code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def _A ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] ): """simple docstring""" if index == r: for j in range(lowerCAmelCase_ ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCAmelCase__ = arr[i] combination_util(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , index + 1 , lowerCAmelCase_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ): """simple docstring""" lowerCAmelCase__ = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 0 , lowerCAmelCase_ , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
61
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]=sys.maxsize ): SCREAMING_SNAKE_CASE : str = "bilinear" SCREAMING_SNAKE_CASE : str = max_size SCREAMING_SNAKE_CASE : int = short_edge_length def __call__( self : Dict , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = [] for img in imgs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize SCREAMING_SNAKE_CASE : Optional[int] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img SCREAMING_SNAKE_CASE : Any = size * 1.0 / min(UpperCAmelCase_ , UpperCAmelCase_ ) if h < w: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = scale * h, size if max(UpperCAmelCase_ , UpperCAmelCase_ ) > self.max_size: SCREAMING_SNAKE_CASE : Union[str, Any] = self.max_size * 1.0 / max(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = newh * scale SCREAMING_SNAKE_CASE : List[str] = neww * scale SCREAMING_SNAKE_CASE : List[str] = int(neww + 0.5 ) SCREAMING_SNAKE_CASE : str = int(newh + 0.5 ) if img.dtype == np.uinta: SCREAMING_SNAKE_CASE : Optional[Any] = Image.fromarray(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : int = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw SCREAMING_SNAKE_CASE : Optional[int] = nn.functional.interpolate( UpperCAmelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCAmelCase_ ).squeeze(0 ) img_augs.append(UpperCAmelCase_ ) return img_augs class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) SCREAMING_SNAKE_CASE : Optional[Any] = cfg.INPUT.FORMAT SCREAMING_SNAKE_CASE : List[str] = cfg.SIZE_DIVISIBILITY SCREAMING_SNAKE_CASE : List[str] = cfg.PAD_VALUE SCREAMING_SNAKE_CASE : List[str] = cfg.INPUT.MAX_SIZE_TEST SCREAMING_SNAKE_CASE : int = cfg.MODEL.DEVICE SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) SCREAMING_SNAKE_CASE : List[Any] = lambda UpperCAmelCase_ : (x - self.pixel_mean) / self.pixel_std def _A ( self : List[str] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = tuple(max(UpperCAmelCase_ ) for s in zip(*[img.shape for img in images] ) ) SCREAMING_SNAKE_CASE : Dict = [im.shape[-2:] for im in images] SCREAMING_SNAKE_CASE : str = [ nn.functional.pad( UpperCAmelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] return torch.stack(UpperCAmelCase_ ), torch.tensor(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=False ): with torch.no_grad(): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = [images] if single_image: assert len(UpperCAmelCase_ ) == 1 for i in range(len(UpperCAmelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCAmelCase_ , images.pop(UpperCAmelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCAmelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCAmelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([im.shape[:2] for im in images] ) SCREAMING_SNAKE_CASE : Any = self.aug(UpperCAmelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic SCREAMING_SNAKE_CASE : Union[str, Any] = [self.normalizer(UpperCAmelCase_ ) for x in images] # now pad them to do the following operations SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.pad(UpperCAmelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad SCREAMING_SNAKE_CASE : Union[str, Any] = torch.true_divide(UpperCAmelCase_ , UpperCAmelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert torch.isfinite(lowercase ).all(), "Box tensor contains infinite or NaN!" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = box_size tensor[:, 0].clamp_(min=0 , max=lowercase ) tensor[:, 1].clamp_(min=0 , max=lowercase ) tensor[:, 2].clamp_(min=0 , max=lowercase ) tensor[:, 3].clamp_(min=0 , max=lowercase )
62
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
0
a : Optional[int] = 9.8_06_65 def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float = g ): if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
63
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> int: super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: str= field SCREAMING_SNAKE_CASE__: Optional[int]= path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE__: Optional[Any]= Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self ) -> Dict: # Build iterable dataset if self.streaming: SCREAMING_SNAKE_CASE__: Dict= self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: Optional[Any]= None SCREAMING_SNAKE_CASE__: Any= None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE__: Optional[int]= self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class _lowerCamelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> Tuple: if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) SCREAMING_SNAKE_CASE__: List[str]= dataset SCREAMING_SNAKE_CASE__: int= path_or_buf SCREAMING_SNAKE_CASE__: Dict= batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE__: List[Any]= num_proc SCREAMING_SNAKE_CASE__: int= '''utf-8''' SCREAMING_SNAKE_CASE__: Union[str, Any]= to_json_kwargs def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: