] _lowerCAmelCase = 0 for num in nums[1:]: _lowerCAmelCase , _lowerCAmelCase = ( max_excluding + num, max(__lowerCamelCase , __lowerCamelCase ), ) return max(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
1
'''simple docstring''' import argparse import json import subprocess def A (__lowerCamelCase :int , __lowerCamelCase :Union[str, Any] ): _lowerCAmelCase = [] _lowerCAmelCase = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase = subprocess.run(__lowerCamelCase , shell=__lowerCamelCase , stdout=subprocess.PIPE ) _lowerCAmelCase = output.stdout.decode("""utf-8""" ) _lowerCAmelCase = json.loads(__lowerCamelCase ) _lowerCAmelCase = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) if len(__lowerCamelCase ) > 0: _lowerCAmelCase = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def A (__lowerCamelCase :int ): return values.split(""",""" ) _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) _lowercase = parser.parse_args() get_runner_status(args.target_runners, args.token)
5
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_choices def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_attention_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Union[str, Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = FlaxAlbertModelTester(self ) @slow def _lowercase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("""albert-base-v2""" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) _lowerCAmelCase = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _lowerCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCAmelCase = model(_lowercase , attention_mask=_lowercase )[0] _lowerCAmelCase = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = str(id_ ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = {} # {vertex:distance} def __lt__( self , _lowercase ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def _lowercase ( self , _lowercase ): """simple docstring""" self.neighbors.append(_lowercase ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = weight def A (__lowerCamelCase :Dict , __lowerCamelCase :Optional[int] , __lowerCamelCase :Dict , __lowerCamelCase :Optional[Any] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __lowerCamelCase ) def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): _lowerCAmelCase = [] for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = graph[:] while q: _lowerCAmelCase = min(__lowerCamelCase ) q.remove(__lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] for i in range(1 , len(__lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A (__lowerCamelCase :list , __lowerCamelCase :Vertex ): for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = list(__lowerCamelCase ) hq.heapify(__lowerCamelCase ) while h: _lowerCAmelCase = hq.heappop(__lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] hq.heapify(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A (): pass if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a photo of {}." ): """simple docstring""" _lowerCAmelCase = load_image(_lowercase ) _lowerCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) _lowerCAmelCase = probs.tolist() if not isinstance(_lowercase , _lowercase ): _lowerCAmelCase = [scores] elif self.framework == "tf": _lowerCAmelCase = stable_softmax(_lowercase , axis=-1 ) _lowerCAmelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Any = ['''input_features''', '''attention_mask'''] def __init__( self , _lowercase=80 , _lowercase=16_000 , _lowercase=80 , _lowercase=0.0 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = num_mel_bins _lowerCAmelCase = do_ceptral_normalize _lowerCAmelCase = normalize_means _lowerCAmelCase = normalize_vars _lowerCAmelCase = True def _lowercase ( self , _lowercase , ): """simple docstring""" _lowerCAmelCase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers _lowerCAmelCase = torch.from_numpy(_lowercase ).unsqueeze(0 ) _lowerCAmelCase = ta_kaldi.fbank(_lowercase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowercase ( _lowercase , _lowercase , _lowercase = True , _lowercase = True , _lowercase = 0.0 , ): """simple docstring""" if normalize_means: _lowerCAmelCase = x[:input_length].mean(axis=0 ) _lowerCAmelCase = np.subtract(_lowercase , _lowercase ) if normalize_vars: _lowerCAmelCase = x[:input_length].std(axis=0 ) _lowerCAmelCase = np.divide(_lowercase , _lowercase ) if input_length < x.shape[0]: _lowerCAmelCase = padding_value # make sure array is in float32 _lowerCAmelCase = x.astype(np.floataa ) return x def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_lowercase , _lowercase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_lowercase , _lowercase ) ] def __call__( self , _lowercase , _lowercase = False , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _lowerCAmelCase = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _lowerCAmelCase = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [raw_speech] # extract fbank features _lowerCAmelCase = [self._extract_fbank_features(_lowercase ) for waveform in raw_speech] # convert into correct format for padding _lowerCAmelCase = BatchFeature({"""input_features""": features} ) _lowerCAmelCase = self.pad( _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) # make sure list is in array format _lowerCAmelCase = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _lowercase ): _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features] _lowerCAmelCase = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _lowerCAmelCase = ( np.array(_lowercase , dtype=np.intaa ) if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD else None ) _lowerCAmelCase = self.normalize( padded_inputs["""input_features"""] , attention_mask=_lowercase ) if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = BlipImageProcessor() _lowerCAmelCase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _lowerCAmelCase = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = InstructBlipProcessor(_lowercase , _lowercase , _lowercase ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).tokenizer def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).qformer_tokenizer def _lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) _lowerCAmelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) self.assertIsInstance(processor.qformer_tokenizer , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(_lowercase , return_tensors="""np""" ) _lowerCAmelCase = processor(images=_lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = processor(text=_lowercase ) _lowerCAmelCase = tokenizer(_lowercase , return_token_type_ids=_lowercase ) _lowerCAmelCase = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_lowercase , images=_lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(_lowercase ) _lowerCAmelCase = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_lowercase , images=_lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
5
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
1
'''simple docstring''' from math import pi, sqrt def A (__lowerCamelCase :float ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(__lowerCamelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(__lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def A (): assert gamma(0.5 ) == sqrt(__lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input("""Gamma of: """)) print(F"""gamma({num}) = {gamma(num)}""") print("""\nEnter 0 to exit...""")
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
1
'''simple docstring''' from math import pi, sqrt, tan def A (__lowerCamelCase :float ): if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :float ): if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def A (__lowerCamelCase :float ): if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def A (__lowerCamelCase :float ): if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def A (__lowerCamelCase :float , __lowerCamelCase :float ): if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) _lowerCAmelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def A (__lowerCamelCase :float , __lowerCamelCase :float ): if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def A (__lowerCamelCase :float , __lowerCamelCase :float ): if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(__lowerCamelCase , 2 ) * torus_radius * tube_radius def A (__lowerCamelCase :float , __lowerCamelCase :float ): if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def A (__lowerCamelCase :float ): if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def A (__lowerCamelCase :float , __lowerCamelCase :float ): if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) _lowerCAmelCase = (sidea + sidea + sidea) / 2 _lowerCAmelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def A (__lowerCamelCase :float , __lowerCamelCase :float ): if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :float ): if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def A (__lowerCamelCase :float ): if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def A (__lowerCamelCase :float , __lowerCamelCase :float ): if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def A (__lowerCamelCase :float , __lowerCamelCase :float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def A (__lowerCamelCase :int , __lowerCamelCase :float ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print("""\nSurface Areas of various geometric shapes: \n""") print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
5
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
'''simple docstring''' import heapq import sys import numpy as np _lowercase = tuple[int, int] class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = set() def _lowercase ( self ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _lowercase ( self ): """simple docstring""" return len(self.elements ) == 0 def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowercase ) else: # update # print("update", item) _lowerCAmelCase = [] ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _lowercase ( self , _lowercase ): """simple docstring""" if item in self.set: self.set.remove(_lowercase ) _lowerCAmelCase = [] ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _lowercase ( self ): """simple docstring""" return self.elements[0][1] def _lowercase ( self ): """simple docstring""" ((_lowerCAmelCase) , (_lowerCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(_lowercase ) return (priority, item) def A (__lowerCamelCase :TPos , __lowerCamelCase :TPos ): # euclidean distance _lowerCAmelCase = np.array(__lowerCamelCase ) _lowerCAmelCase = np.array(__lowerCamelCase ) return np.linalg.norm(a - b ) def A (__lowerCamelCase :TPos , __lowerCamelCase :TPos ): # integer division by time variable return consistent_heuristic(__lowerCamelCase , __lowerCamelCase ) // t def A (__lowerCamelCase :TPos , __lowerCamelCase :TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def A (__lowerCamelCase :TPos , __lowerCamelCase :int , __lowerCamelCase :TPos , __lowerCamelCase :dict[TPos, float] ): _lowerCAmelCase = g_function[start] + Wa * heuristics[i](__lowerCamelCase , __lowerCamelCase ) return ans def A (__lowerCamelCase :Tuple , __lowerCamelCase :int , __lowerCamelCase :Dict ): _lowerCAmelCase = np.chararray((n, n) ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): _lowerCAmelCase = """*""" for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if (j, (n - 1) - i) in blocks: _lowerCAmelCase = """#""" _lowerCAmelCase = """-""" _lowerCAmelCase = back_pointer[goal] while x != start: ((_lowerCAmelCase) , (_lowerCAmelCase)) = x # print(x) _lowerCAmelCase = """-""" _lowerCAmelCase = back_pointer[x] _lowerCAmelCase = """-""" for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) _lowerCAmelCase = back_pointer[goal] while x != start: print(__lowerCamelCase , end=""" """ ) _lowerCAmelCase = back_pointer[x] print(__lowerCamelCase ) sys.exit() def A (__lowerCamelCase :TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def A (__lowerCamelCase :str , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[int] , __lowerCamelCase :str , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[int] , __lowerCamelCase :Dict , __lowerCamelCase :Union[str, Any] , ): for itera in range(__lowerCamelCase ): open_list[itera].remove_element(__lowerCamelCase ) # print("s", s) # print("j", j) ((_lowerCAmelCase) , (_lowerCAmelCase)) = s _lowerCAmelCase = (x - 1, y) _lowerCAmelCase = (x + 1, y) _lowerCAmelCase = (x, y + 1) _lowerCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = float("""inf""" ) if valid(__lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: _lowerCAmelCase = g_function[s] + 1 _lowerCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(__lowerCamelCase , key(__lowerCamelCase , 0 , __lowerCamelCase , __lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowerCamelCase ): if key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) <= Wa * key( __lowerCamelCase , 0 , __lowerCamelCase , __lowerCamelCase ): open_list[j].put( __lowerCamelCase , key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) def A (): _lowerCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _lowercase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _lowercase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _lowercase = make_common_ground() _lowercase = blocks_blk # hyper parameters _lowercase = 1 _lowercase = 1 _lowercase = 20 _lowercase = 3 # one consistent and two other inconsistent # start and end destination _lowercase = (0, 0) _lowercase = (n - 1, n - 1) _lowercase = 1 def A (__lowerCamelCase :TPos , __lowerCamelCase :TPos , __lowerCamelCase :int ): _lowerCAmelCase = {start: 0, goal: float("""inf""" )} _lowerCAmelCase = {start: -1, goal: -1} _lowerCAmelCase = [] _lowerCAmelCase = set() for i in range(__lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowerCamelCase , key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = [] _lowerCAmelCase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , __lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: _lowerCAmelCase , _lowerCAmelCase = open_list[i].top_show() visited.add(__lowerCamelCase ) expand_state( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) close_list_inad.append(__lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: _lowerCAmelCase = open_list[0].top_show() visited.add(__lowerCamelCase ) expand_state( __lowerCamelCase , 0 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) close_list_anchor.append(__lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
'''simple docstring''' def A (__lowerCamelCase :int ): _lowerCAmelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A (__lowerCamelCase :int = 5000 ): _lowerCAmelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , __lowerCamelCase )] for i, pentagonal_i in enumerate(__lowerCamelCase ): for j in range(__lowerCamelCase , len(__lowerCamelCase ) ): _lowerCAmelCase = pentagonal_nums[j] _lowerCAmelCase = pentagonal_i + pentagonal_j _lowerCAmelCase = pentagonal_j - pentagonal_i if is_pentagonal(__lowerCamelCase ) and is_pentagonal(__lowerCamelCase ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
