code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ) -> None: if start is None: snake_case__ = 0 if end is None: snake_case__ = len(__lowerCAmelCase ) - 1 if start >= end: return snake_case__ = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: snake_case__ , snake_case__ = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
33
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __magic_name__ (unittest.TestCase ): '''simple docstring''' def __init__( self:str , _a:int , _a:str=7 , _a:Optional[int]=3 , _a:Dict=30 , _a:str=4_00 , _a:Optional[Any]=True , _a:Optional[Any]=None , _a:List[str]=True , _a:List[str]=[0.5, 0.5, 0.5] , _a:List[str]=[0.5, 0.5, 0.5] , _a:Tuple=True , _a:Tuple=1 / 2_55 , _a:int=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_pad def SCREAMING_SNAKE_CASE__ ( self:Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[int] , _a:List[str]=False ): if not batched: snake_case__ = image_inputs[0] if isinstance(_a , Image.Image ): snake_case__ , snake_case__ = image.size else: snake_case__ , snake_case__ = image.shape[1], image.shape[2] if w < h: snake_case__ = int(self.size['''shortest_edge'''] * h / w ) snake_case__ = self.size['''shortest_edge'''] elif w > h: snake_case__ = self.size['''shortest_edge'''] snake_case__ = int(self.size['''shortest_edge'''] * w / h ) else: snake_case__ = self.size['''shortest_edge'''] snake_case__ = self.size['''shortest_edge'''] else: snake_case__ = [] for image in image_inputs: snake_case__ , snake_case__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ = max(_a , key=lambda _a : item[0] )[0] snake_case__ = max(_a , key=lambda _a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ConditionalDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = ConditionalDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , _a ) snake_case__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_a ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(_a , batched=_a ) snake_case__ = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self:int ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(_a , return_tensors='''pt''' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(_a , return_tensors='''pt''' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): # prepare image and target snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {'''image_id''': 3_97_69, '''annotations''': target} # encode them snake_case__ = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) snake_case__ = image_processing(images=_a , annotations=_a , return_tensors='''pt''' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , _a ) snake_case__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _a ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _a ) snake_case__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _a , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _a ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _a ) ) # verify class_labels snake_case__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _a ) ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _a ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _a ) ) @slow def SCREAMING_SNAKE_CASE__ ( self:int ): # prepare image, target and masks_path snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} snake_case__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them snake_case__ = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) snake_case__ = image_processing(images=_a , annotations=_a , masks_path=_a , return_tensors='''pt''' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , _a ) snake_case__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _a ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _a ) snake_case__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _a , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _a ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _a ) ) # verify class_labels snake_case__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _a ) ) # verify masks snake_case__ = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _a ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _a ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _a ) )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase__ : List[str] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ : Optional[int] = importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCamelCase__ : Tuple = spec.loader.load_module() lowerCamelCase__ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase__ : Tuple = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowerCamelCase__ : int = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def SCREAMING_SNAKE_CASE ( ) -> List[Any]: snake_case__ = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case__ = False # source code of `config_class` snake_case__ = inspect.getsource(__lowerCAmelCase ) snake_case__ = _re_checkpoint.findall(__lowerCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case__ , snake_case__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case__ = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: snake_case__ = True break snake_case__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = '''\n'''.join(sorted(__lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
33
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Union[str, Any] = 'sew' def __init__( self:Any , _a:Union[str, Any]=32 , _a:Optional[int]=7_68 , _a:Optional[int]=12 , _a:Any=12 , _a:List[Any]=30_72 , _a:List[str]=2 , _a:int="gelu" , _a:Any=0.1 , _a:Tuple=0.1 , _a:int=0.1 , _a:int=0.0 , _a:Any=0.1 , _a:Tuple=0.1 , _a:List[Any]=0.02 , _a:List[str]=1e-5 , _a:Union[str, Any]="group" , _a:Optional[int]="gelu" , _a:Optional[Any]=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , _a:Optional[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _a:Optional[int]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _a:Tuple=False , _a:Any=1_28 , _a:Optional[Any]=16 , _a:str=True , _a:Dict=0.05 , _a:Tuple=10 , _a:Optional[Any]=2 , _a:str=0.0 , _a:Union[str, Any]=10 , _a:Optional[Any]=0 , _a:Union[str, Any]="mean" , _a:Tuple=False , _a:List[str]=False , _a:Optional[Any]=2_56 , _a:Any=0 , _a:Any=1 , _a:List[str]=2 , **_a:Any , ): super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) snake_case__ = hidden_size snake_case__ = feat_extract_norm snake_case__ = feat_extract_activation snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = conv_bias snake_case__ = num_conv_pos_embeddings snake_case__ = num_conv_pos_embedding_groups snake_case__ = len(self.conv_dim ) snake_case__ = num_hidden_layers snake_case__ = intermediate_size snake_case__ = squeeze_factor snake_case__ = hidden_act snake_case__ = num_attention_heads snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = feat_proj_dropout snake_case__ = final_dropout snake_case__ = layerdrop snake_case__ = layer_norm_eps snake_case__ = initializer_range snake_case__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ = apply_spec_augment snake_case__ = mask_time_prob snake_case__ = mask_time_length snake_case__ = mask_time_min_masks snake_case__ = mask_feature_prob snake_case__ = mask_feature_length snake_case__ = mask_feature_min_masks # ctc loss snake_case__ = ctc_loss_reduction snake_case__ = ctc_zero_infinity # sequence classification snake_case__ = use_weighted_layer_sum snake_case__ = classifier_proj_size @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
33
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
1
from math import isqrt def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(__lowerCAmelCase ) + 1 ) ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 10**6 ) -> int: snake_case__ = 0 snake_case__ = 1 snake_case__ = 7 while prime_candidate < max_prime: primes_count += is_prime(__lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
1
# Imports import numpy as np class __magic_name__ : '''simple docstring''' def __init__( self:List[str] , _a:Union[str, Any]=None , _a:List[Any]=None , _a:Tuple=None , _a:Dict=None , _a:int=None ): self.set_matricies(red=_a , green=_a , blue=_a , red_edge=_a , nir=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Dict=None , _a:Any=None , _a:Optional[int]=None , _a:str=None , _a:Optional[int]=None ): if red is not None: snake_case__ = red if green is not None: snake_case__ = green if blue is not None: snake_case__ = blue if red_edge is not None: snake_case__ = red_edge if nir is not None: snake_case__ = nir return True def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any]="" , _a:List[str]=None , _a:Optional[int]=None , _a:List[Any]=None , _a:Any=None , _a:List[str]=None ): self.set_matricies(red=_a , green=_a , blue=_a , red_edge=_a , nir=_a ) snake_case__ = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def SCREAMING_SNAKE_CASE__ ( self:Any ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def SCREAMING_SNAKE_CASE__ ( self:Any ): return self.nir * (self.red / (self.green**2)) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return (self.nir - self.red) / (self.nir + self.red) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return (self.nir - self.blue) / (self.nir + self.blue) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return (self.redEdge - self.red) / (self.redEdge + self.red) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return (self.nir - self.green) / (self.nir + self.green) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:Optional[Any]=0.08 , _a:Dict=1.22 , _a:str=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def SCREAMING_SNAKE_CASE__ ( self:Any ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def SCREAMING_SNAKE_CASE__ ( self:Dict ): return (self.nir / self.green) - 1 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return (self.nir / self.redEdge) - 1 def SCREAMING_SNAKE_CASE__ ( self:int ): return (self.red - self.blue) / self.red def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return self.nir - self.green def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Any=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Any=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:List[Any]=None , _a:Optional[int]=None ): return (self.nir - b) / (a * self.red) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def SCREAMING_SNAKE_CASE__ ( self:Dict ): return (self.red + self.green + self.blue) / 30.5 def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return self.nir / self.red def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return (self.rvi() - 1) / (self.rvi() + 1) def SCREAMING_SNAKE_CASE__ ( self:int ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return self.green / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): return self.nir / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE__ ( self:str ): return self.red / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE__ ( self:Any ): return (self.green - self.red) / (self.green + self.red) def SCREAMING_SNAKE_CASE__ ( self:int ): return (self.red - self.green) / (self.red + self.green) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) snake_case__ = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return self.nir / self.red def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return (self.ndvi() + 0.5) ** (1 / 2) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
33
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCamelCase__ : Tuple = """<<<<<<< This should probably be modified because it mentions: """ lowerCamelCase__ : str = """======= >>>>>>> """ lowerCamelCase__ : List[Any] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] lowerCamelCase__ : Dict = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __magic_name__ (snake_case_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:ArgumentParser ): snake_case__ = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_a , required=_a , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_a , required=_a , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_a ) def __init__( self:Any , _a:str , _a:str , *_a:Any ): snake_case__ = get_logger('''datasets-cli/converting''' ) snake_case__ = tfds_path snake_case__ = datasets_directory def SCREAMING_SNAKE_CASE__ ( self:List[str] ): if os.path.isdir(self._tfds_path ): snake_case__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): snake_case__ = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) snake_case__ = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) snake_case__ = [] snake_case__ = [] snake_case__ = {} if os.path.isdir(self._tfds_path ): snake_case__ = os.listdir(_a ) else: snake_case__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) snake_case__ = os.path.join(_a , _a ) snake_case__ = os.path.join(_a , _a ) if not os.path.isfile(_a ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_a , encoding='''utf-8''' ) as f: snake_case__ = f.readlines() snake_case__ = [] snake_case__ = False snake_case__ = False snake_case__ = [] for line in lines: snake_case__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: snake_case__ = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here snake_case__ = '''''' continue elif "from absl import logging" in out_line: snake_case__ = '''from datasets import logging\n''' elif "getLogger" in out_line: snake_case__ = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): snake_case__ = True snake_case__ = list(filter(lambda _a : e in out_line , _a ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_a ) + '''\n''' ) out_lines.append(_a ) out_lines.append(_a ) continue else: for pattern, replacement in TO_CONVERT: snake_case__ = re.sub(_a , _a , _a ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: snake_case__ = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _a ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) snake_case__ = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: snake_case__ = True out_lines.append(_a ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset snake_case__ = f_name.replace('''.py''' , '''''' ) snake_case__ = os.path.join(_a , _a ) snake_case__ = os.path.join(_a , _a ) os.makedirs(_a , exist_ok=_a ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_a ) if needs_manual_update: with_manual_update.append(_a ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_a ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: snake_case__ = os.path.basename(_a ) snake_case__ = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_a , _a ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
33
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list: snake_case__ = len(__lowerCAmelCase ) snake_case__ = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case__ = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
33
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ : Dict = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCamelCase__ : Optional[int] = { """google/realm-cc-news-pretrained-embedder""": 5_1_2, """google/realm-cc-news-pretrained-encoder""": 5_1_2, """google/realm-cc-news-pretrained-scorer""": 5_1_2, """google/realm-cc-news-pretrained-openqa""": 5_1_2, """google/realm-orqa-nq-openqa""": 5_1_2, """google/realm-orqa-nq-reader""": 5_1_2, """google/realm-orqa-wq-openqa""": 5_1_2, """google/realm-orqa-wq-reader""": 5_1_2, } lowerCamelCase__ : Optional[Any] = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_INIT_CONFIGURATION __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Union[str, Any] = RealmTokenizer def __init__( self:Dict , _a:List[str]=None , _a:Union[str, Any]=None , _a:Dict=True , _a:List[Any]="[UNK]" , _a:Any="[SEP]" , _a:Union[str, Any]="[PAD]" , _a:int="[CLS]" , _a:Tuple="[MASK]" , _a:List[Any]=True , _a:str=None , **_a:Any , ): super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) snake_case__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _a ) != do_lower_case or normalizer_state.get('''strip_accents''' , _a ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _a ) != tokenize_chinese_chars ): snake_case__ = getattr(_a , normalizer_state.pop('''type''' ) ) snake_case__ = do_lower_case snake_case__ = strip_accents snake_case__ = tokenize_chinese_chars snake_case__ = normalizer_class(**_a ) snake_case__ = do_lower_case def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:int , **_a:int ): snake_case__ = PaddingStrategy.MAX_LENGTH snake_case__ = text snake_case__ = kwargs.pop('''text_pair''' , _a ) snake_case__ = kwargs.pop('''return_tensors''' , _a ) snake_case__ = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(_a ): if batch_text_pair is not None: snake_case__ = batch_text_pair[idx] else: snake_case__ = None snake_case__ = super().__call__(_a , _a , return_tensors=_a , **_a ) snake_case__ = encoded_candidates.get('''input_ids''' ) snake_case__ = encoded_candidates.get('''attention_mask''' ) snake_case__ = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(_a ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_a ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_a ) snake_case__ = {key: item for key, item in output_data.items() if len(_a ) != 0} return BatchEncoding(_a , tensor_type=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:int , _a:int=None ): snake_case__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self:Any , _a:str , _a:Optional[str] = None ): snake_case__ = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
33
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
1
import argparse import os import re lowerCamelCase__ : Optional[int] = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase__ : List[Any] = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings lowerCamelCase__ : Dict = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = False ) -> Union[str, Any]: with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: snake_case__ = f.read() snake_case__ = content.split('''\n''' ) snake_case__ = [] snake_case__ = 0 while line_idx < len(__lowerCAmelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: snake_case__ = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 snake_case__ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": snake_case__ = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers snake_case__ = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : _re_identifier.search(__lowerCAmelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(__lowerCAmelCase ) ) elif "\n".join(__lowerCAmelCase ) != content: return True def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = False ) -> Tuple: snake_case__ = [os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for f in os.listdir(__lowerCAmelCase ) if f.endswith('''.py''' )] snake_case__ = [sort_auto_mapping(__lowerCAmelCase , overwrite=__lowerCAmelCase ) for fname in fnames] if not overwrite and any(__lowerCAmelCase ): snake_case__ = [f for f, d in zip(__lowerCAmelCase , __lowerCAmelCase ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(__lowerCAmelCase )}. Run `make style` to fix""" ''' this.''' ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCamelCase__ : Union[str, Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