str= self.to_json_kwargs.pop('''path_or_buf''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.to_json_kwargs.pop('''orient''' , '''records''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) SCREAMING_SNAKE_CASE__: int= self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) SCREAMING_SNAKE_CASE__: Dict= self.to_json_kwargs.pop('''compression''' , lowerCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=lowerCAmelCase ) as buffer: SCREAMING_SNAKE_CASE__: Optional[Any]= self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'The compression parameter is not supported when writing to a buffer, but compression={compression}' ''' was passed. Please provide a local path instead.''' ) SCREAMING_SNAKE_CASE__: str= self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs ) return written def UpperCamelCase_ ( self , lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Union[str, Any]= args SCREAMING_SNAKE_CASE__: Union[str, Any]= query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE__: List[str]= batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase , ) -> int: SCREAMING_SNAKE_CASE__: Union[str, Any]= 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): SCREAMING_SNAKE_CASE__: List[str]= self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(lowerCAmelCase ) return written
64
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
0
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] ,A : Optional[int] ,A : int=13 ,A : Tuple=7 ,A : Dict=True ,A : Optional[int]=True ,A : Tuple=True ,A : str=True ,A : Any=99 ,A : Tuple=32 ,A : Dict=5 ,A : Optional[int]=4 ,A : Dict=37 ,A : Any="gelu" ,A : Any=0.1 ,A : Optional[int]=0.1 ,A : Union[str, Any]=512 ,A : Any=16 ,A : List[str]=2 ,A : List[Any]=0.0_2 ,A : Optional[int]=4 ,): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Optional[Any] = use_attention_mask UpperCAmelCase__ : int = use_token_type_ids UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : List[Any] = type_vocab_size UpperCAmelCase__ : List[str] = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = num_choices def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : List[str] = None if self.use_attention_mask: UpperCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : int = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=A ,) return config, input_ids, attention_mask def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = FlaxDistilBertModelTester(self ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class __lowercase ( unittest.TestCase ): @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase__ : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase__ : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase__ : Dict = model(A ,attention_mask=A )[0] UpperCAmelCase__ : List[Any] = (1, 11, 768) self.assertEqual(output.shape ,A ) UpperCAmelCase__ : Any = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,A ,atol=1e-4 ) )
65
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : str = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"""{test_file} instead.""" ) _lowercase : int = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) _lowercase : int = components[:-1] + [test_fn.replace('.py' , '' )] _lowercase : Union[str, Any] = '.'.join(SCREAMING_SNAKE_CASE ) return test_module_path def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Tuple = get_module_path(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = importlib.import_module(SCREAMING_SNAKE_CASE ) return test_module def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Union[str, Any] = [] _lowercase : Tuple = get_test_module(SCREAMING_SNAKE_CASE ) for attr in dir(SCREAMING_SNAKE_CASE ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : str = [] _lowercase : Dict = get_test_module(SCREAMING_SNAKE_CASE ) for attr in dir(SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE , 'all_model_classes' , [] ) if len(SCREAMING_SNAKE_CASE ) > 0: test_classes.append(SCREAMING_SNAKE_CASE ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Union[str, Any] = get_test_classes(SCREAMING_SNAKE_CASE ) _lowercase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : List[Any] = test_class() if hasattr(SCREAMING_SNAKE_CASE , 'setUp' ): test.setUp() _lowercase : int = None if hasattr(SCREAMING_SNAKE_CASE , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _lowercase : List[Any] = test.model_tester.__class__ return model_tester def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : List[str] = get_test_classes(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(SCREAMING_SNAKE_CASE ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Optional[Any] = get_test_classes_for_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = [] for test_class in test_classes: _lowercase : List[str] = get_model_tester_from_test_class(SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(SCREAMING_SNAKE_CASE ) # sort with class names return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x.__name__ ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Dict = get_test_classes(SCREAMING_SNAKE_CASE ) _lowercase : int = {test_class: get_model_tester_from_test_class(SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : List[Any] = get_model_classes(SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = { model_class: get_test_classes_for_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: _lowercase : int = get_model_classes(SCREAMING_SNAKE_CASE ) _lowercase : Any = { model_class: get_tester_classes_for_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return o elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return {to_json(SCREAMING_SNAKE_CASE ): to_json(SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