5
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = r"""\w+[.]\d+""" _lowerCAmelCase = re.findall(__lowerCamelCase , __lowerCamelCase ) for pat in pats: _lowerCAmelCase = key.replace(__lowerCamelCase , """_""".join(pat.split(""".""" ) ) ) return key def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Any , __lowerCamelCase :int ): _lowerCAmelCase = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _lowerCAmelCase = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _lowerCAmelCase = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _lowerCAmelCase = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer _lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _lowerCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": _lowerCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowerCAmelCase = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowerCAmelCase = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :Dict=42 ): # Step 1: Convert pytorch tensor to numpy _lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _lowerCAmelCase = flax_model.init_weights(PRNGKey(__lowerCamelCase ) ) _lowerCAmelCase = flatten_dict(__lowerCamelCase ) _lowerCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase = rename_key(__lowerCamelCase ) _lowerCAmelCase = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters _lowerCAmelCase , _lowerCAmelCase = rename_key_and_reshape_tensor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase )
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :str , __lowerCamelCase :list[str] | None = None , __lowerCamelCase :dict[str, float] | None = None , __lowerCamelCase :bool = False , ): _lowerCAmelCase = cipher_alphabet or [chr(__lowerCamelCase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _lowerCAmelCase = { """a""": 0.08_497, """b""": 0.01_492, """c""": 0.02_202, """d""": 0.04_253, """e""": 0.11_162, """f""": 0.02_228, """g""": 0.02_015, """h""": 0.06_094, """i""": 0.07_546, """j""": 0.00_153, """k""": 0.01_292, """l""": 0.04_025, """m""": 0.02_406, """n""": 0.06_749, """o""": 0.07_507, """p""": 0.01_929, """q""": 0.00_095, """r""": 0.07_587, """s""": 0.06_327, """t""": 0.09_356, """u""": 0.02_758, """v""": 0.00_978, """w""": 0.02_560, """x""": 0.00_150, """y""": 0.01_994, """z""": 0.00_077, } else: # Custom frequencies dictionary _lowerCAmelCase = frequencies_dict if not case_sensitive: _lowerCAmelCase = ciphertext.lower() # Chi squared statistic values _lowerCAmelCase = {} # cycle through all of the shifts for shift in range(len(__lowerCamelCase ) ): _lowerCAmelCase = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _lowerCAmelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( __lowerCamelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _lowerCAmelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _lowerCAmelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _lowerCAmelCase = decrypted_with_shift.lower().count(__lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _lowerCAmelCase = decrypted_with_shift.count(__lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _lowerCAmelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__lowerCamelCase :int ) -> tuple[float, str]: return chi_squared_statistic_values[key] _lowerCAmelCase = min( __lowerCamelCase , key=__lowerCamelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowercase = """pt""" elif is_tf_available(): _lowercase = """tf""" else: _lowercase = """jax""" class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : str = PerceiverTokenizer _lowercase : Optional[Any] = False def _lowercase ( self ): """simple docstring""" super().setUp() _lowerCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase ( self ): """simple docstring""" return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def _lowercase ( self , **_lowercase ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def _lowercase ( self , _lowercase , _lowercase=False , _lowercase=20 , _lowercase=5 ): """simple docstring""" _lowerCAmelCase = [] for i in range(len(_lowercase ) ): try: _lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowerCAmelCase = list(filter(lambda _lowercase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , _lowercase ) ) _lowerCAmelCase = list(filter(lambda _lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowercase ) , _lowercase ) ) if max_length is not None and len(_lowercase ) > max_length: _lowerCAmelCase = toks[:max_length] if min_length is not None and len(_lowercase ) < min_length and len(_lowercase ) > 0: while len(_lowercase ) < min_length: _lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] _lowerCAmelCase = [t[0] for t in toks] # Ensure consistency _lowerCAmelCase = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) if " " not in output_txt and len(_lowercase ) > 1: _lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowercase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowercase ) ) if with_prefix_space: _lowerCAmelCase = """ """ + output_txt _lowerCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) return output_txt, output_ids def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.perceiver_tokenizer _lowerCAmelCase = """Unicode €.""" _lowerCAmelCase = tokenizer(_lowercase ) _lowerCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["""input_ids"""] , _lowercase ) # decoding _lowerCAmelCase = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase , """[CLS]Unicode €.[SEP]""" ) _lowerCAmelCase = tokenizer("""e è é ê ë""" ) _lowerCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["""input_ids"""] , _lowercase ) # decoding _lowerCAmelCase = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.perceiver_tokenizer _lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _lowerCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _lowerCAmelCase = tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) if FRAMEWORK != "jax": _lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: _lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowercase , _lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.perceiver_tokenizer _lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowerCAmelCase = tokenizer(_lowercase , padding=_lowercase , return_tensors=_lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , _lowercase ) self.assertIn("""attention_mask""" , _lowercase ) self.assertNotIn("""decoder_input_ids""" , _lowercase ) self.assertNotIn("""decoder_attention_mask""" , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.perceiver_tokenizer _lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] _lowerCAmelCase = tokenizer( text_target=_lowercase , max_length=32 , padding="""max_length""" , truncation=_lowercase , return_tensors=_lowercase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" _lowerCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) _lowerCAmelCase = tokenizer.__class__.from_pretrained(_lowercase ) _lowerCAmelCase = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) shutil.rmtree(_lowercase ) _lowerCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _lowerCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) _lowerCAmelCase = tokenizer.__class__.from_pretrained(_lowercase ) _lowerCAmelCase = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowerCAmelCase = tokenizer.__class__.from_pretrained(_lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _lowerCAmelCase = json.load(_lowercase ) with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _lowerCAmelCase = json.load(_lowercase ) _lowerCAmelCase = [F'<extra_id_{i}>' for i in range(125 )] _lowerCAmelCase = added_tokens_extra_ids + [ """an_additional_special_token""" ] _lowerCAmelCase = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_lowercase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowercase , _lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCAmelCase = tokenizer_class.from_pretrained( _lowercase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCAmelCase = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_lowercase )] _lowerCAmelCase = tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , """�""" ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_tokenizers(fast=_lowercase , do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _lowerCAmelCase = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] _lowerCAmelCase = tokenizer.convert_tokens_to_string(_lowercase ) self.assertIsInstance(_lowercase , _lowercase )
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _lowercase = TypeVar("""T""") _lowercase = TypeVar("""U""") class UpperCAmelCase_ ( Generic[T, U] ): '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = key _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self ): """simple docstring""" return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class UpperCAmelCase_ ( Generic[T, U] ): '''simple docstring''' def __init__( self ): """simple docstring""" _lowerCAmelCase = DoubleLinkedListNode(_lowercase , _lowercase ) _lowerCAmelCase = DoubleLinkedListNode(_lowercase , _lowercase ) _lowerCAmelCase , _lowerCAmelCase = self.rear, self.head def __repr__( self ): """simple docstring""" _lowerCAmelCase = ["""DoubleLinkedList"""] _lowerCAmelCase = self.head while node.next is not None: rep.append(str(_lowercase ) ) _lowerCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase = node _lowerCAmelCase = previous _lowerCAmelCase = node _lowerCAmelCase = self.rear def _lowercase ( self , _lowercase ): """simple docstring""" if node.prev is None or node.next is None: return None _lowerCAmelCase = node.next _lowerCAmelCase = node.prev _lowerCAmelCase = None _lowerCAmelCase = None return node class UpperCAmelCase_ ( Generic[T, U] ): '''simple docstring''' _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = DoubleLinkedList() _lowerCAmelCase = capacity _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def __repr__( self ): """simple docstring""" return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , _lowercase ): """simple docstring""" return key in self.cache def _lowercase ( self , _lowercase ): """simple docstring""" if key in self.cache: self.hits += 1 _lowerCAmelCase = self.cache[key] _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_lowercase ) return node.val self.miss += 1 return None def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_lowercase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase = DoubleLinkedListNode(_lowercase , _lowercase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCAmelCase = value self.list.add(_lowercase ) @classmethod def _lowercase ( cls , _lowercase = 128 ): """simple docstring""" def cache_decorator_inner(_lowercase ) -> Callable[..., U]: def cache_decorator_wrapper(*_lowercase ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase = LRUCache(_lowercase ) _lowerCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCAmelCase = func(*_lowercase ) cls.decorator_function_to_instance_map[func].put(args[0] , _lowercase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_lowercase , """cache_info""" , _lowercase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
1
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _lowercase , _lowercase = True , _lowercase = None , _lowercase = 32 , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = True , _lowercase = [0.4814_5466, 0.457_8275, 0.4082_1073] , _lowercase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , _lowercase = True , _lowercase=7 , _lowercase=30 , _lowercase=400 , _lowercase=3 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = do_resize _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 288} _lowerCAmelCase = size_divisor _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = do_center_crop _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_pad _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution def _lowercase ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _lowercase ( self , _lowercase , _lowercase=False ): """simple docstring""" if not batched: _lowerCAmelCase = self.size["""shortest_edge"""] _lowerCAmelCase = image_inputs[0] if isinstance(_lowercase , Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image.size else: _lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2] _lowerCAmelCase = size / min(_lowercase , _lowercase ) if h < w: _lowerCAmelCase , _lowerCAmelCase = size, scale * w else: _lowerCAmelCase , _lowerCAmelCase = scale * h, size _lowerCAmelCase = int((1_333 / 800) * size ) if max(_lowercase , _lowercase ) > max_size: _lowerCAmelCase = max_size / max(_lowercase , _lowercase ) _lowerCAmelCase = newh * scale _lowerCAmelCase = neww * scale _lowerCAmelCase , _lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) _lowerCAmelCase , _lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _lowerCAmelCase = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase = max(_lowercase , key=lambda _lowercase : item[0] )[0] _lowerCAmelCase = max(_lowercase , key=lambda _lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Optional[int] = BridgeTowerImageProcessor if is_vision_available() else None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """image_mean""" ) ) self.assertTrue(hasattr(_lowercase , """image_std""" ) ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) self.assertTrue(hasattr(_lowercase , """size_divisor""" ) ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Optional[int] = '''ssube/stable-diffusion-x4-upscaler-onnx''' def _lowercase ( self , _lowercase=0 ): """simple docstring""" _lowerCAmelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(_lowercase ) ) _lowerCAmelCase = torch.manual_seed(_lowercase ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**_lowercase ).images _lowerCAmelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**_lowercase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**_lowercase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**_lowercase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs() _lowerCAmelCase = pipe(**_lowercase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ort.SessionOptions() _lowerCAmelCase = False return options def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase = init_image.resize((128, 128) ) # using the PNDM scheduler by default _lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = """A fantasy landscape, trending on artstation""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=_lowercase , image=_lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowercase , output_type="""np""" , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase = init_image.resize((128, 128) ) _lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) _lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = """A fantasy landscape, trending on artstation""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=_lowercase , image=_lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowercase , output_type="""np""" , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = '''roberta''' def __init__( self , _lowercase=50_265 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