33
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
1
from __future__ import annotations import math from collections.abc import Callable def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 100 , ) -> float: snake_case__ = x_start snake_case__ = fnc(__lowerCAmelCase ) snake_case__ = 0.0 for _ in range(__lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length snake_case__ = (x_end - x_start) / steps + xa snake_case__ = fnc(__lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case__ = xa snake_case__ = fxa return length if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowerCamelCase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"""With {i} steps: {line_length(f, -1_0, 1_0, i)}""") i *= 1_0
33
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCamelCase__ : Tuple = """bart""" lowerCamelCase__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: if LOAD_DENSE_INDEX: snake_case__ = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) snake_case__ = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) snake_case__ = qar_model.eval() else: snake_case__ , snake_case__ = (None, None) if MODEL_TYPE == "bart": snake_case__ = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) snake_case__ = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) snake_case__ = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) snake_case__ = sas_model.eval() else: snake_case__ , snake_case__ = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: if LOAD_DENSE_INDEX: snake_case__ = faiss.StandardGpuResources() snake_case__ = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] snake_case__ = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) snake_case__ = faiss.IndexFlatIP(128 ) snake_case__ = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: snake_case__ , snake_case__ = (None, None) snake_case__ = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: snake_case__ = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) snake_case__ = elia['''train_eli5'''] snake_case__ = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) snake_case__ = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = load_indexes() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = load_models() lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = load_train_data() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> List[Any]: snake_case__ = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ , snake_case__ = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase="wiki40b" , __lowerCAmelCase="dense" , __lowerCAmelCase=10 ) -> int: if source == "none": snake_case__ , snake_case__ = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case__ , snake_case__ = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: snake_case__ , snake_case__ = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) snake_case__ = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] snake_case__ = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=64 , __lowerCAmelCase=256 , __lowerCAmelCase=False , __lowerCAmelCase=2 , __lowerCAmelCase=0.95 , __lowerCAmelCase=0.8 ) -> Dict: with torch.no_grad(): snake_case__ = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar lowerCamelCase__ : int = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" lowerCamelCase__ : List[Any] = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCamelCase__ : Any = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) lowerCamelCase__ : str = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] lowerCamelCase__ : Tuple = st.sidebar.checkbox("""Demo options""") if demo_options: lowerCamelCase__ : List[str] = st.sidebar.selectbox( """""", action_list, index=3, ) lowerCamelCase__ : Union[str, Any] = action_list.index(action_st) lowerCamelCase__ : List[Any] = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) lowerCamelCase__ : int = show_type == """Show full text of passages""" else: lowerCamelCase__ : str = 3 lowerCamelCase__ : Any = True lowerCamelCase__ : Tuple = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: lowerCamelCase__ : Optional[int] = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) lowerCamelCase__ : Optional[int] = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) lowerCamelCase__ : int = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: lowerCamelCase__ : str = """wiki40b""" lowerCamelCase__ : str = """dense""" lowerCamelCase__ : int = """beam""" lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : int = 6_4 lowerCamelCase__ : List[Any] = 2_5_6 lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : str = st.sidebar.checkbox("""Generation options""") if generate_options: lowerCamelCase__ : int = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) lowerCamelCase__ : List[str] = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) lowerCamelCase__ : Optional[Any] = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) lowerCamelCase__ : Optional[int] = st.sidebar.slider( """Maximum generation length""", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": lowerCamelCase__ : Optional[int] = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCamelCase__ : Optional[Any] = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) lowerCamelCase__ : Union[str, Any] = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) lowerCamelCase__ : Dict = None # start main text lowerCamelCase__ : Union[str, Any] = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] lowerCamelCase__ : Optional[Any] = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCamelCase__ : Dict = st.text_input("""Enter your question here:""", """""") else: lowerCamelCase__ : Union[str, Any] = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": lowerCamelCase__ , lowerCamelCase__ : List[str] = make_support(question, source=wiki_source, method="""dense""", n_results=1_0) lowerCamelCase__ , lowerCamelCase__ : Any = make_support(question, source=wiki_source, method="""sparse""", n_results=1_0) lowerCamelCase__ : Optional[Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCamelCase__ : Union[str, Any] = support_list[:1_0] lowerCamelCase__ : Optional[Any] = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: lowerCamelCase__ , lowerCamelCase__ : Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): lowerCamelCase__ : Tuple = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) lowerCamelCase__ : List[Any] = res[1].strip() if sec_titles == "": lowerCamelCase__ : int = """[{}]({})""".format(res[0], wiki_url) else: lowerCamelCase__ : str = sec_titles.split(""" & """) lowerCamelCase__ : int = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: lowerCamelCase__ : List[Any] = find_nearest_training(question) lowerCamelCase__ : int = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) lowerCamelCase__ : Optional[int] = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) lowerCamelCase__ : Union[str, Any] = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
33
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : List[Any] = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[str] , _a:pyspark.sql.DataFrame , _a:Optional[NamedSplit] = None , _a:Optional[Features] = None , _a:bool = True , _a:str = None , _a:bool = False , _a:str = None , _a:bool = True , _a:str = "arrow" , **_a:List[str] , ): super().__init__( split=_a , features=_a , cache_dir=_a , keep_in_memory=_a , streaming=_a , **_a , ) snake_case__ = load_from_cache_file snake_case__ = file_format snake_case__ = Spark( df=_a , features=_a , cache_dir=_a , working_dir=_a , **_a , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_a , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
33
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[str] , *_a:Tuple , **_a:List[str] ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger() @dataclass class __magic_name__ : '''simple docstring''' __lowercase : nn.Module __lowercase : List[nn.Module] = field(default_factory=snake_case_ ) __lowercase : list = field(default_factory=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str , _a:Tensor , _a:Tensor ): snake_case__ = len(list(m.modules() ) ) == 1 or isinstance(_a , nn.Convad ) or isinstance(_a , nn.BatchNormad ) if has_not_submodules: self.traced.append(_a ) def __call__( self:str , _a:Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_a ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __magic_name__ : '''simple docstring''' __lowercase : nn.Module __lowercase : nn.Module __lowercase : int = 0 __lowercase : List = field(default_factory=snake_case_ ) __lowercase : List = field(default_factory=snake_case_ ) def __call__( self:Tuple , _a:Tensor ): snake_case__ = Tracker(self.dest )(_a ).parametrized snake_case__ = Tracker(self.src )(_a ).parametrized snake_case__ = list(filter(lambda _a : type(_a ) not in self.src_skip , _a ) ) snake_case__ = list(filter(lambda _a : type(_a ) not in self.dest_skip , _a ) ) if len(_a ) != len(_a ): raise Exception( F"""Numbers of operations are different. Source module has {len(_a )} operations while""" F""" destination module has {len(_a )}.""" ) for dest_m, src_m in zip(_a , _a ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ) -> int: print(F"""Converting {name}...""" ) with torch.no_grad(): snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ).eval() snake_case__ = ResNetForImageClassification(__lowerCAmelCase ).eval() snake_case__ = ModuleTransfer(src=__lowerCAmelCase , dest=__lowerCAmelCase ) snake_case__ = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCAmelCase ) assert torch.allclose(from_model(__lowerCAmelCase ) , our_model(__lowerCAmelCase ).logits ), "The model logits don't match the original one." snake_case__ = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowerCAmelCase , ) # we can use the convnext one snake_case__ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowerCAmelCase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True ) -> List[Any]: snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = 1000 snake_case__ = (1, num_labels) snake_case__ = '''huggingface/label-files''' snake_case__ = num_labels snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) snake_case__ = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase__ : Tuple = parser.parse_args() lowerCamelCase__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
33
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[Any] = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: from transformers.testing_utils import pytest_terminal_summary_main snake_case__ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: snake_case__ = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("""IGNORE_RESULT""") lowerCamelCase__ : Optional[Any] = doctest.OutputChecker class __magic_name__ (snake_case_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[Any] , _a:Optional[int] , _a:Union[str, Any] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _a , _a , _a ) lowerCamelCase__ : Optional[int] = CustomOutputChecker lowerCamelCase__ : Dict = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
33
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : Dict = """▁""" lowerCamelCase__ : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = BigBirdTokenizer __lowercase : Dict = BigBirdTokenizerFast __lowercase : List[Any] = True __lowercase : List[Any] = True def SCREAMING_SNAKE_CASE__ ( self:str ): super().setUp() snake_case__ = self.tokenizer_class(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = '''<s>''' snake_case__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_a ) , 10_04 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def SCREAMING_SNAKE_CASE__ ( self:int ): if not self.test_rust_tokenizer: return snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() snake_case__ = '''I was born in 92000, and this is falsé.''' snake_case__ = tokenizer.tokenize(_a ) snake_case__ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) snake_case__ = tokenizer.encode(_a , add_special_tokens=_a ) snake_case__ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(_a ) snake_case__ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = BigBirdTokenizer(_a , keep_accents=_a ) snake_case__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [2_85, 46, 10, 1_70, 3_82] , ) snake_case__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case__ = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''Hello World!''' snake_case__ = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off snake_case__ = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self:Any ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence snake_case__ = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ = ''' '''.join(_a ) snake_case__ = self.big_tokenizer.encode_plus(_a , return_tensors='''pt''' , return_token_type_ids=_a ) snake_case__ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_a ) snake_case__ = BigBirdConfig(attention_type='''original_full''' ) snake_case__ = BigBirdModel(_a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_a ) model(**_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) snake_case__ = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): # fmt: off snake_case__ = {'''input_ids''': [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
33
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = 'camembert' def __init__( self:str , _a:List[str]=3_05_22 , _a:Tuple=7_68 , _a:str=12 , _a:Optional[int]=12 , _a:Tuple=30_72 , _a:Tuple="gelu" , _a:Any=0.1 , _a:str=0.1 , _a:Union[str, Any]=5_12 , _a:str=2 , _a:Dict=0.02 , _a:Tuple=1e-12 , _a:int=1 , _a:Dict=0 , _a:str=2 , _a:int="absolute" , _a:Tuple=True , _a:Dict=None , **_a:Tuple , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = hidden_act snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = position_embedding_type snake_case__ = use_cache snake_case__ = classifier_dropout class __magic_name__ (snake_case_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): if self.task == "multiple-choice": snake_case__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
33
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) snake_case__ = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" snake_case__ = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" snake_case__ = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
33
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = 'bloom' __lowercase : str = ['past_key_values'] __lowercase : Optional[Any] = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self:Union[str, Any] , _a:int=25_08_80 , _a:Dict=64 , _a:List[Any]=2 , _a:Optional[int]=8 , _a:int=1e-5 , _a:List[str]=0.02 , _a:Union[str, Any]=True , _a:List[str]=1 , _a:Tuple=2 , _a:Any=False , _a:Optional[Any]=0.0 , _a:int=0.0 , _a:Any=1 , _a:str=False , **_a:Any , ): snake_case__ = vocab_size # Backward compatibility with n_embed kwarg snake_case__ = kwargs.pop('''n_embed''' , _a ) snake_case__ = hidden_size if n_embed is None else n_embed snake_case__ = n_layer snake_case__ = n_head snake_case__ = layer_norm_epsilon snake_case__ = initializer_range snake_case__ = use_cache snake_case__ = pretraining_tp snake_case__ = apply_residual_connection_post_layernorm snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = bos_token_id snake_case__ = eos_token_id snake_case__ = slow_but_exact super().__init__(bos_token_id=_a , eos_token_id=_a , **_a ) class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = version.parse('1.12' ) def __init__( self:Union[str, Any] , _a:PretrainedConfig , _a:str = "default" , _a:List[PatchingSpec] = None , _a:bool = False , ): super().__init__(_a , task=_a , patching_specs=_a , use_past=_a ) if not getattr(self._config , '''pad_token_id''' , _a ): # TODO: how to do that better? snake_case__ = 0 @property def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_a , direction='''inputs''' , inverted_values_shape=_a ) snake_case__ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: snake_case__ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self:Any ): return self._config.n_layer @property def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._config.n_head @property def SCREAMING_SNAKE_CASE__ ( self:str ): return 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:"PreTrainedTokenizer" , _a:int = -1 , _a:int = -1 , _a:bool = False , _a:Optional["TensorType"] = None , ): snake_case__ = super(_a , self ).generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) # We need to order the input in the way they appears in the forward() snake_case__ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case__ = seqlen + 2 snake_case__ = self._config.hidden_size // self.num_attention_heads snake_case__ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) snake_case__ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) snake_case__ = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] snake_case__ = common_inputs['''attention_mask'''] if self.use_past: snake_case__ = ordered_inputs['''attention_mask'''].dtype snake_case__ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_a , _a , dtype=_a )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return 13
33