5
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Union[str, Any] = '''swin2sr''' _lowercase : Optional[int] = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=64 , _lowercase=1 , _lowercase=3 , _lowercase=180 , _lowercase=[6, 6, 6, 6, 6, 6] , _lowercase=[6, 6, 6, 6, 6, 6] , _lowercase=8 , _lowercase=2.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1e-5 , _lowercase=2 , _lowercase=1.0 , _lowercase="1conv" , _lowercase="pixelshuffle" , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = upscale _lowerCAmelCase = img_range _lowerCAmelCase = resi_connection _lowerCAmelCase = upsampler
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowercase = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
1
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = ["""model.decoder.embed_positions.weights"""] def A (__lowerCamelCase :Optional[int] ): if "emb" in name: _lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: _lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: _lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: _lowerCAmelCase = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: _lowerCAmelCase = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: _lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: _lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: _lowerCAmelCase = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: _lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def A (__lowerCamelCase :OrderedDict , __lowerCamelCase :int ): _lowerCAmelCase = list(state_dict.keys() ) _lowerCAmelCase = {} for key in keys: _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) _lowerCAmelCase = rename_keys(__lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj _lowerCAmelCase = val[:hidden_size, :] _lowerCAmelCase = val[hidden_size : 2 * hidden_size, :] _lowerCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _lowerCAmelCase = val else: _lowerCAmelCase = val return state_dict, enc_dec_proj_state_dict def A (__lowerCamelCase :str ): if checkpoint == "small": # default config values _lowerCAmelCase = 1024 _lowerCAmelCase = 24 _lowerCAmelCase = 16 elif checkpoint == "medium": _lowerCAmelCase = 1536 _lowerCAmelCase = 48 _lowerCAmelCase = 24 elif checkpoint == "large": _lowerCAmelCase = 2048 _lowerCAmelCase = 48 _lowerCAmelCase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) _lowerCAmelCase = MusicgenDecoderConfig( hidden_size=__lowerCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__lowerCamelCase , num_attention_heads=__lowerCamelCase , ) return config @torch.no_grad() def A (__lowerCamelCase :str , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :List[str]=None , __lowerCamelCase :Optional[int]="cpu" ): _lowerCAmelCase = MusicGen.get_pretrained(__lowerCamelCase , device=__lowerCamelCase ) _lowerCAmelCase = decoder_config_from_checkpoint(__lowerCamelCase ) _lowerCAmelCase = fairseq_model.lm.state_dict() _lowerCAmelCase , _lowerCAmelCase = rename_state_dict( __lowerCamelCase , hidden_size=decoder_config.hidden_size ) _lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" ) _lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) _lowerCAmelCase = MusicgenForCausalLM(__lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _lowerCAmelCase , _lowerCAmelCase = decoder.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(__lowerCamelCase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model _lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=__lowerCamelCase , audio_encoder=__lowerCamelCase , decoder=__lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__lowerCamelCase ) # check we can do a forward pass _lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _lowerCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _lowerCAmelCase = model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor _lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) _lowerCAmelCase = MusicgenProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) # set the appropriate bos/pad token ids _lowerCAmelCase = 2048 _lowerCAmelCase = 2048 # set other default generation config params _lowerCAmelCase = int(30 * audio_encoder.config.frame_rate ) _lowerCAmelCase = True _lowerCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(__lowerCamelCase ) processor.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) _lowercase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
5
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''xmod''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , _lowercase=False , _lowercase=2 , _lowercase=False , _lowercase=True , _lowercase=True , _lowercase=("en_XX",) , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout _lowerCAmelCase = pre_norm _lowerCAmelCase = adapter_reduction_factor _lowerCAmelCase = adapter_layer_norm _lowerCAmelCase = adapter_reuse_layer_norm _lowerCAmelCase = ln_before_adapter _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = default_language class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :Union[tf.Tensor, np.ndarray] ): if isinstance(__lowerCamelCase , np.ndarray ): return list(tensor.shape ) _lowerCAmelCase = tf.shape(__lowerCamelCase ) if tensor.shape == tf.TensorShape(__lowerCamelCase ): return dynamic _lowerCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCamelCase )] def A (__lowerCamelCase :tf.Tensor , __lowerCamelCase :Optional[int] = None , __lowerCamelCase :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 , axis=__lowerCamelCase , name=__lowerCamelCase ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[int]=1e-5 , __lowerCamelCase :str=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized _lowerCAmelCase , _lowerCAmelCase = tf.nn.moments(__lowerCamelCase , axes=[axis] , keepdims=__lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowerCAmelCase = [1] * inputs.shape.rank _lowerCAmelCase = shape_list(__lowerCamelCase )[axis] _lowerCAmelCase = tf.reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = tf.reshape(__lowerCamelCase , __lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. _lowerCAmelCase = tf.nn.batch_normalization( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , offset=__lowerCamelCase , scale=__lowerCamelCase , variance_epsilon=__lowerCamelCase , ) return outputs def A (__lowerCamelCase :Dict , __lowerCamelCase :int=0 , __lowerCamelCase :str=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowerCAmelCase = tf.shape(__lowerCamelCase ) _lowerCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowerCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :tf.Tensor ): if not isinstance(__lowerCamelCase , tf.Tensor ): _lowerCAmelCase = tf.convert_to_tensor(__lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowerCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowerCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A (__lowerCamelCase :tf.Tensor , __lowerCamelCase :int , __lowerCamelCase :str = "input_ids" ): tf.debugging.assert_less( __lowerCamelCase , tf.cast(__lowerCamelCase , dtype=tensor.dtype ) , message=( f'The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCamelCase )}) must be smaller than the embedding ' f'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) , ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :str , __lowerCamelCase :List[str] ): _lowerCAmelCase = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowerCAmelCase = [x for x in data if len(__lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' f'bytes: {bad_attributes}' ) _lowerCAmelCase = np.asarray(__lowerCamelCase ) _lowerCAmelCase = 1 _lowerCAmelCase = np.array_split(__lowerCamelCase , __lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowerCAmelCase = np.array_split(__lowerCamelCase , __lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCamelCase ): _lowerCAmelCase = chunk_data else: _lowerCAmelCase = data def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Any ): if name in group.attrs: _lowerCAmelCase = [n.decode("""utf8""" ) if hasattr(__lowerCamelCase , """decode""" ) else n for n in group.attrs[name]] else: _lowerCAmelCase = [] _lowerCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(__lowerCamelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def A (__lowerCamelCase :Union[str, Any] ): def _expand_single_ad_tensor(__lowerCamelCase :List[Any] ): if isinstance(__lowerCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __lowerCamelCase )
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = 1 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_lowercase ) @property def _lowercase ( self ): """simple docstring""" def extract(*_lowercase , **_lowercase ): class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" _lowerCAmelCase = torch.ones([0] ) def _lowercase ( self , _lowercase ): """simple docstring""" self.pixel_values.to(_lowercase ) return self return Out() return extract def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.dummy_cond_unet _lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase = StableDiffusionPipeline( unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 ) _lowerCAmelCase = sd_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase = output.images _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 ) _lowerCAmelCase = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=_lowercase , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.dummy_cond_unet _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_lowercase ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase = StableDiffusionPipeline( unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 ) _lowerCAmelCase = sd_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase = output.images _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(0 ) _lowerCAmelCase = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=_lowercase , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(pipe.scheduler , _lowercase ) assert pipe.safety_checker is None _lowerCAmelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowercase ) _lowerCAmelCase = StableDiffusionPipeline.from_pretrained(_lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowerCAmelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.dummy_cond_unet _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_lowercase ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _lowerCAmelCase = unet.half() _lowerCAmelCase = vae.half() _lowerCAmelCase = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase = StableDiffusionPipeline( unet=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , safety_checker=_lowercase , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=_lowercase ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _lowerCAmelCase = 4_003_660_346 _lowerCAmelCase = 7 # without safety guidance (sld_guidance_scale = 0) _lowerCAmelCase = torch.manual_seed(_lowercase ) _lowerCAmelCase = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase = output.images _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _lowerCAmelCase = torch.manual_seed(_lowercase ) _lowerCAmelCase = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase = output.images _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=_lowercase ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" _lowerCAmelCase = 2_734_971_755 _lowerCAmelCase = 7 _lowerCAmelCase = torch.manual_seed(_lowercase ) _lowerCAmelCase = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase = output.images _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _lowerCAmelCase = torch.manual_seed(_lowercase ) _lowerCAmelCase = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase = output.images _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _lowerCAmelCase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _lowerCAmelCase = 1_044_355_234 _lowerCAmelCase = 12 _lowerCAmelCase = torch.manual_seed(_lowercase ) _lowerCAmelCase = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase = output.images _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _lowerCAmelCase = torch.manual_seed(_lowercase ) _lowerCAmelCase = sd_pipe( [prompt] , generator=_lowercase , guidance_scale=_lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase = output.images _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' def A (__lowerCamelCase :str ): _lowerCAmelCase = [0 for i in range(len(__lowerCamelCase ) )] # initialize interval's left pointer and right pointer _lowerCAmelCase , _lowerCAmelCase = 0, 0 for i in range(1 , len(__lowerCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: _lowerCAmelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _lowerCAmelCase = min_edge while go_next(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _lowerCAmelCase , _lowerCAmelCase = i, i + z_result[i] - 1 return z_result def A (__lowerCamelCase :int , __lowerCamelCase :list[int] , __lowerCamelCase :str ): return i + z_result[i] < len(__lowerCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def A (__lowerCamelCase :str , __lowerCamelCase :str ): _lowerCAmelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _lowerCAmelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__lowerCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowercase = get_logger(__name__) def A (__lowerCamelCase :str , __lowerCamelCase :List[str] , __lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :Optional[int]=0 ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowerCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowerCAmelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' _lowerCAmelCase = os.path.join(__lowerCamelCase , __lowerCamelCase ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowerCAmelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) _lowerCAmelCase = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Saving model to {output_model_file}' ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowerCAmelCase = os.path.join(__lowerCamelCase , f'{MODEL_NAME}_{model_index}' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) logger.info(f'Saving model to {ckpt_dir}' ) _lowerCAmelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=__lowerCamelCase , storage_writer=dist_cp.FileSystemWriter(__lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def A (__lowerCamelCase :str , __lowerCamelCase :Any , __lowerCamelCase :Any , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :List[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__lowerCamelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return _lowerCAmelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' _lowerCAmelCase = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Loading model from {input_model_file}' ) _lowerCAmelCase = torch.load(__lowerCamelCase ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowerCAmelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) _lowerCAmelCase = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Loading model from {input_model_file}' ) _lowerCAmelCase = torch.load(__lowerCamelCase ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowerCAmelCase = ( os.path.join(__lowerCamelCase , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) _lowerCAmelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=__lowerCamelCase , storage_reader=dist_cp.FileSystemReader(__lowerCamelCase ) , planner=DefaultLoadPlanner() , ) _lowerCAmelCase = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(__lowerCamelCase ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :str , __lowerCamelCase :Tuple , __lowerCamelCase :Any , __lowerCamelCase :Optional[Any]=0 ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowerCAmelCase = FSDP.optim_state_dict(__lowerCamelCase , __lowerCamelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _lowerCAmelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) _lowerCAmelCase = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: _lowerCAmelCase = os.path.join(__lowerCamelCase , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(__lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :List[str] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Any , __lowerCamelCase :List[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowerCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _lowerCAmelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) _lowerCAmelCase = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) _lowerCAmelCase = torch.load(__lowerCamelCase ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: _lowerCAmelCase = ( os.path.join(__lowerCamelCase , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) _lowerCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(__lowerCamelCase ) , ) _lowerCAmelCase = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) _lowerCAmelCase = FSDP.optim_state_dict_to_load(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) optimizer.load_state_dict(__lowerCamelCase )
5
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
1
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = None , _lowercase = 50 , _lowercase = "pil" , _lowercase = True , **_lowercase , ): """simple docstring""" _lowerCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_lowercase , ) _lowerCAmelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_lowercase ), "This is a local test"
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
1
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _lowercase = getLogger(__name__) def A (__lowerCamelCase :Optional[int] , __lowerCamelCase :str , __lowerCamelCase :str , __lowerCamelCase :int = 8 , __lowerCamelCase :int = 1024 , __lowerCamelCase :str="val" , __lowerCamelCase :Optional[Any]=None , __lowerCamelCase :Optional[int]=False , __lowerCamelCase :str="summarization" , __lowerCamelCase :Tuple=None , __lowerCamelCase :List[Any]=1 , __lowerCamelCase :Dict = None , __lowerCamelCase :Optional[int]="" , **__lowerCamelCase :str , ): _lowerCAmelCase = str(__lowerCamelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=__lowerCamelCase ) _lowerCAmelCase = Path(__lowerCamelCase ) _lowerCAmelCase = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(__lowerCamelCase ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ).cuda() if fpaa: _lowerCAmelCase = model.half() # determine if we need to increase num_beams use_task_specific_params(__lowerCamelCase , __lowerCamelCase ) # update config with task specific params _lowerCAmelCase = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _lowerCAmelCase = num_return_sequences _lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: _lowerCAmelCase = tokenizer.model_max_length if prefix is None: _lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" _lowerCAmelCase = SeqaSeqDataset( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_target_length=1024 , type_path=__lowerCamelCase , n_obs=__lowerCamelCase , prefix=__lowerCamelCase , **__lowerCamelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _lowerCAmelCase = ds.make_sortish_sampler(__lowerCamelCase , distributed=__lowerCamelCase , add_extra_examples=__lowerCamelCase , shuffle=__lowerCamelCase ) _lowerCAmelCase = DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=ds.collate_fn ) _lowerCAmelCase = [] for batch in tqdm(__lowerCamelCase ): _lowerCAmelCase = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=__lowerCamelCase , num_beams=__lowerCamelCase , **__lowerCamelCase , ) _lowerCAmelCase = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) _lowerCAmelCase = batch["""ids"""] if num_return_sequences > 1: _lowerCAmelCase = chunks(__lowerCamelCase , __lowerCamelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__lowerCamelCase ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(__lowerCamelCase , __lowerCamelCase ) return results, sampler.num_replicas def A (): _lowerCAmelCase = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=__lowerCamelCase , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=__lowerCamelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=__lowerCamelCase , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=__lowerCamelCase , default=__lowerCamelCase ) parser.add_argument( """--type_path""" , type=__lowerCamelCase , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=__lowerCamelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=__lowerCamelCase , default=8 , required=__lowerCamelCase , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=__lowerCamelCase , default=-1 , required=__lowerCamelCase , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=__lowerCamelCase , default=__lowerCamelCase , required=__lowerCamelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=__lowerCamelCase , default=1 , required=__lowerCamelCase , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=__lowerCamelCase , default=600 , required=__lowerCamelCase , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=__lowerCamelCase , default=__lowerCamelCase , required=__lowerCamelCase ) parser.add_argument("""--tgt_lang""" , type=__lowerCamelCase , default=__lowerCamelCase , required=__lowerCamelCase ) parser.add_argument( """--prefix""" , type=__lowerCamelCase , required=__lowerCamelCase , default=__lowerCamelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) _lowerCAmelCase = time.time() _lowerCAmelCase , _lowerCAmelCase = parser.parse_known_args() _lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(__lowerCamelCase ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) _lowerCAmelCase = Path(args.save_dir + """_tmp""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) # this handles locking. _lowerCAmelCase = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _lowerCAmelCase = {} if args.src_lang is not None: _lowerCAmelCase = args.src_lang if args.tgt_lang is not None: _lowerCAmelCase = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = eval_data_dir( args.data_dir , __lowerCamelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__lowerCamelCase , **__lowerCamelCase , ) if args.local_rank <= 0: _lowerCAmelCase = Path(args.save_dir ) save_dir.mkdir(exist_ok=__lowerCamelCase ) _lowerCAmelCase = gather_results_from_each_node(__lowerCamelCase , __lowerCamelCase , args.sync_timeout ) _lowerCAmelCase = combine_partial_results(__lowerCamelCase ) if args.num_return_sequences > 1: _lowerCAmelCase = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(__lowerCamelCase , __lowerCamelCase ) return _lowerCAmelCase = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(__lowerCamelCase ) as f: _lowerCAmelCase = [x.rstrip() for x in f.readlines()][: len(__lowerCamelCase )] # Calculate metrics, save metrics, and save _generations.txt _lowerCAmelCase = """translation""" in args.task _lowerCAmelCase = calculate_bleu if calc_bleu else calculate_rouge _lowerCAmelCase = """bleu""" if calc_bleu else """rouge""" _lowerCAmelCase = score_fn(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = time.time() - start_time _lowerCAmelCase = round(runtime / metrics["""n_obs"""] , 4 ) _lowerCAmelCase = num_replicas # TODO(@stas00): add whatever metadata to metrics _lowerCAmelCase = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) print(__lowerCamelCase ) write_txt_file(__lowerCamelCase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(__lowerCamelCase , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] for partial_result in partial_results: records.extend(__lowerCamelCase ) _lowerCAmelCase = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x["id"] ) _lowerCAmelCase = [x["""pred"""] for x in records] return preds def A (__lowerCamelCase :List[str] , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] ): # WAIT FOR lots of .json files _lowerCAmelCase = time.time() logger.info("""waiting for all nodes to finish""" ) _lowerCAmelCase = None while (time.time() - start_wait) < timeout: _lowerCAmelCase = list(save_dir.glob("""rank_*.json""" ) ) if len(__lowerCamelCase ) < num_replicas: continue try: # make sure all json files are fully saved _lowerCAmelCase = lmap(__lowerCamelCase , __lowerCamelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
5
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = '''maskformer-swin''' _lowercase : Union[str, Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=224 , _lowercase=4 , _lowercase=3 , _lowercase=96 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 12, 24] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1e-5 , _lowercase=None , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) _lowerCAmelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] _lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
'''simple docstring''' import argparse _lowercase = """docs/source/_static/js/custom.js""" def A (__lowerCamelCase :List[Any] ): with open(__lowerCamelCase , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase = f.readlines() _lowerCAmelCase = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 _lowerCAmelCase = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") _lowercase = parser.parse_args() update_custom_js(args.version)
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
'''simple docstring''' def A (__lowerCamelCase :int , __lowerCamelCase :int ): while second != 0: _lowerCAmelCase = first & second first ^= second _lowerCAmelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _lowercase = int(input("""Enter the first number: """).strip()) _lowercase = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
5
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
1
'''simple docstring''' def A (__lowerCamelCase :list , __lowerCamelCase :int = 0 ): _lowerCAmelCase = length or len(__lowerCamelCase ) _lowerCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCAmelCase , _lowerCAmelCase = list_data[i + 1], list_data[i] _lowerCAmelCase = True return list_data if not swapped else bubble_sort(__lowerCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def A (__lowerCamelCase :str ): def decorator(__lowerCamelCase :Optional[int] ): _lowerCAmelCase = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator def A (*__lowerCamelCase :List[str] ): def decorator(__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __new__( cls , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = super().__new__(cls , _lowercase , _lowercase , _lowercase ) if not hasattr(_lowercase , """key_handler""" ): setattr(_lowercase , """key_handler""" , {} ) setattr(_lowercase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): _lowerCAmelCase = getattr(_lowercase , """handle_key""" , [] ) for key in handled_keys: _lowerCAmelCase = value return new_cls @staticmethod def _lowercase ( cls ): """simple docstring""" _lowerCAmelCase = get_character() if char != KEYMAP["undefined"]: _lowerCAmelCase = ord(_lowercase ) _lowerCAmelCase = cls.key_handler.get(_lowercase ) if handler: _lowerCAmelCase = char return handler(cls ) else: return None def A (cls :Any ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
5
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
1
'''simple docstring''' from __future__ import annotations import time import numpy as np _lowercase = [8, 5, 9, 7] _lowercase = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowercase = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase , _lowercase , ): """simple docstring""" _lowerCAmelCase = claim_vector _lowerCAmelCase = allocated_resources_table _lowerCAmelCase = maximum_claim_table def _lowercase ( self ): """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _lowercase ( self ): """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _lowercase ( self ): """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_lowercase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _lowercase ( self ): """simple docstring""" return {self.__need().index(_lowercase ): i for i in self.__need()} def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = self.__need() _lowerCAmelCase = self.__allocated_resources_table _lowerCAmelCase = self.__available_resources() _lowerCAmelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: _lowerCAmelCase = False for each_need in need_list: _lowerCAmelCase = True for index, need in enumerate(_lowercase ): if need > available_resources[index]: _lowerCAmelCase = False break if execution: _lowerCAmelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _lowerCAmelCase = original_need_index print(F'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(_lowercase ) # update available/freed resources stack _lowerCAmelCase = np.array(_lowercase ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(_lowercase ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def _lowercase ( self ): """simple docstring""" print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'P{self.__allocated_resources_table.index(_lowercase ) + 1}' + """ """.join(F'{it:>8}' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'P{self.__maximum_claim_table.index(_lowercase ) + 1}' + """ """.join(F'{it:>8}' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(_lowercase ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(_lowercase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''data2vec-vision''' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=224 , _lowercase=16 , _lowercase=3 , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=0.1 , _lowercase=0.1 , _lowercase=True , _lowercase=[3, 5, 7, 11] , _lowercase=[1, 2, 3, 6] , _lowercase=True , _lowercase=0.4 , _lowercase=256 , _lowercase=1 , _lowercase=False , _lowercase=255 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = use_mask_token _lowerCAmelCase = use_absolute_position_embeddings _lowerCAmelCase = use_relative_position_bias _lowerCAmelCase = use_shared_relative_position_bias _lowerCAmelCase = layer_scale_init_value _lowerCAmelCase = drop_path_rate _lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase = out_indices _lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase = use_auxiliary_head _lowerCAmelCase = auxiliary_loss_weight _lowerCAmelCase = auxiliary_channels _lowerCAmelCase = auxiliary_num_convs _lowerCAmelCase = auxiliary_concat_input _lowerCAmelCase = semantic_loss_ignore_index class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Union[str, Any] = version.parse('''1.11''' ) @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' def A (__lowerCamelCase :int = 10 , __lowerCamelCase :int = 1000 , __lowerCamelCase :bool = True ): assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def A (__lowerCamelCase :int , __lowerCamelCase :int ): return int((number_a + number_a) / 2 ) def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :int ): assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(__lowerCamelCase :int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) _lowerCAmelCase = lower _lowerCAmelCase = higher _lowerCAmelCase = [] while True: _lowerCAmelCase = get_avg(__lowerCamelCase , __lowerCamelCase ) last_numbers.append(__lowerCamelCase ) if answer(__lowerCamelCase ) == "low": _lowerCAmelCase = number elif answer(__lowerCamelCase ) == "high": _lowerCAmelCase = number else: break print(f'guess the number : {last_numbers[-1]}' ) print(f'details : {last_numbers!s}' ) def A (): _lowerCAmelCase = int(input("""Enter lower value : """ ).strip() ) _lowerCAmelCase = int(input("""Enter high value : """ ).strip() ) _lowerCAmelCase = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
5
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
1
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Tuple = BarthezTokenizer _lowercase : Union[str, Any] = BarthezTokenizerFast _lowercase : Any = True _lowercase : Optional[int] = True def _lowercase ( self ): """simple docstring""" super().setUp() _lowerCAmelCase = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_lowercase ) _lowerCAmelCase = tokenizer def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """<pad>""" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_lowercase ) , 101_122 ) def _lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowerCAmelCase = [0, 57, 3_018, 70_307, 91, 2] _lowerCAmelCase = self.tokenizer( _lowercase , max_length=len(_lowercase ) , padding=_lowercase , truncation=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = """I was born in 92000, and this is falsé.""" _lowerCAmelCase = tokenizer.tokenize(_lowercase ) _lowerCAmelCase = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) _lowerCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) _lowerCAmelCase = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(_lowercase ) _lowerCAmelCase = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = {"""input_ids""": [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _lowerCAmelCase = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=_lowercase , )
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :int ): if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate _lowerCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _lowerCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' import os def A (__lowerCamelCase :str = "input.txt" ): with open(os.path.join(os.path.dirname(__lowerCamelCase ) , __lowerCamelCase ) ) as input_file: _lowerCAmelCase = [ [int(__lowerCamelCase ) for element in line.split(""",""" )] for line in input_file.readlines() ] _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = len(matrix[0] ) _lowerCAmelCase = [[-1 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): _lowerCAmelCase = matrix[i][0] for j in range(1 , __lowerCamelCase ): for i in range(__lowerCamelCase ): _lowerCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowerCamelCase ): _lowerCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowerCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
5
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : List[Any] = KandinskyVaaImgaImgPipeline _lowercase : List[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowercase : str = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowercase : int = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase : str = False @property def _lowercase ( self ): """simple docstring""" return 32 @property def _lowercase ( self ): """simple docstring""" return 32 @property def _lowercase ( self ): """simple docstring""" return self.time_input_dim @property def _lowercase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def _lowercase ( self ): """simple docstring""" return 100 @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**_lowercase ) return model @property def _lowercase ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase = DDIMScheduler(**_lowercase ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowercase ( self , _lowercase , _lowercase=0 ): """simple docstring""" _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((256, 256) ) if str(_lowercase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_lowercase ) else: _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowercase ) _lowerCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase = """A red cartoon frog, 4k""" _lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) _lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """spiece.model"""} _lowercase = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } _lowercase = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } _lowercase = """▁""" class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Any = VOCAB_FILES_NAMES _lowercase : int = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowercase , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase="[CLS]" , _lowercase="[SEP]" , _lowercase="<unk>" , _lowercase="[SEP]" , _lowercase="<pad>" , _lowercase="[CLS]" , _lowercase="[MASK]" , _lowercase = None , **_lowercase , ): """simple docstring""" _lowerCAmelCase = ( AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase , normalized=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token ) _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) @property def _lowercase ( self ): """simple docstring""" return len(self.sp_model ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , _lowercase ): """simple docstring""" if self.remove_space: _lowerCAmelCase = """ """.join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("""NFKD""" , _lowercase ) _lowerCAmelCase = """""".join([c for c in outputs if not unicodedata.combining(_lowercase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.preprocess_text(_lowercase ) _lowerCAmelCase = self.sp_model.encode(_lowercase , out_type=_lowercase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowercase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowercase ) else: new_pieces.append(_lowercase ) return new_pieces def _lowercase ( self , _lowercase ): """simple docstring""" return self.sp_model.PieceToId(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" return self.sp_model.IdToPiece(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = """""" _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowercase ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(_lowercase ) _lowerCAmelCase = False out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if not os.path.isdir(_lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,)
5
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] ): _lowerCAmelCase = UniSpeechSatForSequenceClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) _lowerCAmelCase = downstream_dict["""projector.weight"""] _lowerCAmelCase = downstream_dict["""projector.bias"""] _lowerCAmelCase = downstream_dict["""model.post_net.linear.weight"""] _lowerCAmelCase = downstream_dict["""model.post_net.linear.bias"""] return model def A (__lowerCamelCase :int , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any ): _lowerCAmelCase = UniSpeechSatForAudioFrameClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) _lowerCAmelCase = downstream_dict["""model.linear.weight"""] _lowerCAmelCase = downstream_dict["""model.linear.bias"""] return model def A (__lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[str] ): _lowerCAmelCase = UniSpeechSatForXVector.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) _lowerCAmelCase = downstream_dict["""connector.weight"""] _lowerCAmelCase = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCAmelCase = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] _lowerCAmelCase = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] _lowerCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] _lowerCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] _lowerCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] _lowerCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] _lowerCAmelCase = downstream_dict["""objective.W"""] return model @torch.no_grad() def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Dict ): _lowerCAmelCase = torch.load(__lowerCamelCase , map_location="""cpu""" ) _lowerCAmelCase = checkpoint["""Downstream"""] _lowerCAmelCase = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( __lowerCamelCase , return_attention_mask=__lowerCamelCase , do_normalize=__lowerCamelCase ) _lowerCAmelCase = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): _lowerCAmelCase = convert_classification(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): _lowerCAmelCase = convert_diarization(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForXVector""" ): _lowerCAmelCase = convert_xvector(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: _lowerCAmelCase = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _lowercase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list ): if len(__lowerCamelCase ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(__lowerCamelCase ), max(__lowerCamelCase ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(__lowerCamelCase )] for i in my_list: buckets[int(i - min_value )].append(__lowerCamelCase ) return [v for bucket in buckets for v in sorted(__lowerCamelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''sew-d''' def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase=2 , _lowercase=512 , _lowercase=256 , _lowercase=True , _lowercase=True , _lowercase=("p2c", "c2p") , _lowercase="layer_norm" , _lowercase="gelu_python" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-7 , _lowercase=1e-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=0 , _lowercase=1 , _lowercase=2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_norm _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = squeeze_factor _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = position_buckets _lowerCAmelCase = share_att_key _lowerCAmelCase = relative_attention _lowerCAmelCase = norm_rel_ebd _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = feature_layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = apply_spec_augment _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # sequence classification _lowerCAmelCase = use_weighted_layer_sum _lowerCAmelCase = classifier_proj_size @property def _lowercase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
5
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''Speech2TextFeatureExtractor''' _lowercase : Any = '''Speech2TextTokenizer''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__(_lowercase , _lowercase ) _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False def __call__( self , *_lowercase , **_lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _lowerCAmelCase = kwargs.pop("""raw_speech""" ) else: _lowerCAmelCase = kwargs.pop("""audio""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""sampling_rate""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""text""" , _lowercase ) if len(_lowercase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _lowerCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase = encodings["""input_ids"""] return inputs def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def _lowercase ( self ): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _lowerCAmelCase = True _lowerCAmelCase = self.tokenizer yield _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False
5
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
1
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _lowercase = """bert-base-cased""" _lowercase = """google/pegasus-xsum""" _lowercase = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] _lowercase = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] _lowercase = """patrickvonplaten/t5-tiny-random""" _lowercase = """sshleifer/bart-tiny-random""" _lowercase = """sshleifer/tiny-mbart""" _lowercase = """sshleifer/tiny-marian-en-de""" def A (__lowerCamelCase :Path , __lowerCamelCase :list ): _lowerCAmelCase = """\n""".join(__lowerCamelCase ) Path(__lowerCamelCase ).open("""w""" ).writelines(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCamelCase , f'{split}.source' ) , __lowerCamelCase ) _dump_articles(os.path.join(__lowerCamelCase , f'{split}.target' ) , __lowerCamelCase ) return tmp_dir class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = AutoTokenizer.from_pretrained(_lowercase ) _lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCAmelCase = max(len(tokenizer.encode(_lowercase ) ) for a in ARTICLES ) _lowerCAmelCase = max(len(tokenizer.encode(_lowercase ) ) for a in SUMMARIES ) _lowerCAmelCase = 4 _lowerCAmelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _lowerCAmelCase , _lowerCAmelCase = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. _lowerCAmelCase = SeqaSeqDataset( _lowercase , data_dir=_lowercase , type_path="""train""" , max_source_length=_lowercase , max_target_length=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , ) _lowerCAmelCase = DataLoader(_lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_lowercase , _lowercase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _lowerCAmelCase = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = AutoTokenizer.from_pretrained(_lowercase ) _lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCAmelCase = max(len(tokenizer.encode(_lowercase ) ) for a in ARTICLES ) _lowerCAmelCase = max(len(tokenizer.encode(_lowercase ) ) for a in SUMMARIES ) _lowerCAmelCase = 4 _lowerCAmelCase = LegacySeqaSeqDataset( _lowercase , data_dir=_lowercase , type_path="""train""" , max_source_length=20 , max_target_length=_lowercase , ) _lowerCAmelCase = DataLoader(_lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) _lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _lowerCAmelCase = tmp_dir.joinpath("""train.source""" ).open().readlines() _lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_lowercase , _lowercase , 128 , _lowercase ) _lowerCAmelCase = {x.name for x in tmp_dir.iterdir()} _lowerCAmelCase = {x.name for x in save_dir.iterdir()} _lowerCAmelCase = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_lowercase ) < len(_lowercase ) assert len(_lowercase ) == 1 assert len(packed_examples[0] ) == sum(len(_lowercase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def _lowercase ( self ): """simple docstring""" if not FAIRSEQ_AVAILABLE: return _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self._get_dataset(max_len=64 ) _lowerCAmelCase = 64 _lowerCAmelCase = ds.make_dynamic_sampler(_lowercase , required_batch_size_multiple=_lowercase ) _lowerCAmelCase = [len(_lowercase ) for x in batch_sampler] assert len(set(_lowercase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_lowercase ) == len(_lowercase ) # no dropped or added examples _lowerCAmelCase = DataLoader(_lowercase , batch_sampler=_lowercase , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCAmelCase = [] _lowerCAmelCase = [] for batch in data_loader: _lowerCAmelCase = batch["""input_ids"""].shape _lowerCAmelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _lowerCAmelCase = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(_lowercase ) if num_src_tokens > (max_tokens * 1.1): failures.append(_lowercase ) assert num_src_per_batch[0] == max(_lowercase ) if failures: raise AssertionError(F'too many tokens in {len(_lowercase )} batches' ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self._get_dataset(max_len=512 ) _lowerCAmelCase = 2 _lowerCAmelCase = ds.make_sortish_sampler(_lowercase , shuffle=_lowercase ) _lowerCAmelCase = DataLoader(_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCAmelCase = DataLoader(_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_lowercase ) _lowerCAmelCase = tokenizer.pad_token_id def count_pad_tokens(_lowercase , _lowercase="input_ids" ): return [batch[k].eq(_lowercase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_lowercase , k="""labels""" ) ) < sum(count_pad_tokens(_lowercase , k="""labels""" ) ) assert sum(count_pad_tokens(_lowercase ) ) < sum(count_pad_tokens(_lowercase ) ) assert len(_lowercase ) == len(_lowercase ) def _lowercase ( self , _lowercase=1_000 , _lowercase=128 ): """simple docstring""" if os.getenv("""USE_REAL_DATA""" , _lowercase ): _lowerCAmelCase = """examples/seq2seq/wmt_en_ro""" _lowerCAmelCase = max_len * 2 * 64 if not Path(_lowercase ).joinpath("""train.len""" ).exists(): save_len_file(_lowercase , _lowercase ) else: _lowerCAmelCase = """examples/seq2seq/test_data/wmt_en_ro""" _lowerCAmelCase = max_len * 4 save_len_file(_lowercase , _lowercase ) _lowerCAmelCase = AutoTokenizer.from_pretrained(_lowercase ) _lowerCAmelCase = SeqaSeqDataset( _lowercase , data_dir=_lowercase , type_path="""train""" , max_source_length=_lowercase , max_target_length=_lowercase , n_obs=_lowercase , ) return ds, max_tokens, tokenizer def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self._get_dataset() _lowerCAmelCase = set(DistributedSortishSampler(_lowercase , 256 , num_replicas=2 , rank=0 , add_extra_examples=_lowercase ) ) _lowerCAmelCase = set(DistributedSortishSampler(_lowercase , 256 , num_replicas=2 , rank=1 , add_extra_examples=_lowercase ) ) assert idsa.intersection(_lowercase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = AutoTokenizer.from_pretrained(_lowercase , use_fast=_lowercase ) if tok_name == MBART_TINY: _lowerCAmelCase = SeqaSeqDataset( _lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) _lowerCAmelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _lowerCAmelCase = SeqaSeqDataset( _lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) _lowerCAmelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_lowercase ) == 1 if tok_name == BART_TINY else len(_lowercase ) == 0
5
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = '''sew''' def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase=2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=0 , _lowercase=1 , _lowercase=2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_norm _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = squeeze_factor _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = apply_spec_augment _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # sequence classification _lowerCAmelCase = use_weighted_layer_sum _lowerCAmelCase = classifier_proj_size @property def _lowercase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
1
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _lowercase : Optional[int] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _lowerCAmelCase = VideoClassificationPipeline(model=_lowercase , image_processor=_lowercase , top_k=2 ) _lowerCAmelCase = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" for example in examples: _lowerCAmelCase = video_classifier(_lowercase ) self.assertEqual( _lowercase , [ {"""score""": ANY(_lowercase ), """label""": ANY(_lowercase )}, {"""score""": ANY(_lowercase ), """label""": ANY(_lowercase )}, ] , ) @require_torch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _lowerCAmelCase = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) _lowerCAmelCase = pipeline( """video-classification""" , model=_lowercase , feature_extractor=_lowercase , frame_sampling_rate=4 ) _lowerCAmelCase = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _lowerCAmelCase = video_classifier(_lowercase , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) _lowerCAmelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def _lowercase ( self ): """simple docstring""" pass
5
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowercase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) _lowercase : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) _lowercase : str = "text" _lowercase : str = "summary" @property def _lowercase ( self ): """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list[int | float] , __lowerCamelCase :int , __lowerCamelCase :int ): if len(__lowerCamelCase ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(__lowerCamelCase ) or left < -len(__lowerCamelCase ) or right >= len(__lowerCamelCase ) or right < -len(__lowerCamelCase ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] _lowerCAmelCase = (left + right) >> 1 # the middle _lowerCAmelCase = find_max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # find max in range[left, mid] _lowerCAmelCase = find_max(__lowerCamelCase , mid + 1 , __lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
5
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Dict = KandinskyVaaControlnetImgaImgPipeline _lowercase : int = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase : Dict = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase : str = False @property def _lowercase ( self ): """simple docstring""" return 32 @property def _lowercase ( self ): """simple docstring""" return 32 @property def _lowercase ( self ): """simple docstring""" return self.time_input_dim @property def _lowercase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def _lowercase ( self ): """simple docstring""" return 100 @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**_lowercase ) return model @property def _lowercase ( self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase = DDIMScheduler(**_lowercase ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowercase ( self , _lowercase , _lowercase=0 ): """simple docstring""" _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((256, 256) ) # create hint _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) if str(_lowercase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_lowercase ) else: _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowercase ) _lowerCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase = init_image.resize((512, 512) ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) _lowerCAmelCase = torch.from_numpy(np.array(_lowercase ) ).float() / 255.0 _lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _lowerCAmelCase = """A robot, 4k photo""" _lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) _lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( _lowercase , image=_lowercase , strength=0.85 , generator=_lowercase , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , hint=_lowercase , generator=_lowercase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = ['''note_seq'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""note_seq"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""note_seq"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""note_seq"""] )
5
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
1
'''simple docstring''' def A (): _lowerCAmelCase = [] _lowerCAmelCase = 1 while len(__lowerCamelCase ) < 1e6: constant.append(str(__lowerCamelCase ) ) i += 1 _lowerCAmelCase = """""".join(__lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
'''simple docstring''' from collections.abc import Callable def A (__lowerCamelCase :Callable[[float], float] , __lowerCamelCase :float , __lowerCamelCase :float ): _lowerCAmelCase = a _lowerCAmelCase = b if function(__lowerCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(__lowerCamelCase ) == 0: return b elif ( function(__lowerCamelCase ) * function(__lowerCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: _lowerCAmelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__lowerCamelCase ) == 0: return mid elif function(__lowerCamelCase ) * function(__lowerCamelCase ) < 0: _lowerCAmelCase = mid else: _lowerCAmelCase = mid _lowerCAmelCase = start + (end - start) / 2.0 return mid def A (__lowerCamelCase :float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowercase = logging.getLogger(__name__) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Dict ): return (preds == labels).mean() @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) _lowercase : str = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def A (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) try: _lowerCAmelCase = processors[data_args.task_name]() _lowerCAmelCase = processor.get_labels() _lowerCAmelCase = len(__lowerCamelCase ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets _lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__lowerCamelCase :EvalPrediction ) -> Dict: _lowerCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__lowerCamelCase , p.label_ids )} # Data collator _lowerCAmelCase = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowerCAmelCase = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , compute_metrics=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCAmelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate() _lowerCAmelCase = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(__lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , __lowerCamelCase , __lowerCamelCase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(__lowerCamelCase ) return results def A (__lowerCamelCase :int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
5
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self , _lowercase = 768 , ): """simple docstring""" super().__init__() _lowerCAmelCase = nn.Parameter(torch.zeros(1 , _lowercase ) ) _lowerCAmelCase = nn.Parameter(torch.ones(1 , _lowercase ) ) def _lowercase ( self , _lowercase = None , _lowercase = None , ): """simple docstring""" _lowerCAmelCase = nn.Parameter(self.mean.to(_lowercase ).to(_lowercase ) ) _lowerCAmelCase = nn.Parameter(self.std.to(_lowercase ).to(_lowercase ) ) return self def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = (embeds - self.mean) * 1.0 / self.std return embeds def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = (embeds * self.std) + self.mean return embeds
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def A (__lowerCamelCase :Optional[int] ): return EnvironmentCommand() def A (__lowerCamelCase :Dict ): return EnvironmentCommand(args.accelerate_config_file ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def _lowercase ( _lowercase ): """simple docstring""" _lowerCAmelCase = parser.add_parser("""env""" ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( """--accelerate-config_file""" , default=_lowercase , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=_lowercase ) def __init__( self , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = accelerate_config_file def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """not installed""" if is_safetensors_available(): import safetensors _lowerCAmelCase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors _lowerCAmelCase = F'{safetensors.__version__} but is ignored because of PyTorch version too old.' _lowerCAmelCase = """not installed""" _lowerCAmelCase = _lowerCAmelCase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _lowerCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): _lowerCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() _lowerCAmelCase = ( """\n""".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else F'\t{accelerate_config}' ) _lowerCAmelCase = """not installed""" _lowerCAmelCase = """NA""" if is_torch_available(): import torch _lowerCAmelCase = torch.__version__ _lowerCAmelCase = torch.cuda.is_available() _lowerCAmelCase = """not installed""" _lowerCAmelCase = """NA""" if is_tf_available(): import tensorflow as tf _lowerCAmelCase = tf.__version__ try: # deprecated in v2.1 _lowerCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _lowerCAmelCase = bool(tf.config.list_physical_devices("""GPU""" ) ) _lowerCAmelCase = """not installed""" _lowerCAmelCase = """not installed""" _lowerCAmelCase = """not installed""" _lowerCAmelCase = """NA""" if is_flax_available(): import flax import jax import jaxlib _lowerCAmelCase = flax.__version__ _lowerCAmelCase = jax.__version__ _lowerCAmelCase = jaxlib.__version__ _lowerCAmelCase = jax.lib.xla_bridge.get_backend().platform _lowerCAmelCase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F'{safetensors_version}', """Accelerate version""": F'{accelerate_version}', """Accelerate config""": F'{accelerate_config_str}', """PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})', """Tensorflow version (GPU?)""": F'{tf_version} ({tf_cuda_available})', """Flax version (CPU?/GPU?/TPU?)""": F'{flax_version} ({jax_backend})', """Jax version""": F'{jax_version}', """JaxLib version""": F'{jaxlib_version}', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(_lowercase ) ) return info @staticmethod def _lowercase ( _lowercase ): """simple docstring""" return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
5