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __magic_name__ : '''simple docstring''' def __init__( self:str , _a:Optional[Any] , _a:Any=13 , _a:List[str]=7 , _a:str=True , _a:Dict=True , _a:Any=False , _a:Dict=True , _a:int=99 , _a:List[str]=64 , _a:Union[str, Any]=5 , _a:Optional[int]=4 , _a:int=64 , _a:List[str]="gelu" , _a:List[Any]=0.1 , _a:Dict=0.1 , _a:str=5_12 , _a:Optional[int]=16 , _a:Tuple=2 , _a:int=0.02 , _a:Dict=3 , _a:Tuple=4 , _a:Tuple=None , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self:str ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Dict , _a:Dict , _a:Optional[Any] , _a:Dict , _a:Optional[int] , _a:int ): snake_case__ = MPNetModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a , _a ) snake_case__ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:str , _a:Optional[Any] , _a:Tuple , _a:Tuple , _a:Tuple , _a:Optional[int] ): snake_case__ = MPNetForQuestionAnswering(config=_a ) model.to(_a ) model.eval() snake_case__ = model( _a , attention_mask=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:int , _a:List[Any] , _a:Union[str, Any] , _a:Optional[int] , _a:Tuple , _a:List[str] ): snake_case__ = self.num_labels snake_case__ = MPNetForSequenceClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[Any] , _a:List[Any] , _a:Any , _a:int , _a:str , _a:Tuple ): snake_case__ = self.num_choices snake_case__ = MPNetForMultipleChoice(config=_a ) model.to(_a ) model.eval() snake_case__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ = model( _a , attention_mask=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int , _a:Optional[Any] , _a:Optional[Any] , _a:Union[str, Any] , _a:List[Any] , _a:List[Any] ): snake_case__ = self.num_labels snake_case__ = MPNetForTokenClassification(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.prepare_config_and_inputs() ((snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__)) = config_and_inputs snake_case__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __lowercase : int = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Any = True def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = MPNetModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_a ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_a ) @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) snake_case__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case__ = model(_a )[0] snake_case__ = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _a ) snake_case__ = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
33
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
1
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __magic_name__ (snake_case_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = tempfile.mkdtemp() snake_case__ = 8 # DPR tok snake_case__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case__ = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) snake_case__ = os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok snake_case__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] snake_case__ = dict(zip(_a , range(len(_a ) ) ) ) snake_case__ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case__ = {'''unk_token''': '''<unk>'''} snake_case__ = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) snake_case__ = os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ = os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE__ ( self:Any ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.get_dummy_dataset() snake_case__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: snake_case__ = dataset snake_case__ = RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:bool ): snake_case__ = self.get_dummy_dataset() snake_case__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: snake_case__ = os.path.join(self.tmpdirname , '''dataset''' ) snake_case__ = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset snake_case__ = RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case__ = RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _a ) , ) return retriever def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case__ = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) snake_case__ = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) snake_case__ = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_a , open(_a , '''wb''' ) ) snake_case__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) snake_case__ = RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = 1 snake_case__ = self.get_dummy_canonical_hf_index_retriever() snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ = retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: snake_case__ = self.get_dummy_dataset() retriever.save_pretrained(_a ) snake_case__ = RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ = retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = 1 snake_case__ = self.get_dummy_custom_hf_index_retriever(from_disk=_a ) snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ = retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) snake_case__ = RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ = retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = 1 snake_case__ = self.get_dummy_custom_hf_index_retriever(from_disk=_a ) snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ = retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) snake_case__ = RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ = retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = 1 snake_case__ = self.get_dummy_legacy_index_retriever() snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ = retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , _a ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) snake_case__ = RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ = retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): import torch snake_case__ = 1 snake_case__ = self.get_dummy_canonical_hf_index_retriever() snake_case__ = [[5, 7], [10, 11]] snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ = retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) snake_case__ , snake_case__ , snake_case__ = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , np.ndarray ) snake_case__ = retriever( _a , _a , prefix=retriever.config.generator.prefix , n_docs=_a , return_tensors='''pt''' , ) snake_case__ , snake_case__ , snake_case__ , snake_case__ = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_dpr_ctx_encoder_tokenizer() snake_case__ = 1 snake_case__ = self.get_dummy_custom_hf_index_retriever(from_disk=_a ) retriever.set_ctx_encoder_tokenizer(_a ) snake_case__ = [[5, 7], [10, 11]] snake_case__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ = retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) self.assertEqual( len(_a ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _a ) # check for doc token related keys in dictionary.
33
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Any: snake_case__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: snake_case__ , snake_case__ = emb.weight.shape snake_case__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) snake_case__ = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: snake_case__ = torch.load(__lowerCAmelCase , map_location='''cpu''' ) snake_case__ = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] snake_case__ = mam_aaa['''model'''] remove_ignore_keys_(__lowerCAmelCase ) snake_case__ = state_dict['''encoder.embed_tokens.weight'''].shape[0] snake_case__ = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) snake_case__ = state_dict['''decoder.embed_tokens.weight'''] snake_case__ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) snake_case__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCamelCase__ : Optional[int] = parser.parse_args() lowerCamelCase__ : List[str] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase__ : List[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowerCamelCase__ : int = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.1_5}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names lowerCamelCase__ : List[str] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ : Optional[int] = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowerCamelCase__ : int = """allenai""" def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} snake_case__ = dict((re.sub(r'''@@$''' , '''''' , __lowerCAmelCase ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , __lowerCAmelCase ), v) for k, v in d.items() ) snake_case__ = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] snake_case__ = d[k] # restore return da def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: # prep assert os.path.exists(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models snake_case__ = basename(__lowerCAmelCase ) snake_case__ = dirname(__lowerCAmelCase ) snake_case__ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel snake_case__ = cls.hub_models() snake_case__ = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} snake_case__ = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"""using checkpoint {checkpoint_file}""" ) snake_case__ = hub_utils.from_pretrained( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , archive_map=__lowerCAmelCase , **__lowerCAmelCase ) snake_case__ = vars(chkpt['''args''']['''model'''] ) snake_case__ = args['''source_lang'''] snake_case__ = args['''target_lang'''] snake_case__ = dirname(__lowerCAmelCase ) snake_case__ = basename(__lowerCAmelCase ) # dicts snake_case__ = os.path.join(__lowerCAmelCase , F"""dict.{src_lang}.txt""" ) snake_case__ = os.path.join(__lowerCAmelCase , F"""dict.{tgt_lang}.txt""" ) snake_case__ = Dictionary.load(__lowerCAmelCase ) snake_case__ = rewrite_dict_keys(src_dict.indices ) snake_case__ = len(__lowerCAmelCase ) snake_case__ = os.path.join(__lowerCAmelCase , '''vocab-src.json''' ) print(F"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab snake_case__ = True for k in src_vocab.keys(): if not k.islower(): snake_case__ = False break snake_case__ = Dictionary.load(__lowerCAmelCase ) snake_case__ = rewrite_dict_keys(tgt_dict.indices ) snake_case__ = len(__lowerCAmelCase ) snake_case__ = os.path.join(__lowerCAmelCase , '''vocab-tgt.json''' ) print(F"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) snake_case__ = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" snake_case__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ): break with open(__lowerCAmelCase , encoding='''utf-8''' ) as fin: snake_case__ = fin.read() snake_case__ = re.sub(r''' \d+$''' , '''''' , __lowerCAmelCase , 0 , re.M ) # remove frequency number print(F"""Generating {merges_file}""" ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fout: fout.write(__lowerCAmelCase ) # model config snake_case__ = os.path.join(__lowerCAmelCase , '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", F"""need to extend tokenizer to support bpe={args['tokenizer']}""" snake_case__ = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with snake_case__ = 5 snake_case__ = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: snake_case__ = best_score_hparams[model_dir]['''length_penalty'''] else: snake_case__ = 1.0 print(F"""Generating {fsmt_model_config_file}""" ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config snake_case__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 1024, '''do_lower_case''': do_lower_case, } print(F"""Generating {fsmt_tokenizer_config_file}""" ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model snake_case__ = chkpt['''models'''][0] snake_case__ = model.state_dict() # rename keys to start with 'model.' snake_case__ = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys snake_case__ = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = FSMTConfig.from_pretrained(__lowerCAmelCase ) snake_case__ = FSMTForConditionalGeneration(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) # save snake_case__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(F"""cd {data_root}""" ) print(F"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase__ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
33
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
1
import os import pytest from transformers.dynamic_module_utils import get_imports lowerCamelCase__ : Optional[int] = """ import os """ lowerCamelCase__ : Any = """ def foo(): import os return False """ lowerCamelCase__ : Tuple = """ def foo(): def bar(): if True: import os return False return bar() """ lowerCamelCase__ : List[str] = """ import os try: import bar except ImportError: raise ValueError() """ lowerCamelCase__ : Optional[int] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ lowerCamelCase__ : Union[str, Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ lowerCamelCase__ : Tuple = """ import os try: import bar except ImportError as e: raise ValueError() """ lowerCamelCase__ : Tuple = """ import os try: import bar except: raise ValueError() """ lowerCamelCase__ : List[str] = """ import os try: import bar import baz except ImportError: raise ValueError() """ lowerCamelCase__ : Union[str, Any] = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ lowerCamelCase__ : Optional[Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: snake_case__ = os.path.join(__lowerCAmelCase , '''test_file.py''' ) with open(__lowerCAmelCase , '''w''' ) as _tmp_file: _tmp_file.write(__lowerCAmelCase ) snake_case__ = get_imports(__lowerCAmelCase ) assert parsed_imports == ["os"]
33
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
1
from bisect import bisect from itertools import accumulate def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : x[0] / x[1] , reverse=__lowerCAmelCase ) snake_case__ , snake_case__ = [i[0] for i in r], [i[1] for i in r] snake_case__ = list(accumulate(__lowerCAmelCase ) ) snake_case__ = bisect(__lowerCAmelCase , __lowerCAmelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
1
from __future__ import annotations from typing import Any class __magic_name__ (snake_case_ ): '''simple docstring''' pass class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:Any ): snake_case__ = data snake_case__ = None def __iter__( self:Any ): snake_case__ = self snake_case__ = [] while node: if node in visited: raise ContainsLoopError visited.append(_a ) yield node.data snake_case__ = node.next_node @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = Node(1) lowerCamelCase__ : Union[str, Any] = Node(2) lowerCamelCase__ : Union[str, Any] = Node(3) lowerCamelCase__ : Dict = Node(4) print(root_node.has_loop) # False lowerCamelCase__ : List[str] = root_node.next_node print(root_node.has_loop) # True lowerCamelCase__ : int = Node(5) lowerCamelCase__ : List[Any] = Node(6) lowerCamelCase__ : Dict = Node(5) lowerCamelCase__ : Optional[int] = Node(6) print(root_node.has_loop) # False lowerCamelCase__ : Optional[int] = Node(1) print(root_node.has_loop) # False
33
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase__ : Optional[int] = """src/diffusers""" lowerCamelCase__ : int = """.""" # This is to make sure the diffusers module imported is the one in the repo. lowerCamelCase__ : str = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCamelCase__ : int = spec.loader.load_module() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: return line.startswith(__lowerCAmelCase ) or len(__lowerCAmelCase ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , __lowerCAmelCase ) is not None def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: snake_case__ = object_name.split('''.''' ) snake_case__ = 0 # First let's find the module where our object lives. snake_case__ = parts[i] while i < len(__lowerCAmelCase ) and not os.path.isfile(os.path.join(__lowerCAmelCase , F"""{module}.py""" ) ): i += 1 if i < len(__lowerCAmelCase ): snake_case__ = os.path.join(__lowerCAmelCase , parts[i] ) if i >= len(__lowerCAmelCase ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCAmelCase , F"""{module}.py""" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ = f.readlines() # Now let's find the class / func in the code! snake_case__ = '''''' snake_case__ = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCAmelCase ) and re.search(rF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCAmelCase ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). snake_case__ = line_index while line_index < len(__lowerCAmelCase ) and _should_continue(lines[line_index] , __lowerCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case__ = lines[start_index:line_index] return "".join(__lowerCAmelCase ) lowerCamelCase__ : Dict = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") lowerCamelCase__ : int = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") lowerCamelCase__ : int = re.compile(r"""<FILL\s+[^>]*>""") def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = code.split('''\n''' ) snake_case__ = 0 while idx < len(__lowerCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCAmelCase ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = len(get_indent(__lowerCAmelCase ) ) > 0 if has_indent: snake_case__ = F"""class Bla:\n{code}""" snake_case__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__lowerCAmelCase ) snake_case__ = black.format_str(__lowerCAmelCase , mode=__lowerCAmelCase ) snake_case__ , snake_case__ = style_docstrings_in_code(__lowerCAmelCase ) return result[len('''class Bla:\n''' ) :] if has_indent else result def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ = f.readlines() snake_case__ = [] snake_case__ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCAmelCase ): snake_case__ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. snake_case__ , snake_case__ , snake_case__ = search.groups() snake_case__ = find_code_in_diffusers(__lowerCAmelCase ) snake_case__ = get_indent(__lowerCAmelCase ) snake_case__ = line_index + 1 if indent == theoretical_indent else line_index + 2 snake_case__ = theoretical_indent snake_case__ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. snake_case__ = True while line_index < len(__lowerCAmelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCAmelCase ): break snake_case__ = lines[line_index] snake_case__ = _should_continue(__lowerCAmelCase , __lowerCAmelCase ) and re.search(F"""^{indent}# End copy""" , __lowerCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case__ = lines[start_index:line_index] snake_case__ = ''''''.join(__lowerCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies snake_case__ = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__lowerCAmelCase ) is None] snake_case__ = '''\n'''.join(__lowerCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCAmelCase ) > 0: snake_case__ = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) snake_case__ = [_re_replace_pattern.search(__lowerCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue snake_case__ , snake_case__ , snake_case__ = pattern.groups() snake_case__ = re.sub(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if option.strip() == "all-casing": snake_case__ = re.sub(obja.lower() , obja.lower() , __lowerCAmelCase ) snake_case__ = re.sub(obja.upper() , obja.upper() , __lowerCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line snake_case__ = blackify(lines[start_index - 1] + theoretical_code ) snake_case__ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: snake_case__ = lines[:start_index] + [theoretical_code] + lines[line_index:] snake_case__ = start_index + 1 if overwrite and len(__lowerCAmelCase ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__lowerCAmelCase ) return diffs def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = False ) -> str: snake_case__ = glob.glob(os.path.join(__lowerCAmelCase , '''**/*.py''' ) , recursive=__lowerCAmelCase ) snake_case__ = [] for filename in all_files: snake_case__ = is_copy_consistent(__lowerCAmelCase , __lowerCAmelCase ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCAmelCase ) > 0: snake_case__ = '''\n'''.join(__lowerCAmelCase ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCamelCase__ : Any = parser.parse_args() check_copies(args.fix_and_overwrite)
33
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = """▁""" lowerCamelCase__ : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCamelCase__ : Optional[int] = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } lowerCamelCase__ : List[Any] = { """facebook/xglm-564M""": 2_0_4_8, } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[Any] = ['input_ids', 'attention_mask'] def __init__( self:int , _a:List[Any] , _a:List[str]="<s>" , _a:str="</s>" , _a:int="</s>" , _a:Optional[int]="<s>" , _a:Any="<unk>" , _a:int="<pad>" , _a:Optional[Dict[str, Any]] = None , **_a:int , ): snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case__ = 7 snake_case__ = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case__ = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) snake_case__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} snake_case__ = len(self.sp_model ) snake_case__ = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_a ) snake_case__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self:Optional[int] ): snake_case__ = self.__dict__.copy() snake_case__ = None snake_case__ = self.sp_model.serialized_model_proto() return state def __setstate__( self:Optional[Any] , _a:Union[str, Any] ): snake_case__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:List[int] , _a:Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:List[int] , _a:Optional[List[int]] = None , _a:bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:str ): return self.sp_model.encode(_a , out_type=_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:Optional[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:List[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Any ): snake_case__ = ''''''.join(_a ).replace(_a , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:str , _a:Optional[str] = None ): if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
33
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase__ : List[str] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Any , *_a:Optional[Any] , **_a:Optional[Any] ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
1
lowerCamelCase__ : int = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCamelCase__ : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore snake_case__ = chain(next_number(__lowerCAmelCase ) ) snake_case__ = number_chain while number < 1000_0000: snake_case__ = number_chain number *= 10 return number_chain def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 1000_0000 ) -> int: for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
33
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if height >= 1: move_tower(height - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) move_disk(__lowerCAmelCase , __lowerCAmelCase ) move_tower(height - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: print('''moving disk from''' , __lowerCAmelCase , '''to''' , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: snake_case__ = int(input('''Height of hanoi: ''' ).strip() ) move_tower(__lowerCAmelCase , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
33
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : int = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = 'data2vec-audio' def __init__( self:Optional[int] , _a:str=32 , _a:Tuple=7_68 , _a:List[str]=12 , _a:int=12 , _a:List[str]=30_72 , _a:int="gelu" , _a:Dict=0.1 , _a:int=0.1 , _a:int=0.1 , _a:int=0.0 , _a:Optional[Any]=0.1 , _a:List[Any]=0.1 , _a:Union[str, Any]=0.02 , _a:List[str]=1e-5 , _a:Any="gelu" , _a:Tuple=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _a:Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , _a:List[Any]=(10, 3, 3, 3, 3, 2, 2) , _a:Any=False , _a:Dict=16 , _a:Dict=19 , _a:Optional[int]=5 , _a:Union[str, Any]=0.05 , _a:Any=10 , _a:Tuple=2 , _a:Tuple=0.0 , _a:List[str]=10 , _a:int=0 , _a:Tuple="sum" , _a:Any=False , _a:List[Any]=False , _a:str=2_56 , _a:Dict=(5_12, 5_12, 5_12, 5_12, 15_00) , _a:str=(5, 3, 3, 1, 1) , _a:List[str]=(1, 2, 3, 1, 1) , _a:List[Any]=5_12 , _a:Union[str, Any]=0 , _a:Optional[Any]=1 , _a:Tuple=2 , _a:int=False , _a:Any=3 , _a:int=2 , _a:Optional[Any]=3 , _a:Any=None , **_a:Optional[Any] , ): super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) snake_case__ = hidden_size snake_case__ = feat_extract_activation snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = conv_bias snake_case__ = num_conv_pos_embeddings snake_case__ = num_conv_pos_embedding_groups snake_case__ = conv_pos_kernel_size snake_case__ = len(self.conv_dim ) snake_case__ = num_hidden_layers snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = num_attention_heads snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = feat_proj_dropout snake_case__ = final_dropout snake_case__ = layerdrop snake_case__ = layer_norm_eps snake_case__ = initializer_range snake_case__ = vocab_size snake_case__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ = mask_time_prob snake_case__ = mask_time_length snake_case__ = mask_time_min_masks snake_case__ = mask_feature_prob snake_case__ = mask_feature_length snake_case__ = mask_feature_min_masks # ctc loss snake_case__ = ctc_loss_reduction snake_case__ = ctc_zero_infinity # adapter snake_case__ = add_adapter snake_case__ = adapter_kernel_size snake_case__ = adapter_stride snake_case__ = num_adapter_layers snake_case__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return math.prod(self.conv_stride )
33
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __magic_name__ (unittest.TestCase ): '''simple docstring''' def __init__( self:Union[str, Any] , _a:Optional[int] , _a:Tuple=7 , _a:Dict=3 , _a:Optional[Any]=18 , _a:Optional[Any]=30 , _a:Union[str, Any]=4_00 , _a:str=True , _a:Optional[Any]=32 , _a:Tuple=True , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = image_size snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size_divisor snake_case__ = do_rescale def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = GLPNImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = GLPNImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size_divisor''' ) ) self.assertTrue(hasattr(_a , '''resample''' ) ) self.assertTrue(hasattr(_a , '''do_rescale''' ) ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
33
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
1
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.array: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
33
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ (unittest.TestCase ): '''simple docstring''' def __init__( self:int , _a:Optional[int] , _a:List[Any]=7 , _a:Union[str, Any]=3 , _a:List[str]=18 , _a:Any=30 , _a:str=4_00 , _a:Optional[Any]=True , _a:List[Any]=None , _a:Optional[Any]=True , ): snake_case__ = size if size is not None else {'''height''': 18, '''width''': 18} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = image_size snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize def SCREAMING_SNAKE_CASE__ ( self:int ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self:Any ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''clusters''' ) ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) snake_case__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_a , obj[key] ) ) else: self.assertEqual(obj[key] , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = os.path.join(_a , '''image_processor.json''' ) image_processor_first.to_json_file(_a ) snake_case__ = self.image_processing_class.from_json_file(_a ).to_dict() snake_case__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_a ) snake_case__ = self.image_processing_class.from_pretrained(_a ).to_dict() snake_case__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _a ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): pass def SCREAMING_SNAKE_CASE ( ) -> Dict: snake_case__ = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) snake_case__ = Image.open(dataset[4]['''file'''] ) snake_case__ = Image.open(dataset[5]['''file'''] ) snake_case__ = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) snake_case__ = prepare_images() # test non-batched snake_case__ = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) snake_case__ = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , _a ) # test batched snake_case__ = image_processing(_a , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) snake_case__ = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _a )
33
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list: snake_case__ = int(__lowerCAmelCase ) if n_element < 1: snake_case__ = ValueError('''a should be a positive number''' ) raise my_error snake_case__ = [1] snake_case__ , snake_case__ , snake_case__ = (0, 0, 0) snake_case__ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCamelCase__ : List[str] = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCamelCase__ : Optional[Any] = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
33
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ : List[Any] = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCamelCase_ ( lowerCamelCase ): a__ = '''''' a__ = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(self , **__lowerCAmelCase ) __magic_name__ :List[Any] = repo_info __magic_name__ :Dict = token __magic_name__ :Optional[Any] = None def A ( self ): """simple docstring""" if self.dir_cache is None: __magic_name__ :Any = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __magic_name__ :Optional[int] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(__lowerCAmelCase ): {'''name''': str(__lowerCAmelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def A ( self , __lowerCAmelCase , __lowerCAmelCase = "rb" , **__lowerCAmelCase , ): """simple docstring""" if not isinstance(self.repo_info , __lowerCAmelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) __magic_name__ :Union[str, Any] = hf_hub_url(self.repo_info.id , __lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( __lowerCAmelCase , mode=__lowerCAmelCase , headers=get_authentication_headers_for_url(__lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def A ( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" self._get_dirs() __magic_name__ :str = self._strip_protocol(__lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase=False , **__lowerCAmelCase ): """simple docstring""" self._get_dirs() __magic_name__ :Union[str, Any] = PurePosixPath(path.strip('''/''' ) ) __magic_name__ :Dict = {} for p, f in self.dir_cache.items(): __magic_name__ :int = PurePosixPath(p.strip('''/''' ) ) __magic_name__ :Tuple = p.parent if root == path: __magic_name__ :Optional[Any] = f __magic_name__ :List[Any] = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
0
from __future__ import annotations from collections.abc import Callable __snake_case = list[list[float | int]] def _A ( _lowercase , _lowercase ) -> Matrix: """simple docstring""" __UpperCamelCase = len(_lowercase ) __UpperCamelCase = [[0 for _ in range(size + 1 )] for _ in range(_lowercase )] __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for row in range(_lowercase ): for col in range(_lowercase ): __UpperCamelCase = matrix[row][col] __UpperCamelCase = vector[row][0] __UpperCamelCase = 0 __UpperCamelCase = 0 while row < size and col < size: # pivoting __UpperCamelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowercase , _lowercase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __UpperCamelCase, __UpperCamelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowercase ): __UpperCamelCase = augmented[rowa][col] / augmented[row][col] __UpperCamelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowercase ): for row in range(_lowercase ): __UpperCamelCase = augmented[row][col] / augmented[col][col] for cola in range(_lowercase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowercase ) ] def _A ( _lowercase ) -> Callable[[int], int]: """simple docstring""" __UpperCamelCase = len(_lowercase ) __UpperCamelCase = [[0 for _ in range(_lowercase )] for _ in range(_lowercase )] __UpperCamelCase = [[0] for _ in range(_lowercase )] __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for x_val, y_val in enumerate(_lowercase ): for col in range(_lowercase ): __UpperCamelCase = (x_val + 1) ** (size - col - 1) __UpperCamelCase = y_val __UpperCamelCase = solve(_lowercase , _lowercase ) def interpolated_func(_lowercase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowercase ) ) return interpolated_func def _A ( _lowercase ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _A ( _lowercase = question_function , _lowercase = 10 ) -> int: """simple docstring""" __UpperCamelCase = [func(_lowercase ) for x_val in range(1 , order + 1 )] __UpperCamelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __UpperCamelCase = 0 __UpperCamelCase = 42 __UpperCamelCase = 42 for poly in polynomials: __UpperCamelCase = 1 while func(_lowercase ) == poly(_lowercase ): x_val += 1 ret += poly(_lowercase ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
1
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCAmelCase_ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) UpperCAmelCase_ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} UpperCAmelCase_ = """zero2""" UpperCAmelCase_ = """zero3""" UpperCAmelCase_ = [ZEROa, ZEROa] def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :Dict , _snake_case :Union[str, Any] ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _A = parameterized.to_safe_name('''_'''.join(str(_snake_case ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test UpperCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCamelCase__ ( _A): """simple docstring""" @parameterized.expand(__lowerCAmelCase , name_func=__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str ) -> Dict: self.run_and_check( stage=__lowerCAmelCase , model=__lowerCAmelCase , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCAmelCase , name_func=__lowerCAmelCase ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any ) -> Dict: self.run_and_check( stage=__lowerCAmelCase , model=__lowerCAmelCase , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) @parameterized.expand(__lowerCAmelCase , name_func=__lowerCAmelCase ) def snake_case_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> str: self.run_and_check( stage=__lowerCAmelCase , model=__lowerCAmelCase , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCAmelCase , name_func=__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] ) -> List[str]: self.run_and_check( stage=__lowerCAmelCase , model=__lowerCAmelCase , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] ) -> int: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int = 10 , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , ) -> Any: _A = models[model] _A = self.run_trainer( stage=__lowerCAmelCase , model_name=__lowerCAmelCase , eval_steps=__lowerCAmelCase , num_train_epochs=1 , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) self.do_checks(__lowerCAmelCase ) return output_dir def snake_case_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int = 10 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , ) -> Any: _A = self.get_auto_remove_tmp_dir('''./xxx''' , after=__lowerCAmelCase ) _A = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__lowerCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _A = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _A = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _A = self.get_launcher(__lowerCAmelCase ) _A = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowerCAmelCase , env=self.get_env() ) return output_dir def snake_case_ ( self : List[str] , __lowerCAmelCase : Dict=False ) -> Tuple: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _A = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
2
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def A_( A : int = 100_0000 , A : int = 10): UpperCamelCase = defaultdict(A) for outer_width in range(3 , (t_limit // 4) + 2): if outer_width * outer_width > t_limit: UpperCamelCase = max( ceil(sqrt(outer_width * outer_width - t_limit)) , 1) else: UpperCamelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(A , outer_width - 1 , 2): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10) if __name__ == "__main__": print(f"""{solution() = }""")
3
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list ): _enforce_args(_UpperCAmelCase , _UpperCAmelCase ) if n == 0: return 0 lowerCAmelCase = float('-inf' ) for i in range(1 , n + 1 ): lowerCAmelCase = max( _UpperCAmelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , _UpperCAmelCase ) ) return max_revue def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list ): _enforce_args(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list , _UpperCAmelCase : list ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCAmelCase = float('-inf' ) for i in range(1 , n + 1 ): lowerCAmelCase = max( _UpperCAmelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _UpperCAmelCase , _UpperCAmelCase ) , ) lowerCAmelCase = max_revenue return max_rev[n] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list ): _enforce_args(_UpperCAmelCase , _UpperCAmelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCAmelCase = [float('-inf' ) for _ in range(n + 1 )] lowerCAmelCase = 0 for i in range(1 , n + 1 ): lowerCAmelCase = max_rev[i] for j in range(1 , i + 1 ): lowerCAmelCase = max(_UpperCAmelCase , prices[j - 1] + max_rev[i - j] ) lowerCAmelCase = max_revenue_i return max_rev[n] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : list ): if n < 0: lowerCAmelCase = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(_UpperCAmelCase ) if n > len(_UpperCAmelCase ): lowerCAmelCase = ( 'Each integral piece of rod must have a corresponding price. ' F'Got n = {n} but length of prices = {len(_UpperCAmelCase )}' ) raise ValueError(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [6, 10, 12, 15, 20, 23] lowerCAmelCase = len(_UpperCAmelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCAmelCase = 36 lowerCAmelCase = top_down_cut_rod(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = bottom_up_cut_rod(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = naive_cut_rod_recursive(_UpperCAmelCase , _UpperCAmelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