'''simple docstring''' import functools def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] ): # Validation if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) _lowerCAmelCase = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase :int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def A (__lowerCamelCase :int = 2000000 ): _lowerCAmelCase = [0] _lowerCAmelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowerCAmelCase = 0 # the area corresponding to the grid that gives the product closest to target _lowerCAmelCase = 0 # an estimate of b, using the quadratic formula _lowerCAmelCase = 42 # the largest integer less than b_estimate _lowerCAmelCase = 42 # the largest integer less than b_estimate _lowerCAmelCase = 42 # the triangle number corresponding to b_floor _lowerCAmelCase = 42 # the triangle number corresponding to b_ceil _lowerCAmelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowerCAmelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowerCAmelCase = floor(__lowerCamelCase ) _lowerCAmelCase = ceil(__lowerCamelCase ) _lowerCAmelCase = triangle_numbers[b_floor] _lowerCAmelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowerCAmelCase = triangle_b_first_guess * triangle_a _lowerCAmelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowerCAmelCase = triangle_b_second_guess * triangle_a _lowerCAmelCase = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
5
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase = 250004 _lowercase = 250020 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Dict = MBartaaTokenizer _lowercase : int = MBartaaTokenizerFast _lowercase : int = True _lowercase : int = True def _lowercase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = MBartaaTokenizer(_lowercase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """<s>""" _lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_lowercase ) , 1_054 ) def _lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = MBartaaTokenizer(_lowercase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=_lowercase ) _lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = {"""input_ids""": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def _lowercase ( self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = tokenizer_r.save_pretrained(_lowercase ) _lowerCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _lowerCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way _lowerCAmelCase = tokenizer_r.from_pretrained(_lowercase ) _lowerCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) _lowerCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way _lowerCAmelCase = tokenizer_r.from_pretrained(_lowercase ) _lowerCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) _lowerCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase = tokenizer_r.from_pretrained(_lowercase ) _lowerCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _lowercase : int = '''facebook/mbart-large-50-one-to-many-mmt''' _lowercase : Tuple = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _lowercase : int = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _lowercase : Dict = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def _lowercase ( cls ): """simple docstring""" _lowerCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) _lowerCAmelCase = 1 return cls def _lowercase ( self ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250_038 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def _lowercase ( self ): """simple docstring""" self.assertIn(_lowercase , self.tokenizer.all_special_ids ) _lowerCAmelCase = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] _lowerCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) _lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , _lowercase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[0] , _lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowercase ) , _lowercase ) def _lowercase ( self ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250_053, 250_001] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) _lowerCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors="""pt""" ) _lowerCAmelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) _lowerCAmelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors="""pt""" ) _lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors="""pt""" ) _lowerCAmelCase = targets["""input_ids"""] _lowerCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(_lowercase ) , { # en_XX, A, test, EOS """input_ids""": [[250_004, 62, 3_034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250_001, } , )
5
'''simple docstring''' from itertools import product def A (__lowerCamelCase :int , __lowerCamelCase :int ): _lowerCAmelCase = sides_number _lowerCAmelCase = max_face_number * dice_number _lowerCAmelCase = [0] * (max_total + 1) _lowerCAmelCase = 1 _lowerCAmelCase = range(__lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(__lowerCamelCase , repeat=__lowerCamelCase ): _lowerCAmelCase = sum(__lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def A (): _lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase = 0 _lowerCAmelCase = 9 _lowerCAmelCase = 4 * 9 _lowerCAmelCase = 6 for peter_total in range(__lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase = (4**9) * (6**6) _lowerCAmelCase = peter_wins_count / total_games_number _lowerCAmelCase = round(__lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
5
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A (__lowerCamelCase :NDArray[floataa] , __lowerCamelCase :NDArray[floataa] , __lowerCamelCase :list[int] , __lowerCamelCase :int , ): _lowerCAmelCase , _lowerCAmelCase = coefficient_matrix.shape _lowerCAmelCase , _lowerCAmelCase = constant_matrix.shape if rowsa != colsa: _lowerCAmelCase = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(__lowerCamelCase ) if colsa != 1: _lowerCAmelCase = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(__lowerCamelCase ) if rowsa != rowsa: _lowerCAmelCase = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != rowsa: _lowerCAmelCase = ( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(__lowerCamelCase )} and {rowsa}' ) raise ValueError(__lowerCamelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) _lowerCAmelCase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowerCAmelCase , _lowerCAmelCase = table.shape strictly_diagonally_dominant(__lowerCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__lowerCamelCase ): _lowerCAmelCase = [] for row in range(__lowerCamelCase ): _lowerCAmelCase = 0 for col in range(__lowerCamelCase ): if col == row: _lowerCAmelCase = table[row][col] elif col == cols - 1: _lowerCAmelCase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowerCAmelCase = (temp + val) / denom new_val.append(__lowerCamelCase ) _lowerCAmelCase = new_val return [float(__lowerCamelCase ) for i in new_val] def A (__lowerCamelCase :NDArray[floataa] ): _lowerCAmelCase , _lowerCAmelCase = table.shape _lowerCAmelCase = True for i in range(0 , __lowerCamelCase ): _lowerCAmelCase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
5
'''simple docstring''' from manim import * class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""CPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(1 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""GPU""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) _lowerCAmelCase = [mem.copy() for i in range(6 )] _lowerCAmelCase = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) _lowerCAmelCase = Text("""Model""" , font_size=24 ) _lowerCAmelCase = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) _lowerCAmelCase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for i, rect in enumerate(_lowercase ): _lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() _lowerCAmelCase = 0.46 / 4 _lowerCAmelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
5
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=32 , _lowercase=3 , _lowercase=4 , _lowercase=[10, 20, 30, 40] , _lowercase=[2, 2, 3, 2] , _lowercase=True , _lowercase=True , _lowercase=37 , _lowercase="gelu" , _lowercase=10 , _lowercase=0.02 , _lowercase=["stage2", "stage3", "stage4"] , _lowercase=3 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_stages _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = out_features _lowerCAmelCase = num_labels _lowerCAmelCase = scope _lowerCAmelCase = num_stages def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowercase ( self ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowercase , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = UperNetForSemanticSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Dict = (UperNetForSemanticSegmentation,) if is_torch_available() else () _lowercase : int = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _lowercase : int = False _lowercase : Dict = False _lowercase : List[str] = False _lowercase : List[str] = False _lowercase : str = False _lowercase : Any = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = UperNetModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" return def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): _lowerCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = _config_zero_init(_lowercase ) _lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(config=_lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def A (): _lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _lowerCAmelCase = Image.open(__lowerCamelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(_lowercase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) with torch.no_grad(): _lowerCAmelCase = model(**_lowercase ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(_lowercase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) with torch.no_grad(): _lowerCAmelCase = model(**_lowercase ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) )
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowercase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def A (__lowerCamelCase :Optional[int] ): _lowerCAmelCase = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): _lowerCAmelCase = line.strip() if line: _lowerCAmelCase = line.split() _lowerCAmelCase = line_number _lowerCAmelCase = words[0] _lowerCAmelCase = value return result def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any] , __lowerCamelCase :List[str] ): for attribute in key.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = shape_pointer.shape # let's reduce dimension _lowerCAmelCase = value[0] else: _lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase = value elif weight_type == "weight_g": _lowerCAmelCase = value elif weight_type == "weight_v": _lowerCAmelCase = value elif weight_type == "bias": _lowerCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = value else: _lowerCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :int ): _lowerCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): _lowerCAmelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] _lowerCAmelCase = """param""" if weight_type is not None and weight_type != "param": _lowerCAmelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase = """.""".join([key, hf_param_name] ) else: _lowerCAmelCase = key _lowerCAmelCase = value if """lm_head""" in full_key else value[0] _lowercase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def A (__lowerCamelCase :Any , __lowerCamelCase :int , __lowerCamelCase :List[str]=None , __lowerCamelCase :List[Any]=None ): _lowerCAmelCase = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase = True if "*" in mapped_key: _lowerCAmelCase = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase = """weight_g""" elif "weight_v" in name: _lowerCAmelCase = """weight_v""" elif "bias" in name: _lowerCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase = """weight""" else: _lowerCAmelCase = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def A (__lowerCamelCase :Any , __lowerCamelCase :Dict , __lowerCamelCase :Dict ): _lowerCAmelCase = [] _lowerCAmelCase = fairseq_model.state_dict() _lowerCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase = True else: _lowerCAmelCase = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any , __lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] ): _lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase = name.split(""".""" ) _lowerCAmelCase = int(items[0] ) _lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[str] , __lowerCamelCase :Tuple , __lowerCamelCase :List[Any]=None , __lowerCamelCase :Union[str, Any]=None , __lowerCamelCase :str=True , __lowerCamelCase :str=False ): if config_path is not None: _lowerCAmelCase = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaConfig() if is_seq_class: _lowerCAmelCase = read_txt_into_dict(__lowerCamelCase ) _lowerCAmelCase = idalabel _lowerCAmelCase = WavaVecaForSequenceClassification(__lowerCamelCase ) _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase = target_dict.pad_index _lowerCAmelCase = target_dict.bos_index _lowerCAmelCase = target_dict.eos_index _lowerCAmelCase = len(target_dict.symbols ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase = 0 _lowerCAmelCase = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False _lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _lowerCAmelCase = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _lowerCAmelCase = WavaVecaForCTC(__lowerCamelCase ) else: _lowerCAmelCase = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _lowerCAmelCase = argparse.Namespace(task="""audio_pretraining""" ) _lowerCAmelCase = fairseq.tasks.setup_task(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) _lowerCAmelCase = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''decision_transformer''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : str = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=17 , _lowercase=4 , _lowercase=128 , _lowercase=4_096 , _lowercase=True , _lowercase=1 , _lowercase=1_024 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=50_256 , _lowercase=50_256 , _lowercase=False , _lowercase=False , **_lowercase , ): """simple docstring""" _lowerCAmelCase = state_dim _lowerCAmelCase = act_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_ep_len _lowerCAmelCase = action_tanh _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
5
1
'''simple docstring''' import math import unittest def A (__lowerCamelCase :int ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _lowercase ( self ): """simple docstring""" with self.assertRaises(_lowercase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
5