4
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCamelCase_ : def __init__( self :int , __A :Optional[Any] , __A :Any=13 , __A :Optional[int]=7 , __A :str=True , __A :Tuple=True , __A :Union[str, Any]=True , __A :int=True , __A :Any=99 , __A :Union[str, Any]=64 , __A :int=32 , __A :Tuple=5 , __A :int=4 , __A :Tuple=37 , __A :Optional[Any]="gelu" , __A :Union[str, Any]=0.1 , __A :Any=0.1 , __A :str=512 , __A :Tuple=16 , __A :Optional[Any]=2 , __A :Tuple=0.0_2 , __A :int=3 , __A :Union[str, Any]=4 , __A :List[Any]=None , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = embedding_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def _snake_case ( self :Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self :int ) -> Union[str, Any]: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def _snake_case ( self :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Union[str, Any] , __A :int , __A :str , __A :List[Any] , __A :List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = MegatronBertModel(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A ) SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A ) SCREAMING_SNAKE_CASE__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self :List[Any] , __A :List[str] , __A :Optional[Any] , __A :Optional[int] , __A :List[str] , __A :List[Any] , __A :int , __A :Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = MegatronBertForMaskedLM(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :List[Any] , __A :Any , __A :Tuple , __A :str , __A :str , __A :List[str] , __A :Union[str, Any] , __A :Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = MegatronBertForCausalLM(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self :Tuple , __A :int , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :int , __A :Union[str, Any] , __A :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = MegatronBertForNextSentencePrediction(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self :Union[str, Any] , __A :str , __A :Any , __A :Union[str, Any] , __A :List[Any] , __A :Any , __A :str , __A :Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = MegatronBertForPreTraining(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self :Optional[Any] , __A :int , __A :Optional[Any] , __A :List[Any] , __A :Tuple , __A :Any , __A :Union[str, Any] , __A :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = MegatronBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self :str , __A :int , __A :List[Any] , __A :Tuple , __A :Optional[Any] , __A :Optional[int] , __A :Dict , __A :Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = MegatronBertForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self :Optional[Any] , __A :List[Any] , __A :List[Any] , __A :Any , __A :Tuple , __A :Any , __A :Optional[int] , __A :str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = MegatronBertForTokenClassification(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self :Optional[Any] , __A :int , __A :List[Any] , __A :List[str] , __A :Any , __A :List[Any] , __A :Any , __A :Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = MegatronBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase_ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ = True # test_resize_embeddings = False lowerCamelCase_ = False def _snake_case ( self :int , __A :Tuple , __A :List[str] , __A :int=False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): SCREAMING_SNAKE_CASE__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _snake_case ( self :Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , hidden_size=37 ) def _snake_case ( self :List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self :int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__A ) def _snake_case ( self :List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__A ) def _snake_case ( self :Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__A ) def _snake_case ( self :Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__A ) def _snake_case ( self :Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__A ) def _snake_case ( self :List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__A ) def _snake_case ( self :Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__A ) def _snake_case ( self :Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__A ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) _lowerCamelCase = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""" ) def _snake_case ( self :int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE__ = os.path.join(os.environ["""MYDIR"""] , __A ) SCREAMING_SNAKE_CASE__ = MegatronBertModel.from_pretrained(__A ) model.to(__A ) model.half() SCREAMING_SNAKE_CASE__ = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__A )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , __A ) SCREAMING_SNAKE_CASE__ = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE__ = output[0, ii, jj] SCREAMING_SNAKE_CASE__ = expected[3 * ii + jj] SCREAMING_SNAKE_CASE__ = """ii={} jj={} a={} b={}""".format(__A , __A , __A , __A ) self.assertTrue(math.isclose(__A , __A , rel_tol=__A , abs_tol=__A ) , msg=__A )
6
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
0
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowercase_ ( yaml.SafeLoader ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[Any] ): _A = [self.constructed_objects[key_node] for key_node, _ in node.value] _A = [tuple(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else key for key in keys] _A = Counter(_UpperCAmelCase ) _A = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=False ): _A = super().construct_mapping(_UpperCAmelCase , deep=_UpperCAmelCase ) self._check_no_duplicates_on_constructed_node(_UpperCAmelCase ) return mapping def _snake_case ( _snake_case : str ) -> Tuple[Optional[str], str]: '''simple docstring''' _A = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _A = full_content[1:].index('---' ) + 1 _A = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_snake_case ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' # class attributes UpperCAmelCase : Union[str, Any] = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def lowerCAmelCase_ ( cls : int , _UpperCAmelCase : Path ): with open(_UpperCAmelCase , encoding='utf-8' ) as readme_file: _A , _A = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_UpperCAmelCase ) else: return cls() def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Path ): if path.exists(): with open(_UpperCAmelCase , encoding='utf-8' ) as readme_file: _A = readme_file.read() else: _A = None _A = self._to_readme(_UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[str] = None ): if readme_content is not None: _A , _A = _split_yaml_from_readme(_UpperCAmelCase ) _A = '---\n' + self.to_yaml_string() + '---\n' + content else: _A = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def lowerCAmelCase_ ( cls : List[str] , _UpperCAmelCase : str ): _A = yaml.load(_UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _A = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_UpperCAmelCase , allow_unicode=_UpperCAmelCase , encoding='utf-8' , ).decode('utf-8' ) a = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser a = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') a = ap.parse_args() a = Path(args.readme_filepath) a = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
7
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ : List[str] = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[List[ImageInput]]: if isinstance(__UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCamelCase ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Any = ["pixel_values"] def __init__( self : int , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 2_55 , _snake_case : bool = True , _snake_case : bool = True , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , **_snake_case : Tuple , ): """simple docstring""" super().__init__(**_snake_case ) A__ = size if size is not None else {'shortest_edge': 2_56} A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} A__ = get_size_dict(_snake_case , param_name='crop_size' ) A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = offset A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self : Dict , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : int , ): """simple docstring""" A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" in size: A__ = get_resize_output_image_size(_snake_case , size['shortest_edge'] , default_to_square=_snake_case ) elif "height" in size and "width" in size: A__ = (size['height'], size['width']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Any , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" A__ = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case ) def _a ( self : Optional[Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : bool = True , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" A__ = image.astype(np.floataa ) if offset: A__ = image - (scale / 2) return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Optional[int] , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Tuple , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : List[Any] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A__ = to_numpy_array(_snake_case ) if do_resize: A__ = self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) if do_center_crop: A__ = self.center_crop(_snake_case , size=_snake_case ) if do_rescale: A__ = self.rescale(image=_snake_case , scale=_snake_case , offset=_snake_case ) if do_normalize: A__ = self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) A__ = to_channel_dimension_format(_snake_case , _snake_case ) return image def _a ( self : Union[str, Any] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : str , ): """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = offset if offset is not None else self.offset A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(_snake_case , param_name='crop_size' ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A__ = make_batched(_snake_case ) A__ = [ [ self._preprocess_image( image=_snake_case , do_resize=_snake_case , size=_snake_case , resample=_snake_case , do_center_crop=_snake_case , crop_size=_snake_case , do_rescale=_snake_case , rescale_factor=_snake_case , offset=_snake_case , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , data_format=_snake_case , ) for img in video ] for video in videos ] A__ = {'pixel_values': videos} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
9
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "deta" UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] , _A : Tuple=None , _A : Dict=900 , _A : Union[str, Any]=2048 , _A : Union[str, Any]=6 , _A : List[str]=2048 , _A : str=8 , _A : Optional[int]=6 , _A : List[str]=1024 , _A : Optional[int]=8 , _A : List[str]=0.0 , _A : List[str]=True , _A : Any="relu" , _A : Any=256 , _A : Optional[int]=0.1 , _A : str=0.0 , _A : Dict=0.0 , _A : str=0.02 , _A : Union[str, Any]=1.0 , _A : Union[str, Any]=True , _A : Any=False , _A : Union[str, Any]="sine" , _A : int=5 , _A : Optional[Any]=4 , _A : Any=4 , _A : Union[str, Any]=True , _A : Dict=300 , _A : List[Any]=True , _A : Any=True , _A : Tuple=1 , _A : Optional[int]=5 , _A : str=2 , _A : Tuple=1 , _A : Tuple=1 , _A : Any=5 , _A : Tuple=2 , _A : str=0.1 , _A : List[str]=0.25 , **_A : Dict , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_A , _A ): _UpperCamelCase = backbone_config.pop('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(_A ) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=_A , **_A ) @property def UpperCamelCase_ ( self : Optional[int] ): return self.encoder_attention_heads @property def UpperCamelCase_ ( self : int ): return self.d_model def UpperCamelCase_ ( self : int ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
10
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(A ) , 'Tatoeba directory does not exist.' ) class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ) -> List[str]: """simple docstring""" _a = tempfile.mkdtemp() return TatoebaConverter(save_dir=A ) @slow def a__ (self ) -> Dict: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def a__ (self ) -> Tuple: """simple docstring""" _a , _a = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=A ) assert mmeta["long_pair"] == "heb-eng"
11
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
from __future__ import annotations from collections import Counter from random import random class _snake_case : def __init__( self): '''simple docstring''' lowercase__ : List[Any] = {} def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[int] = {} def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_) if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = probability def lowercase__ ( self): '''simple docstring''' return list(self.connections) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = 0 lowercase__ : List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, int]: '''simple docstring''' lowercase__ : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = Counter(graph.get_nodes() ) lowercase__ : Tuple = start for _ in range(lowercase_ ): lowercase__ : Optional[Any] = graph.transition(lowercase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
12
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A__ : Any = random.Random() def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[Any]=None ) -> Union[str, Any]: if rng is None: __lowerCamelCase : Any = global_rng __lowerCamelCase : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=20_00 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_41_00 , ) -> str: __lowerCamelCase : Dict = parent __lowerCamelCase : Union[str, Any] = batch_size __lowerCamelCase : Any = min_seq_length __lowerCamelCase : List[Any] = max_seq_length __lowerCamelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCamelCase : Any = spectrogram_length __lowerCamelCase : Any = feature_size __lowerCamelCase : List[str] = num_audio_channels __lowerCamelCase : Dict = hop_length __lowerCamelCase : Optional[Any] = chunk_length __lowerCamelCase : Optional[Any] = sampling_rate def lowercase_ ( self ) -> List[str]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowercase_ ( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> Dict: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: __lowerCamelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowerCamelCase : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCamelCase : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict = TvltFeatureExtractor def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = TvltFeatureExtractionTester(self ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'feature_size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'hop_length' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'chunk_length' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'sampling_rate' ) ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : List[str] = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = feat_extract_first.to_dict() __lowerCamelCase : Optional[int] = feat_extract_second.to_dict() __lowerCamelCase : Union[str, Any] = dict_first.pop('mel_filters' ) __lowerCamelCase : List[Any] = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : int = os.path.join(SCREAMING_SNAKE_CASE_ , 'feat_extract.json' ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = feat_extract_first.to_dict() __lowerCamelCase : Optional[Any] = feat_extract_second.to_dict() __lowerCamelCase : Union[str, Any] = dict_first.pop('mel_filters' ) __lowerCamelCase : str = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: # Initialize feature_extractor __lowerCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __lowerCamelCase : int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowerCamelCase : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input __lowerCamelCase : Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __lowerCamelCase : Any = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __lowerCamelCase : Dict = feature_extractor( SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=4_41_00 , mask_audio=SCREAMING_SNAKE_CASE_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __lowerCamelCase : Optional[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __lowerCamelCase : int = np.asarray(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __lowerCamelCase : Union[str, Any] = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowercase_ ( self ) -> Dict: __lowerCamelCase : Tuple = self._load_datasamples(1 ) __lowerCamelCase : List[Any] = TvltFeatureExtractor() __lowerCamelCase : List[str] = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) __lowerCamelCase : str = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
13
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
0
from graphs.minimum_spanning_tree_kruskal import kruskal def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Union[str, Any] = 9 _a : str = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _a : List[str] = kruskal(__a ,__a ) _a : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__a ) == sorted(__a )
14
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) lowercase__ = GenerationConfig.from_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = AutoConfig.from_pretrained("""gpt2""" ) lowercase__ = GenerationConfig.from_model_config(_UpperCAmelCase ) lowercase__ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = GenerationConfig() lowercase__ = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase__ = copy.deepcopy(_UpperCAmelCase ) lowercase__ = generation_config.update(**_UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_UpperCAmelCase , {"""foo""": """bar"""} ) def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" lowercase__ = GenerationConfig() lowercase__ = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(_UpperCAmelCase ) lowercase__ = GenerationConfig.from_pretrained(_UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase__ = GenerationConfig.from_model_config(_UpperCAmelCase ) assert not hasattr(_UpperCAmelCase , """foo""" ) # no new kwargs should be initialized if from config def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase ) lowercase__ = GenerationConfig.from_pretrained(_UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase__ (cls : int ) -> Optional[Any]: """simple docstring""" lowercase__ = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Tuple ) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id="""test-generation-config""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
15
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DanceDiffusionPipeline lowerCamelCase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } lowerCamelCase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : str ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__lowerCamelCase , use_timestep_embedding=__lowerCamelCase , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) SCREAMING_SNAKE_CASE = IPNDMScheduler() SCREAMING_SNAKE_CASE = { "unet": unet, "scheduler": scheduler, } return components def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=0 ): if str(__lowerCamelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = DanceDiffusionPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = output.audios SCREAMING_SNAKE_CASE = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) SCREAMING_SNAKE_CASE = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _snake_case ( self : str ): return super().test_save_load_local() @skip_mps def _snake_case ( self : List[str] ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def _snake_case ( self : Optional[Any] ): return super().test_save_load_optional_components() @skip_mps def _snake_case ( self : Any ): return super().test_attention_slicing_forward_pass() def _snake_case ( self : List[str] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = torch_device SCREAMING_SNAKE_CASE = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) SCREAMING_SNAKE_CASE = output.audios SCREAMING_SNAKE_CASE = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) SCREAMING_SNAKE_CASE = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = torch_device SCREAMING_SNAKE_CASE = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) SCREAMING_SNAKE_CASE = output.audios SCREAMING_SNAKE_CASE = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) SCREAMING_SNAKE_CASE = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
16
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : Optional[Any] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
0
'''simple docstring''' import datasets from .evaluate import evaluate _SCREAMING_SNAKE_CASE = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" _SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" _SCREAMING_SNAKE_CASE = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _lowerCAmelCase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _lowerCAmelCase = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
18
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = """▁""" _a = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } _a = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } _a = { """facebook/s2t-small-librispeech-asr""": 1024, } _a = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] _a = {"""mustc""": MUSTC_LANGS} class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = MAX_MODEL_INPUT_SIZES lowercase__ = ['input_ids', 'attention_mask'] lowercase__ = [] def __init__( self , __a , __a , __a="<s>" , __a="</s>" , __a="<pad>" , __a="<unk>" , __a=False , __a=False , __a=None , __a=None , __a = None , **__a , ) -> None: '''simple docstring''' _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _UpperCamelCase = do_upper_case _UpperCamelCase = do_lower_case _UpperCamelCase = load_json(__a) _UpperCamelCase = {v: k for k, v in self.encoder.items()} _UpperCamelCase = spm_file _UpperCamelCase = load_spm(__a , self.sp_model_kwargs) if lang_codes is not None: _UpperCamelCase = lang_codes _UpperCamelCase = LANGUAGES[lang_codes] _UpperCamelCase = [F'''<lang:{lang}>''' for lang in self.langs] _UpperCamelCase = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''') for lang in self.langs} _UpperCamelCase = self.lang_tokens _UpperCamelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang) else: _UpperCamelCase = {} @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return len(self.encoder) @property def UpperCAmelCase ( self) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def UpperCAmelCase ( self , __a) -> None: '''simple docstring''' _UpperCamelCase = new_tgt_lang self.set_tgt_lang_special_tokens(__a) def UpperCAmelCase ( self , __a) -> None: '''simple docstring''' _UpperCamelCase = self.lang_code_to_id[tgt_lang] _UpperCamelCase = [lang_code_id] def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' return self.sp_model.encode(__a , out_type=__a) def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' return self.encoder.get(__a , self.encoder[self.unk_token]) def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' return self.decoder.get(__a , self.unk_token) def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _UpperCamelCase = self.sp_model.decode(__a) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _UpperCamelCase = [] else: current_sub_tokens.append(__a) _UpperCamelCase = self.sp_model.decode(__a) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCAmelCase ( self , __a , __a=None) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , __a , __a = None , __a = False) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a) _UpperCamelCase = [1] * len(self.prefix_tokens) _UpperCamelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__a)) + suffix_ones return prefix_ones + ([0] * len(__a)) + ([0] * len(__a)) + suffix_ones def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self , __a) -> None: '''simple docstring''' _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): _UpperCamelCase = {} _UpperCamelCase = load_spm(self.spm_file , self.sp_model_kwargs) def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' _UpperCamelCase = Path(__a) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' _UpperCamelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _UpperCamelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __a) if os.path.abspath(self.spm_file) != os.path.abspath(__a) and os.path.isfile(self.spm_file): copyfile(self.spm_file , __a) elif not os.path.isfile(self.spm_file): with open(__a , '''wb''') as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__a) return (str(__a), str(__a)) def lowerCamelCase__ ( __snake_case, __snake_case ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _UpperCamelCase = sentencepiece.SentencePieceProcessor(**__snake_case ) spm.Load(str(__snake_case ) ) return spm def lowerCamelCase__ ( __snake_case ) -> Union[Dict, List]: """simple docstring""" with open(__snake_case, '''r''' ) as f: return json.load(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> None: """simple docstring""" with open(__snake_case, '''w''' ) as f: json.dump(__snake_case, __snake_case, indent=2 )
19
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowercase( __a : str , __a : int ): # Load checkpoint a__ =torch.load(__a , map_location='cpu' ) a__ =chkpt['model'] # We have the base model one level deeper than the original XLM repository a__ ={} for k, v in state_dict.items(): if "pred_layer" in k: a__ =v else: a__ =v a__ =chkpt['params'] a__ ={n: v for n, v in config.items() if not isinstance(__a , (torch.FloatTensor, numpy.ndarray) )} a__ =chkpt['dico_word2id'] a__ ={s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model a__ =pytorch_dump_folder_path + '/' + WEIGHTS_NAME a__ =pytorch_dump_folder_path + '/' + CONFIG_NAME a__ =pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__a , __a ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) if __name__ == "__main__": _lowerCAmelCase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCAmelCase: int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
20
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
0
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __magic_name__ : Union[str, Any] =n - k # Calculate C(n,k) for i in range(lowerCamelCase ): result *= n - i result //= i + 1 return result def lowerCAmelCase_ ( lowerCamelCase ): return binomial_coefficient(2 * node_count , lowerCamelCase ) // (node_count + 1) def lowerCAmelCase_ ( lowerCamelCase ): if n < 0: raise ValueError("""factorial() not defined for negative values""" ) __magic_name__ : List[str] =1 for i in range(1 , n + 1 ): result *= i return result def lowerCAmelCase_ ( lowerCamelCase ): return catalan_number(lowerCamelCase ) * factorial(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
21
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
0
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Optional[int]=5 ): '''simple docstring''' assert masked_input.count('''<mask>''' ) == 1 _a = torch.tensor(tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1 _a = model(UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple _a = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _a = logits[0, masked_index, :] _a = logits.softmax(dim=0 ) _a , _a = prob.topk(k=UpperCamelCase , dim=0 ) _a = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(UpperCamelCase ) )] ) _a = tokenizer.mask_token _a = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): _a = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(UpperCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(UpperCamelCase ) , UpperCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(UpperCamelCase , UpperCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _snake_case : Optional[Any] = CamembertTokenizer.from_pretrained('camembert-base') _snake_case : str = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() _snake_case : str = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
22
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
0
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : Optional[int] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : Tuple = { """allenai/led-base-16384""": 1_6_3_8_4, } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = LEDTokenizer A_ = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ) -> Tuple: super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: UpperCamelCase_ = getattr(_UpperCAmelCase , pre_tok_state.pop('type' ) ) UpperCamelCase_ = add_prefix_space UpperCamelCase_ = pre_tok_class(**_UpperCAmelCase ) UpperCamelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase_ = 'post_processor' UpperCamelCase_ = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: UpperCamelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase_ = tuple(state['sep'] ) if "cls" in state: UpperCamelCase_ = tuple(state['cls'] ) UpperCamelCase_ = False if state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: UpperCamelCase_ = add_prefix_space UpperCamelCase_ = True if state.get('trim_offsets' , _UpperCAmelCase ) != trim_offsets: UpperCamelCase_ = trim_offsets UpperCamelCase_ = True if changes_to_apply: UpperCamelCase_ = getattr(_UpperCAmelCase , state.pop('type' ) ) UpperCamelCase_ = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value UpperCamelCase_ = value def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> BatchEncoding: UpperCamelCase_ = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> BatchEncoding: UpperCamelCase_ = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: UpperCamelCase_ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> Optional[Any]: UpperCamelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ) -> dict: UpperCamelCase_ = super()._pad( encoded_inputs=_UpperCAmelCase , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase_ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase_ = len(encoded_inputs['global_attention_mask'] ) != len(_UpperCAmelCase ) if needs_to_be_padded: UpperCamelCase_ = len(_UpperCAmelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase_ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase_ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
23
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=19 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> List[Any]: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__SCREAMING_SNAKE_CASE , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __snake_case = EsmForProteinFolding(config=__SCREAMING_SNAKE_CASE ).float() model.to(__SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) __snake_case = model(__SCREAMING_SNAKE_CASE ) __snake_case = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): __lowercase : List[str] = False __lowercase : Dict = (EsmForProteinFolding,) if is_torch_available() else () __lowercase : Union[str, Any] = () __lowercase : List[str] = {} if is_torch_available() else {} __lowercase : List[Any] = False def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = EsmFoldModelTester(self ) __snake_case = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip('''Does not support attention outputs''' ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' pass @unittest.skip def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('''ESMFold only has one output format.''' ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold does not support input chunking.''' ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' pass @require_torch class lowerCAmelCase ( __lowerCAmelCase): @slow def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() __snake_case = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __snake_case = model(__SCREAMING_SNAKE_CASE )['''positions'''] __snake_case = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
24
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='swin2sr' lowerCamelCase__ ={ 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , a : List[Any]=64 , a : List[str]=1 , a : int=3 , a : Union[str, Any]=180 , a : Union[str, Any]=[6, 6, 6, 6, 6, 6] , a : Union[str, Any]=[6, 6, 6, 6, 6, 6] , a : Any=8 , a : List[Any]=2.0 , a : List[Any]=True , a : Optional[Any]=0.0 , a : Union[str, Any]=0.0 , a : Union[str, Any]=0.1 , a : List[Any]="gelu" , a : Any=False , a : Any=0.02 , a : Tuple=1e-5 , a : Optional[int]=2 , a : List[str]=1.0 , a : int="1conv" , a : Dict="pixelshuffle" , **a : str , ) -> Optional[Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : int = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Tuple = embed_dim SCREAMING_SNAKE_CASE : Dict = depths SCREAMING_SNAKE_CASE : Tuple = len(a ) SCREAMING_SNAKE_CASE : Tuple = num_heads SCREAMING_SNAKE_CASE : Dict = window_size SCREAMING_SNAKE_CASE : Optional[int] = mlp_ratio SCREAMING_SNAKE_CASE : str = qkv_bias SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = upscale SCREAMING_SNAKE_CASE : int = img_range SCREAMING_SNAKE_CASE : List[Any] = resi_connection SCREAMING_SNAKE_CASE : List[str] = upsampler
25
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : Any = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def __lowerCAmelCase( ) -> Any: """simple docstring""" _A = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _A = get_sagemaker_input() else: _A = get_cluster_input() return config def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('config' , description=_SCREAMING_SNAKE_CASE ) else: _A = argparse.ArgumentParser('Accelerate config command' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '--config_file' , default=_SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = get_user_input() if args.config_file is not None: _A = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _A = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(F"accelerate configuration saved at {config_file}" ) def __lowerCAmelCase( ) -> Union[str, Any]: """simple docstring""" _A = config_command_parser() _A = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): '''simple docstring''' self.test() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : str = self.advance() if not self.does_advance(A ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.update(A ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A=False ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super(A, self ).__init__() if not isinstance(A, A ) or len(A ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(A, A ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) SCREAMING_SNAKE_CASE : Tuple = token_ids SCREAMING_SNAKE_CASE : Tuple = len(self.token_ids ) SCREAMING_SNAKE_CASE : Optional[int] = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def UpperCamelCase_ ( self ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(A )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : int = False if self.does_advance(A ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : int = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : int = True self.reset() return stepped, completed, reset def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Dict = 0 def UpperCamelCase_ ( self ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase_ ( self, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : List[Any] = self.fulfilled_idx SCREAMING_SNAKE_CASE : List[Any] = self.completed return new_constraint class _a : '''simple docstring''' def __init__( self, A, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = max([len(A ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : Optional[int] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Dict = root for tidx, token_id in enumerate(A ): if token_id not in level: SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Optional[Any] = level[token_id] if no_subsets and self.has_subsets(A, A ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F" {nested_token_ids}." ) SCREAMING_SNAKE_CASE : Any = root def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : Optional[Any] = start[current_token] SCREAMING_SNAKE_CASE : Optional[Any] = list(start.keys() ) return next_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.next_tokens(A ) return len(A ) == 0 def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = list(root.values() ) if len(A ) == 0: return 1 else: return sum([self.count_leaves(A ) for nn in next_nodes] ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.count_leaves(A ) return len(A ) != leaf_count class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super(A, self ).__init__() if not isinstance(A, A ) or len(A ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(A, A ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(A, A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) SCREAMING_SNAKE_CASE : Dict = DisjunctiveTrie(A ) SCREAMING_SNAKE_CASE : int = nested_token_ids SCREAMING_SNAKE_CASE : int = self.trie.max_height SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(A ) == 0: return None else: return token_list def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[Any] = False if self.does_advance(A ): self.current_seq.append(A ) SCREAMING_SNAKE_CASE : Tuple = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : int = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[str] = completed return stepped, completed, reset def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCamelCase_ ( self ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase_ ( self, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Tuple = self.seqlen SCREAMING_SNAKE_CASE : Dict = self.current_seq SCREAMING_SNAKE_CASE : str = self.completed return new_constraint class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : List[str] = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : str = len(A ) SCREAMING_SNAKE_CASE : Any = False self.init_state() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : str = [constraint.copy(stateful=A ) for constraint in self.constraints] def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : List[str] = constraint.advance() if isinstance(A, A ): token_list.append(A ) elif isinstance(A, A ): token_list.extend(A ) else: SCREAMING_SNAKE_CASE : List[Any] = self.inprogress_constraint.advance() if isinstance(A, A ): token_list.append(A ) elif isinstance(A, A ): token_list.extend(A ) if len(A ) == 0: return None else: return token_list def UpperCamelCase_ ( self, A ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.add(A ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.update(A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A ) ) SCREAMING_SNAKE_CASE : Dict = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : Any = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[int] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = pending_constraint.update(A ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A ) SCREAMING_SNAKE_CASE : Optional[Any] = None if not complete and stepped: SCREAMING_SNAKE_CASE : Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Any = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : Dict = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase_ ( self, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : int = [ constraint.copy(stateful=A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.copy(stateful=A ) SCREAMING_SNAKE_CASE : Optional[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