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowercase = None _lowercase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowercase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def A (__lowerCamelCase :int , __lowerCamelCase :Optional[Any]=1 , __lowerCamelCase :List[Any]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def A (__lowerCamelCase :Any ): with open(__lowerCamelCase , """r""" ) as f: return json.load(__lowerCamelCase ) def A (__lowerCamelCase :List[Any] , __lowerCamelCase :int ): with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Tuple=True ): os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = os.path.join(__lowerCamelCase , """tmp""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _lowerCAmelCase = read_json(os.path.join(__lowerCamelCase , """params.json""" ) ) _lowerCAmelCase = NUM_SHARDS[model_size] _lowerCAmelCase = params["""n_layers"""] _lowerCAmelCase = params["""n_heads"""] _lowerCAmelCase = n_heads // num_shards _lowerCAmelCase = params["""dim"""] _lowerCAmelCase = dim // n_heads _lowerCAmelCase = 10_000.0 _lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowerCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA _lowerCAmelCase = n_heads_per_shard // num_key_value_heads _lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase = n_heads _lowerCAmelCase = n_heads_per_shard _lowerCAmelCase = dim # permute for sliced rotary def permute(__lowerCamelCase :Optional[int] , __lowerCamelCase :str=n_heads , __lowerCamelCase :str=dim , __lowerCamelCase :List[Any]=dim ): return w.view(__lowerCamelCase , dima // n_heads // 2 , 2 , __lowerCamelCase ).transpose(1 , 2 ).reshape(__lowerCamelCase , __lowerCamelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase = torch.load(os.path.join(__lowerCamelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded _lowerCAmelCase = [ torch.load(os.path.join(__lowerCamelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__lowerCamelCase ) ] _lowerCAmelCase = 0 _lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(__lowerCamelCase ): _lowerCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _lowerCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(__lowerCamelCase ) ] , dim=0 , ).reshape(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowerCamelCase )] , dim=1 ) _lowerCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowerCamelCase )] , dim=0 ) _lowerCAmelCase = inv_freq for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowerCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCamelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCamelCase )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase = filename param_count += v.numel() torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) # Write configs _lowerCAmelCase = {"""total_size""": param_count * 2} write_json(__lowerCamelCase , os.path.join(__lowerCamelCase , """pytorch_model.bin.index.json""" ) ) _lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 _lowerCAmelCase = LlamaConfig( hidden_size=__lowerCamelCase , intermediate_size=compute_intermediate_size(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCamelCase , ) config.save_pretrained(__lowerCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _lowerCAmelCase = LlamaForCausalLM.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCamelCase , safe_serialization=__lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Union[str, Any] ): # Initialize the tokenizer based on the `spm` model _lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase = tokenizer_class(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) def A (): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCamelCase , help="""Whether or not to save using `safetensors`.""" ) _lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCamelCase ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
5
1
'''simple docstring''' import os from collections.abc import Iterator def A (__lowerCamelCase :str = "." ): for dir_path, dir_names, filenames in os.walk(__lowerCamelCase ): _lowerCAmelCase = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCamelCase , __lowerCamelCase ).lstrip("""./""" ) def A (__lowerCamelCase :List[Any] ): return f'{i * " "}*' if i else "\n##" def A (__lowerCamelCase :str , __lowerCamelCase :str ): _lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCamelCase ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(__lowerCamelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def A (__lowerCamelCase :str = "." ): _lowerCAmelCase = """""" for filepath in sorted(good_file_paths(__lowerCamelCase ) ): _lowerCAmelCase , _lowerCAmelCase = os.path.split(__lowerCamelCase ) if filepath != old_path: _lowerCAmelCase = print_path(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 _lowerCAmelCase = f'{filepath}/{filename}'.replace(""" """ , """%20""" ) _lowerCAmelCase = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f'{md_prefix(__lowerCamelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md(""".""")
5
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''dpr''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase = 0 , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = projection_dim _lowerCAmelCase = position_embedding_type
5
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _lowercase = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _lowercase = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase ( self , _lowercase , _lowercase , _lowercase=None , _lowercase="uniform_average" , _lowercase=True ): """simple docstring""" _lowerCAmelCase = mean_squared_error( _lowercase , _lowercase , sample_weight=_lowercase , multioutput=_lowercase , squared=_lowercase ) return {"mse": mse}
5
1
'''simple docstring''' def A (__lowerCamelCase :int , __lowerCamelCase :list ): _enforce_args(__lowerCamelCase , __lowerCamelCase ) if n == 0: return 0 _lowerCAmelCase = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCAmelCase = max( __lowerCamelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , __lowerCamelCase ) ) return max_revue def A (__lowerCamelCase :int , __lowerCamelCase :list ): _enforce_args(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :int , __lowerCamelCase :list , __lowerCamelCase :list ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCAmelCase = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCAmelCase = max( __lowerCamelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __lowerCamelCase , __lowerCamelCase ) , ) _lowerCAmelCase = max_revenue return max_rev[n] def A (__lowerCamelCase :int , __lowerCamelCase :list ): _enforce_args(__lowerCamelCase , __lowerCamelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCAmelCase = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCAmelCase = 0 for i in range(1 , n + 1 ): _lowerCAmelCase = max_rev[i] for j in range(1 , i + 1 ): _lowerCAmelCase = max(__lowerCamelCase , prices[j - 1] + max_rev[i - j] ) _lowerCAmelCase = max_revenue_i return max_rev[n] def A (__lowerCamelCase :int , __lowerCamelCase :list ): if n < 0: _lowerCAmelCase = f'n must be greater than or equal to 0. Got n = {n}' raise ValueError(__lowerCamelCase ) if n > len(__lowerCamelCase ): _lowerCAmelCase = ( """Each integral piece of rod must have a corresponding price. """ f'Got n = {n} but length of prices = {len(__lowerCamelCase )}' ) raise ValueError(__lowerCamelCase ) def A (): _lowerCAmelCase = [6, 10, 12, 15, 20, 23] _lowerCAmelCase = len(__lowerCamelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCAmelCase = 36 _lowerCAmelCase = top_down_cut_rod(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = bottom_up_cut_rod(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = naive_cut_rod_recursive(__lowerCamelCase , __lowerCamelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _lowercase = logging.getLogger() def A (__lowerCamelCase :str ): _lowerCAmelCase = {} _lowerCAmelCase = os.path.join(__lowerCamelCase , """all_results.json""" ) if os.path.exists(__lowerCamelCase ): with open(__lowerCamelCase , """r""" ) as f: _lowerCAmelCase = json.load(__lowerCamelCase ) else: raise ValueError(f'can\'t find {path}' ) return results _lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" import xla_spawn _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = F'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(_lowercase , """argv""" , _lowercase ): _lowerCAmelCase = time() xla_spawn.main() _lowerCAmelCase = time() _lowerCAmelCase = get_results(_lowercase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def _lowercase ( self ): """simple docstring""" import xla_spawn _lowerCAmelCase = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(_lowercase , """argv""" , _lowercase ): xla_spawn.main()
5
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
1
'''simple docstring''' from __future__ import annotations from math import gcd def A (__lowerCamelCase :int , __lowerCamelCase :int = 2 , __lowerCamelCase :int = 1 , __lowerCamelCase :int = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :int ) -> int: return (pow(__lowerCamelCase , 2 ) + step) % modulus for _ in range(__lowerCamelCase ): # These track the position within the cycle detection logic. _lowerCAmelCase = seed _lowerCAmelCase = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _lowerCAmelCase = rand_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = rand_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = rand_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _lowerCAmelCase = gcd(hare - tortoise , __lowerCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _lowerCAmelCase = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _lowercase = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) _lowercase = parser.parse_args() _lowercase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: _lowercase = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
5
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase = BeautifulSoup(res.text, """html.parser""") _lowercase = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
5
1
'''simple docstring''' import pytest _lowercase = """__dummy_dataset1__""" _lowercase = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def A (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A (__lowerCamelCase :Dict , __lowerCamelCase :List[Any] , __lowerCamelCase :Union[str, Any] ): _lowerCAmelCase = dataset_loading_script_name _lowerCAmelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__lowerCamelCase ) _lowerCAmelCase = script_dir / f'{script_name}.py' with open(__lowerCamelCase , """w""" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase )
5
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def A (): _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted(issue.get_comments() , key=lambda __lowerCamelCase : i.created_at , reverse=__lowerCamelCase ) _lowerCAmelCase = comments[0] if len(__lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
5
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowercase = get_tests_dir("""fixtures""") class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = mock.Mock() _lowerCAmelCase = 500 _lowerCAmelCase = {} _lowerCAmelCase = HTTPError _lowerCAmelCase = {} # Download this model to make sure it's in the cache. _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=_lowercase ) as mock_head: _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowercase ( cls ): """simple docstring""" _lowerCAmelCase = TOKEN HfFolder.save_token(_lowercase ) @classmethod def _lowercase ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowercase ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowercase , repo_id="""test-feature-extractor""" , push_to_hub=_lowercase , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowercase ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowercase , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=_lowercase , use_auth_token=self._token ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) def _lowercase ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() _lowerCAmelCase = CustomFeatureExtractor.from_pretrained(_lowercase ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) _lowerCAmelCase = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = self.vocab_size - 1 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = OpenAIGPTModel(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , head_mask=_lowercase ) _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = OpenAIGPTLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = OpenAIGPTDoubleHeadsModel(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = OpenAIGPTForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Any = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _lowercase : Optional[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _lowercase : Any = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _lowercase ( self , _lowercase , _lowercase , _lowercase=False ): """simple docstring""" _lowerCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase , ) _lowerCAmelCase = inputs_dict["""labels"""] _lowerCAmelCase = inputs_dict["""labels"""] _lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowercase , ) _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = OpenAIGPTModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = OpenAIGPTModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_lowercase ) _lowerCAmelCase = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=_lowercase ) # the president is _lowerCAmelCase = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _lowerCAmelCase = model.generate(_lowercase , do_sample=_lowercase ) self.assertListEqual(output_ids[0].tolist() , _lowercase )
5
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''data2vec-text''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
5
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a sound of {}." ): """simple docstring""" if isinstance(_lowercase , _lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowercase ).content else: with open(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = ffmpeg_read(_lowercase , self.feature_extractor.sampling_rate ) if not isinstance(_lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A (__lowerCamelCase :dict ): return (data["data"], data["target"]) def A (__lowerCamelCase :np.ndarray , __lowerCamelCase :np.ndarray ): _lowerCAmelCase = XGBClassifier() classifier.fit(__lowerCamelCase , __lowerCamelCase ) return classifier def A (): _lowerCAmelCase = load_iris() _lowerCAmelCase , _lowerCAmelCase = data_handling(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = train_test_split( __lowerCamelCase , __lowerCamelCase , test_size=0.25 ) _lowerCAmelCase = iris["""target_names"""] # Create an XGBoost Classifier from the training data _lowerCAmelCase = xgboost(__lowerCamelCase , __lowerCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , display_labels=__lowerCamelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
5
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
1
'''simple docstring''' from math import factorial _lowercase = {str(d): factorial(d) for d in range(10)} def A (__lowerCamelCase :int ): return sum(DIGIT_FACTORIAL[d] for d in str(__lowerCamelCase ) ) def A (): _lowerCAmelCase = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , __lowerCamelCase ) if sum_of_digit_factorial(__lowerCamelCase ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
5
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
1