28
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = jnp.ones((batch_size, length) ) / length return scores def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ = jax.nn.softmax(_lowerCAmelCase , axis=-1 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE_ = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() SCREAMING_SNAKE_CASE_ = top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE_ = np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 20) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 1) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 4) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 10 # no processor list SCREAMING_SNAKE_CASE_ = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores SCREAMING_SNAKE_CASE_ = jax.jit(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jax.jit(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
31
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
0
from math import isqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> list[int]: """simple docstring""" _UpperCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]] def A__ ( SCREAMING_SNAKE_CASE_ : int = 10**8 ) -> int: """simple docstring""" _UpperCAmelCase = calculate_prime_numbers(max_number // 2 ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
32
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
0
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> None: UpperCamelCase = data UpperCamelCase = None def __iter__( self) -> Optional[Any]: UpperCamelCase = self UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase_) yield node.data UpperCamelCase = node.next_node @property def UpperCAmelCase__ ( self) -> bool: try: list(self) return False except ContainsLoopError: return True if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = Node(1) SCREAMING_SNAKE_CASE_ = Node(2) SCREAMING_SNAKE_CASE_ = Node(3) SCREAMING_SNAKE_CASE_ = Node(4) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE_ = root_node.next_node print(root_node.has_loop) # True SCREAMING_SNAKE_CASE_ = Node(5) SCREAMING_SNAKE_CASE_ = Node(6) SCREAMING_SNAKE_CASE_ = Node(5) SCREAMING_SNAKE_CASE_ = Node(6) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE_ = Node(1) print(root_node.has_loop) # False
34
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor a_ :List[str] = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): def __init__( self : Dict , *_lowercase : Tuple , **_lowercase : Tuple ): warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
35
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowercase : List[Any] = logging.get_logger(__name__) def lowercase ( __A : Any ) -> Dict: '''simple docstring''' snake_case : int = DPTConfig() if "large" in checkpoint_url: snake_case : Optional[Any] = 1024 snake_case : List[str] = 4096 snake_case : Optional[int] = 24 snake_case : Dict = 16 snake_case : Optional[Any] = [5, 11, 17, 23] snake_case : int = [256, 512, 1024, 1024] snake_case : int = (1, 384, 384) if "ade" in checkpoint_url: snake_case : str = True snake_case : Optional[int] = 150 snake_case : List[str] = """huggingface/label-files""" snake_case : Optional[int] = """ade20k-id2label.json""" snake_case : Optional[int] = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type="""dataset""" ) ) , """r""" ) ) snake_case : Tuple = {int(__A ): v for k, v in idalabel.items()} snake_case : Any = idalabel snake_case : Any = {v: k for k, v in idalabel.items()} snake_case : Dict = [1, 150, 480, 480] return config, expected_shape def lowercase ( __A : int ) -> int: '''simple docstring''' snake_case : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__A , __A ) def lowercase ( __A : Tuple ) -> str: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case : List[str] = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: snake_case : int = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: snake_case : Tuple = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: snake_case : List[str] = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: snake_case : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: snake_case : int = name.replace("""proj""" , """projection""" ) if "blocks" in name: snake_case : Union[str, Any] = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: snake_case : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: snake_case : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: snake_case : str = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: snake_case : Dict = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: snake_case : Optional[int] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: snake_case : Tuple = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: snake_case : Any = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: snake_case : Optional[Any] = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: snake_case : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case : Tuple = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: snake_case : Tuple = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: snake_case : Optional[Any] = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: snake_case : Optional[Any] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: snake_case : Dict = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: snake_case : List[Any] = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case : List[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case : List[str] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case : List[str] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case : Any = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: snake_case : Tuple = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: snake_case : Optional[int] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: snake_case : Any = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: snake_case : List[Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: snake_case : List[str] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: snake_case : str = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: snake_case : Any = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: snake_case : Optional[Any] = name.replace("""bn""" , """batch_norm""" ) if "head" in name: snake_case : Optional[int] = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: snake_case : Optional[int] = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: snake_case : Union[str, Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def lowercase ( __A : Dict , __A : Tuple ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case : Any = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) snake_case : List[str] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[int] = in_proj_weight[: config.hidden_size, :] snake_case : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( ) -> Any: '''simple docstring''' snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : List[Any] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def lowercase ( __A : Tuple , __A : Optional[int] , __A : Optional[Any] , __A : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_dpt_config(__A ) # load original state_dict from URL snake_case : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__A ) # rename keys for key in state_dict.copy().keys(): snake_case : Optional[Any] = state_dict.pop(__A ) snake_case : List[str] = val # read in qkv matrices read_in_q_k_v(__A , __A ) # load HuggingFace model snake_case : int = DPTForSemanticSegmentation(__A ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__A ) model.load_state_dict(__A ) model.eval() # Check outputs on an image snake_case : int = 480 if """ade""" in checkpoint_url else 384 snake_case : Optional[int] = DPTImageProcessor(size=__A ) snake_case : List[Any] = prepare_img() snake_case : Optional[Any] = image_processor(__A , return_tensors="""pt""" ) # forward pass snake_case : Any = model(**__A ).logits if """ade""" in checkpoint_url else model(**__A ).predicted_depth # Assert logits snake_case : int = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: snake_case : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(__A ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __A , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __A ) ) Path(__A ).mkdir(exist_ok=__A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=__A , ) image_processor.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=__A , ) if __name__ == "__main__": __lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) __lowercase : List[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
36
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
0
def UpperCamelCase_ ( __a ) -> float: return 10 - x * x def UpperCamelCase_ ( __a , __a ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(__a ) * equation(__a ) >= 0: raise ValueError("Wrong space!" ) a__ : Any = a while (b - a) >= 0.01: # Find middle point a__ : str = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: a__ : Dict = c else: a__ : Tuple = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
37
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor A_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
38
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
39
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
0
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __UpperCAmelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir, 'schedulers/' ) ) UpperCamelCase : int = self.diffusers_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE_, 'src/diffusers/schedulers/scheduling_ddpm.py' ), os.path.join(self.diffusers_dir, 'schedulers/scheduling_ddpm.py' ), ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Dict = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: UpperCamelCase : str = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCamelCase : List[Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCamelCase : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) UpperCamelCase : Any = black.format_str(SCREAMING_SNAKE_CASE_, mode=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = os.path.join(self.diffusers_dir, 'new_code.py' ) with open(SCREAMING_SNAKE_CASE_, 'w', newline='\n' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_, 'r' ) as f: self.assertTrue(f.read(), SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : Any = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput', 'DDPMSchedulerOutput', REFERENCE_CODE + '\n', ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput', 'DDPMSchedulerOutput', SCREAMING_SNAKE_CASE_, ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test', 'TestSchedulerOutput', re.sub('DDPM', 'Test', SCREAMING_SNAKE_CASE_ ), ) # Copy consistency with a really long name UpperCamelCase : Any = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""", F"""{long_class_name}SchedulerOutput""", re.sub('Bert', SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test', 'TestSchedulerOutput', SCREAMING_SNAKE_CASE_, overwrite_result=re.sub('DDPM', 'Test', SCREAMING_SNAKE_CASE_ ), )
40
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCAmelCase__ = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowerCAmelCase__ = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' lowerCAmelCase__ = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' ,id='''sequence''' ) ,id='''references''' ), } ) ,codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] ,reference_urls=[ '''https://github.com/m-popovic/chrF''', ] ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : int = CHRF.CHAR_ORDER ,lowercase__ : int = CHRF.WORD_ORDER ,lowercase__ : int = CHRF.BETA ,lowercase__ : bool = False ,lowercase__ : bool = False ,lowercase__ : bool = False ,): __lowercase = len(references[0] ) if any(len(lowercase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowercase = [[refs[i] for refs in references] for i in range(lowercase__ )] __lowercase = CHRF(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = sb_chrf.corpus_score(lowercase__ ,lowercase__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
41
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'xlm-prophetnet' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 30522 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = num_encoder_layers lowerCamelCase_ = num_encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = num_decoder_layers lowerCamelCase_ = num_decoder_attention_heads lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = init_std # Normal(0, this parameter) lowerCamelCase_ = activation_function # parameters for xlmprophetnet lowerCamelCase_ = ngram lowerCamelCase_ = num_buckets lowerCamelCase_ = relative_max_distance lowerCamelCase_ = disable_ngram_loss lowerCamelCase_ = eps # 3 Types of Dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = dropout lowerCamelCase_ = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
42
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
0
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
0
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A ( lowercase__ : int ) -> Optional[int]: UpperCamelCase__ :Dict = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCamelCase__ :str = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCamelCase__ :List[str] = 0.01 with locka.acquire(): with pytest.raises(lowercase__ ): UpperCamelCase__ :Optional[Any] = time.time() locka.acquire(lowercase__ ) assert time.time() - _start > timeout def A ( lowercase__ : str ) -> int: UpperCamelCase__ :str = """a""" * 1000 + """.lock""" UpperCamelCase__ :str = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowercase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCamelCase__ :List[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase__ ): locka.acquire(0 )
45
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class A_ : lowerCAmelCase__ = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'The column name of the images in the files.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'A folder containing the training data.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'A folder containing the validation data.'} ) lowerCAmelCase__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = {} if self.train_dir is not None: _lowerCamelCase : Optional[Any] = self.train_dir if self.validation_dir is not None: _lowerCamelCase : str = self.validation_dir _lowerCamelCase : Any = data_files if data_files else None @dataclass class A_ : lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCAmelCase__ = field( default=_a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class A_ ( _a ): lowerCAmelCase__ = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : int = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCamelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _lowerCamelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase : int = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowerCamelCase ) and data_args.train_val_split > 0.0: _lowerCamelCase : Dict = ds["train"].train_test_split(data_args.train_val_split ) _lowerCamelCase : List[Any] = split["train"] _lowerCamelCase : List[str] = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Tuple = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCamelCase : Dict = ViTMAEConfig.from_pretrained(model_args.config_name , **_lowerCamelCase ) elif model_args.model_name_or_path: _lowerCamelCase : Optional[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_lowerCamelCase ) else: _lowerCamelCase : str = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _lowerCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_lowerCamelCase ) elif model_args.model_name_or_path: _lowerCamelCase : Tuple = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_lowerCamelCase ) else: _lowerCamelCase : Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: _lowerCamelCase : Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) _lowerCamelCase : Optional[Any] = ViTMAEForPreTraining(_lowerCamelCase ) if training_args.do_train: _lowerCamelCase : int = ds["train"].column_names else: _lowerCamelCase : List[Any] = ds["validation"].column_names if data_args.image_column_name is not None: _lowerCamelCase : List[Any] = data_args.image_column_name elif "image" in column_names: _lowerCamelCase : int = "image" elif "img" in column_names: _lowerCamelCase : Tuple = "img" else: _lowerCamelCase : Tuple = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _lowerCamelCase : Dict = image_processor.size["shortest_edge"] else: _lowerCamelCase : Optional[int] = (image_processor.size["height"], image_processor.size["width"]) _lowerCamelCase : Optional[Any] = Compose( [ Lambda(lambda _lowerCamelCase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(_lowerCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_lowerCamelCase ): _lowerCamelCase : Optional[Any] = [transforms(_lowerCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _lowerCamelCase : int = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _lowerCamelCase : Optional[int] = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_lowerCamelCase ) # Compute absolute learning rate _lowerCamelCase : List[str] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _lowerCamelCase : int = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _lowerCamelCase : Any = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCamelCase : str = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : Union[str, Any] = last_checkpoint _lowerCamelCase : List[Any] = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) # Write model card and (optionally) push to hub _lowerCamelCase : int = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
46
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : Tuple = torch.nn.Linear(1_0 , 1_0 ) __a : Union[str, Any] = torch.optim.SGD(model.parameters() , 0.1 ) __a : Dict = Accelerator() __a : Union[str, Any] = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) try: pickle.loads(pickle.dumps(SCREAMING_SNAKE_CASE__ ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class A : def __init__( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = {} def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : str , __magic_name__ : float ): """simple docstring""" if nodea not in self.connections: self.add_node(__magic_name__ ) if nodea not in self.connections: self.add_node(__magic_name__ ) lowerCAmelCase__ = probability def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return list(self.connections ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A ( UpperCamelCase_ : str , UpperCamelCase_ : list[tuple[str, str, float]] , UpperCamelCase_ : int ) -> dict[str, int]: '''simple docstring''' lowerCAmelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = Counter(graph.get_nodes() ) lowerCAmelCase__ = start for _ in range(UpperCamelCase_ ): lowerCAmelCase__ = graph.transition(UpperCamelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
48
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowerCamelCase__ = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model def UpperCamelCase_ ( self ): lowerCamelCase__ = self.dummy_uncond_unet lowerCamelCase__ = PNDMScheduler() lowerCamelCase__ = PNDMPipeline(unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ) pndm.to(_lowerCAmelCase ) pndm.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pndm(generator=_lowerCAmelCase ,num_inference_steps=20 ,output_type="""numpy""" ).images lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pndm(generator=_lowerCAmelCase ,num_inference_steps=20 ,output_type="""numpy""" ,return_dict=_lowerCAmelCase )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = """google/ddpm-cifar10-32""" lowerCamelCase__ = UNetaDModel.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = PNDMScheduler() lowerCamelCase__ = PNDMPipeline(unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ) pndm.to(_lowerCAmelCase ) pndm.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pndm(generator=_lowerCAmelCase ,output_type="""numpy""" ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
50
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": a__ : int = input('Enter image url: ').strip() print(F"""Downloading image from {url} ...""") a__ : Dict = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image a__ : List[str] = soup.find('meta', {'property': 'og:image'})['content'] a__ : Optional[int] = requests.get(image_url).content a__ : Tuple = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
51
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
0
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ProphetNetTokenizer __lowerCAmelCase = False def _lowerCamelCase ( self ): super().setUp() __a : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = '''UNwant\u00E9d,running''' __a : List[Any] = '''unwanted, running''' return input_text, output_text def _lowerCamelCase ( self ): __a : Optional[Any] = self.tokenizer_class(self.vocab_file ) __a : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def _lowerCamelCase ( self ): __a : Any = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _lowerCamelCase ( self ): __a : Optional[int] = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self ): __a : List[Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _lowerCamelCase ( self ): __a : Optional[Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self ): __a : int = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self ): __a : List[Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self ): __a : Union[str, Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self ): __a : List[Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self ): __a : Any = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _lowerCamelCase ( self ): __a : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a : str = {} for i, token in enumerate(_UpperCAmelCase ): __a : Tuple = i __a : Dict = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def _lowerCamelCase ( self ): __a : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) __a : Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __a : List[Any] = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __a : List[str] = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _lowerCamelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _lowerCamelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _lowerCamelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def _lowerCamelCase ( self ): __a : Tuple = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) __a : List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=_UpperCAmelCase ) __a : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_UpperCAmelCase ) __a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __a : List[str] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
52
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : str = logging.get_logger(__name__) _snake_case : Any = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """speech_to_text_2""" a_ = ["""past_key_values"""] a_ = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Tuple , lowerCAmelCase_ : str=1_0_0_0_0 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]="relu" , lowerCAmelCase_ : int=2_5_6 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1_0_2_4 , **lowerCAmelCase_ : Optional[Any] , ) -> Optional[Any]: __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = decoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = max_target_positions super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
53
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __lowercase : Optional[int] =logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Path , _lowerCAmelCase: Union[str, None] = None , _lowerCAmelCase: Union[List[str], None] = None , _lowerCAmelCase: Union[str, List[str], None] = None , _lowerCAmelCase: bool = True , ) -> Dict: '''simple docstring''' UpperCAmelCase_ =[file for file in os.listdir(_lowerCAmelCase ) if os.path.isfile(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )] if identifier is not None: UpperCAmelCase_ =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for n_ in n_identifier: UpperCAmelCase_ =[file for file in files if n_ not in file] else: UpperCAmelCase_ =[file for file in files if n_identifier not in file] UpperCAmelCase_ =ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ =[file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , _lowerCAmelCase ) if only_modules: UpperCAmelCase_ =file.split("." )[0] try: UpperCAmelCase_ =getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =doctest.DocTestSuite(_lowerCAmelCase ) UpperCAmelCase_ =unittest.TextTestRunner().run(_lowerCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCAmelCase_ =doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =Path("src/transformers" ) UpperCAmelCase_ ="modeling" UpperCAmelCase_ =[ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(_lowerCAmelCase , identifier=_lowerCAmelCase , ignore_files=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =Path("src/transformers" ) UpperCAmelCase_ ="tokenization" self.analyze_directory(_lowerCAmelCase , identifier=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =Path("src/transformers" ) UpperCAmelCase_ ="configuration" self.analyze_directory(_lowerCAmelCase , identifier=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =Path("src/transformers" ) UpperCAmelCase_ =["configuration", "modeling", "tokenization"] self.analyze_directory(_lowerCAmelCase , n_identifier=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =Path("docs/source" ) UpperCAmelCase_ =["favicon.ico"] self.analyze_directory(_lowerCAmelCase , ignore_files=_lowerCAmelCase , only_modules=_lowerCAmelCase )
54
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
0
from manim import * class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : str ): __A = Rectangle(height=0.5 ,width=0.5 ) __A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) __A = [mem.copy() for i in range(6 )] __A = [mem.copy() for i in range(6 )] __A = VGroup(*A ).arrange(A ,buff=0 ) __A = VGroup(*A ).arrange(A ,buff=0 ) __A = VGroup(A ,A ).arrange(A ,buff=0 ) __A = Text("CPU" ,font_size=24 ) __A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A ) __A = [mem.copy() for i in range(1 )] __A = VGroup(*A ).arrange(A ,buff=0 ) __A = Text("GPU" ,font_size=24 ) __A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A ) gpu.align_to(A ,A ) gpu.set_x(gpu.get_x() - 1 ) self.add(A ) __A = [mem.copy() for i in range(6 )] __A = VGroup(*A ).arrange(A ,buff=0 ) __A = Text("Model" ,font_size=24 ) __A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A ) model.move_to([3, -1.0, 0] ) self.play( Create(A ,run_time=1 ) ,Create(A ,run_time=1 ) ,Create(A ,run_time=1 ) ,) __A = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) __A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __A = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(A ,run_time=2.5 ) ,Write(A ) ,Write(A ) ) self.add(A ) __A = [] __A = [] __A = [] for i, rect in enumerate(A ): __A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(A ,opacity=0.7 ) cpu_target.move_to(A ) cpu_target.generate_target() __A = 0.46 / 4 __A = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=A ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=A ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=A ,buff=0.0 ) cpu_targs.append(A ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(A ) ) second_animations.append(MoveToTarget(A ,run_time=1.5 ) ) self.play(*A ) self.play(*A ) self.wait()
55
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github _a : Optional[Any] = [ "good first issue", "feature request", "wip", ] def _a () -> Any: """simple docstring""" __snake_case = Github(os.environ['GITHUB_TOKEN'] ) __snake_case = g.get_repo('huggingface/accelerate' ) __snake_case = repo.get_issues(state='open' ) for issue in open_issues: __snake_case = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __snake_case = comments[0] if len(lowercase__ ) > 0 else None __snake_case = dt.utcnow() __snake_case = (current_time - issue.updated_at).days __snake_case = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
56
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =KandinskyVaaControlnetImgaImgPipeline a : List[Any] =['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] a : List[str] =['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] a : Union[str, Any] =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] a : List[Any] =False @property def _a ( self ): return 3_2 @property def _a ( self ): return 3_2 @property def _a ( self ): return self.time_input_dim @property def _a ( self ): return self.time_input_dim * 4 @property def _a ( self ): return 1_0_0 @property def _a ( self ): torch.manual_seed(0 ) UpperCamelCase_: Dict = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCamelCase_: str = UNetaDConditionModel(**_lowerCamelCase ) return model @property def _a ( self ): return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self ): torch.manual_seed(0 ) UpperCamelCase_: Tuple = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self ): UpperCamelCase_: Union[str, Any] = self.dummy_unet UpperCamelCase_: List[Any] = self.dummy_movq UpperCamelCase_: Optional[int] = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } UpperCamelCase_: Tuple = DDIMScheduler(**_lowerCamelCase ) UpperCamelCase_: Tuple = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): UpperCamelCase_: Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCamelCase_: Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image UpperCamelCase_: Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCamelCase_: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_: Optional[Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint UpperCamelCase_: Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('mps' ): UpperCamelCase_: Tuple = torch.manual_seed(_lowerCamelCase ) else: UpperCamelCase_: int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCamelCase_: str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _a ( self ): UpperCamelCase_: Union[str, Any] = 'cpu' UpperCamelCase_: str = self.get_dummy_components() UpperCamelCase_: str = self.pipeline_class(**_lowerCamelCase ) UpperCamelCase_: Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) UpperCamelCase_: Union[str, Any] = output.images UpperCamelCase_: str = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] UpperCamelCase_: Tuple = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase_: int = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): UpperCamelCase_: Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) UpperCamelCase_: List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) UpperCamelCase_: List[str] = init_image.resize((5_1_2, 5_1_2) ) UpperCamelCase_: str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) UpperCamelCase_: Optional[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 UpperCamelCase_: Optional[int] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase_: Union[str, Any] = 'A robot, 4k photo' UpperCamelCase_: int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) UpperCamelCase_: str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='' , ).to_tuple() UpperCamelCase_: Tuple = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type='np' , ) UpperCamelCase_: Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
57
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
0
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = None def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : str = os.path.join(_lowercase , """feat_extract.json""" ) feat_extract_first.to_json_file(_lowercase ) snake_case_ : str = self.feature_extraction_class.from_json_file(_lowercase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Tuple = feat_extract_first.save_pretrained(_lowercase )[0] check_json_file_has_correct_format(_lowercase ) snake_case_ : Dict = self.feature_extraction_class.from_pretrained(_lowercase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : int = self.feature_extraction_class() self.assertIsNotNone(_lowercase )
58
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
0
import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' lowerCamelCase__: int =DonutProcessor.from_pretrained(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Any ={ "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } lowerCamelCase__: Tuple =( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) lowerCamelCase__: Optional[int] =self.processor.tokenajson(UpperCAmelCase_) self.assertDictEqual(UpperCAmelCase_ , UpperCAmelCase_)
59
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
0
import math import sys def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Any = '''''' try: with open(_UpperCamelCase , '''rb''' ) as binary_file: snake_case_ : Dict = binary_file.read() for dat in data: snake_case_ : Union[str, Any] = f'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Any = {'''0''': '''0''', '''1''': '''1'''} snake_case_ , snake_case_ : List[Any] = '''''', '''''' snake_case_ : List[str] = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue snake_case_ : List[str] = lexicon[curr_string] result += last_match_id snake_case_ : int = last_match_id + '''0''' if math.loga(_UpperCamelCase ).is_integer(): snake_case_ : int = {} for curr_key in list(_UpperCamelCase ): snake_case_ : Tuple = lexicon.pop(_UpperCamelCase ) snake_case_ : Optional[int] = new_lex snake_case_ : str = last_match_id + '''1''' index += 1 snake_case_ : Tuple = '''''' return result def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> None: """simple docstring""" snake_case_ : Optional[Any] = 8 try: with open(_UpperCamelCase , '''wb''' ) as opened_file: snake_case_ : Tuple = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 snake_case_ : Union[str, Any] = data_bits[counter:] snake_case_ : Optional[int] = data_bits[counter + 1 :] return data_bits def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> None: """simple docstring""" snake_case_ : Optional[Any] = read_file_binary(_UpperCamelCase ) snake_case_ : int = remove_prefix(_UpperCamelCase ) snake_case_ : Dict = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
60
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
0