66
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : """simple docstring""" def __init__( self : str ,__A : Union[str, Any] ,__A : Any=13 ,__A : Union[str, Any]=7 ,__A : List[Any]=True ,__A : int=True ,__A : Optional[Any]=False ,__A : Union[str, Any]=True ,__A : Union[str, Any]=99 ,__A : Any=32 ,__A : Tuple=5 ,__A : Tuple=4 ,__A : Union[str, Any]=37 ,__A : str="gelu" ,__A : Optional[int]=0.1 ,__A : Dict=0.1 ,__A : Any=512 ,__A : Optional[Any]=16 ,__A : Any=2 ,__A : List[str]=0.02 ,__A : Dict=3 ,__A : Any=4 ,__A : int=None ,) -> Dict: _lowercase = parent _lowercase = batch_size _lowercase = seq_length _lowercase = is_training _lowercase = use_input_mask _lowercase = use_token_type_ids _lowercase = use_labels _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = type_sequence_label_size _lowercase = initializer_range _lowercase = num_labels _lowercase = num_choices _lowercase = scope def __UpperCAmelCase ( self : List[Any] ) -> str: _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase = None if self.use_input_mask: _lowercase = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase = None if self.use_token_type_ids: _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase = None _lowercase = None _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowercase = ids_tensor([self.batch_size] ,self.num_choices ) _lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: return BioGptConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__A ,initializer_range=self.initializer_range ,) def __UpperCAmelCase ( self : Optional[Any] ,__A : List[Any] ,__A : Optional[int] ,__A : Optional[Any] ,__A : str ,__A : int ,__A : int ,__A : Optional[Any] ) -> int: _lowercase = BioGptModel(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ) _lowercase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[str] ,__A : Optional[Any] ,__A : Dict ,__A : Dict ,__A : Union[str, Any] ,__A : str ,__A : Any ,__A : str ,__A : List[Any] ,__A : List[Any] ,) -> Tuple: _lowercase = BioGptForCausalLM(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,token_type_ids=__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[int] ,__A : str ,__A : int ,__A : int ,__A : int ,__A : List[Any] ,*__A : Union[str, Any] ) -> Tuple: _lowercase = BioGptModel(config=__A ) model.to(__A ) model.eval() # create attention mask _lowercase = torch.ones(input_ids.shape ,dtype=torch.long ,device=__A ) _lowercase = self.seq_length // 2 _lowercase = 0 # first forward pass _lowercase , _lowercase = model(__A ,attention_mask=__A ).to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase = ids_tensor((self.batch_size, 1) ,config.vocab_size ) # change a random masked slice from input_ids _lowercase = ids_tensor((1,) ,__A ).item() + 1 _lowercase = ids_tensor((self.batch_size, 1) ,config.vocab_size ).squeeze(-1 ) _lowercase = random_other_next_tokens # append to next input_ids and attn_mask _lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowercase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) ,dtype=torch.long ,device=__A )] ,dim=1 ,) # get two different outputs _lowercase = model(__A ,attention_mask=__A )['last_hidden_state'] _lowercase = model(__A ,past_key_values=__A ,attention_mask=__A )['last_hidden_state'] # select random slice _lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowercase = output_from_no_past[:, -1, random_slice_idx].detach() _lowercase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A ,__A ,atol=1e-3 ) ) def __UpperCAmelCase ( self : Tuple ,__A : List[str] ,__A : Any ,__A : List[Any] ,__A : Dict ,__A : Optional[int] ,*__A : List[Any] ) -> List[str]: _lowercase = BioGptModel(config=__A ).to(__A ).eval() _lowercase = torch.ones(input_ids.shape ,dtype=torch.long ,device=__A ) # first forward pass _lowercase = model(__A ,attention_mask=__A ,use_cache=__A ) _lowercase , _lowercase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowercase = ids_tensor((self.batch_size, 3) ,2 ) # append to next input_ids and _lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowercase = torch.cat([attention_mask, next_attn_mask] ,dim=-1 ) _lowercase = model(__A ,attention_mask=__A )['last_hidden_state'] _lowercase = model(__A ,attention_mask=__A ,past_key_values=__A )[ 'last_hidden_state' ] # select random slice _lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A ,__A ,atol=1e-3 ) ) def __UpperCAmelCase ( self : Any ,__A : List[str] ,__A : int ,__A : List[str] ,__A : List[str] ,__A : List[Any] ,*__A : Any ,__A : Union[str, Any]=False ) -> Any: _lowercase = BioGptForCausalLM(__A ) model.to(__A ) if gradient_checkpointing: model.gradient_checkpointing_enable() _lowercase = model(__A ,labels=__A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __UpperCAmelCase ( self : Tuple ,__A : str ,*__A : Tuple ) -> List[str]: _lowercase = BioGptModel(__A ) _lowercase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) ,0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) ,0.01 ) def __UpperCAmelCase ( self : List[Any] ,__A : Union[str, Any] ,__A : Optional[Any] ,__A : Any ,__A : Union[str, Any] ,__A : Dict ,*__A : Any ) -> int: _lowercase = self.num_labels _lowercase = BioGptForTokenClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,token_type_ids=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: _lowercase = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) = config_and_inputs _lowercase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = False def __UpperCAmelCase ( self : Optional[Any] ) -> Any: _lowercase = BioGptModelTester(self ) _lowercase = ConfigTester(self ,config_class=__A ,hidden_size=37 ) def __UpperCAmelCase ( self : str ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : str ) -> str: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: _lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase = type self.model_tester.create_and_check_model(*__A ) def __UpperCAmelCase ( self : List[Any] ) -> List[str]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__A ) def __UpperCAmelCase ( self : Any ) -> List[Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__A ,gradient_checkpointing=__A ) def __UpperCAmelCase ( self : Any ) -> Tuple: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__A ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__A ) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__A ) @slow def __UpperCAmelCase ( self : Any ) -> Optional[int]: _lowercase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__A ) _lowercase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowercase = 'left' # Define PAD Token = EOS Token = 50256 _lowercase = tokenizer.eos_token _lowercase = model.config.eos_token_id # use different length sentences to test batching _lowercase = [ 'Hello, my dog is a little', 'Today, I', ] _lowercase = tokenizer(__A ,return_tensors='pt' ,padding=__A ) _lowercase = inputs['input_ids'].to(__A ) _lowercase = model.generate( input_ids=__A ,attention_mask=inputs['attention_mask'].to(__A ) ,) _lowercase = tokenizer(sentences[0] ,return_tensors='pt' ).input_ids.to(__A ) _lowercase = model.generate(input_ids=__A ) _lowercase = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _lowercase = tokenizer(sentences[1] ,return_tensors='pt' ).input_ids.to(__A ) _lowercase = model.generate(input_ids=__A ,max_length=model.config.max_length - num_paddings ) _lowercase = tokenizer.batch_decode(__A ,skip_special_tokens=__A ) _lowercase = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=__A ) _lowercase = tokenizer.decode(output_padded[0] ,skip_special_tokens=__A ) _lowercase = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(__A ,__A ) self.assertListEqual(__A ,[non_padded_sentence, padded_sentence] ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = BioGptModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __UpperCAmelCase ( self : int ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = 3 _lowercase = input_dict['input_ids'] _lowercase = input_ids.ne(1 ).to(__A ) _lowercase = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowercase = BioGptForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Optional[int] ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = 3 _lowercase = 'multi_label_classification' _lowercase = input_dict['input_ids'] _lowercase = input_ids.ne(1 ).to(__A ) _lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase = BioGptForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: _lowercase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) _lowercase = torch.tensor([[2, 4805, 9, 656, 21]] ) _lowercase = model(__A )[0] _lowercase = 4_2384 _lowercase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape ,__A ) _lowercase = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__A ,atol=1e-4 ) ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: _lowercase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowercase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__A ) torch.manual_seed(0 ) _lowercase = tokenizer('COVID-19 is' ,return_tensors='pt' ).to(__A ) _lowercase = model.generate( **__A ,min_length=100 ,max_length=1024 ,num_beams=5 ,early_stopping=__A ,) _lowercase = tokenizer.decode(output_ids[0] ,skip_special_tokens=__A ) _lowercase = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(__A ,__A )
67
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
0
from __future__ import annotations from collections.abc import Iterator class _A : """simple docstring""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> None: __UpperCAmelCase =value __UpperCAmelCase =None __UpperCAmelCase =None class _A : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Node ) -> None: __UpperCAmelCase =tree def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
68
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Dict = logging.get_logger(__name__) a : Union[str, Any] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """efficientnet""" def __init__( self : Optional[int] , a_ : int = 3 , a_ : int = 600 , a_ : float = 2.0 , a_ : float = 3.1 , a_ : int = 8 , a_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , a_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , a_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , a_ : List[int] = [] , a_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , a_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , a_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , a_ : float = 0.25 , a_ : str = "swish" , a_ : int = 2_560 , a_ : str = "mean" , a_ : float = 0.02 , a_ : float = 0.001 , a_ : float = 0.99 , a_ : float = 0.5 , a_ : float = 0.2 , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = num_channels __snake_case = image_size __snake_case = width_coefficient __snake_case = depth_coefficient __snake_case = depth_divisor __snake_case = kernel_sizes __snake_case = in_channels __snake_case = out_channels __snake_case = depthwise_padding __snake_case = strides __snake_case = num_block_repeats __snake_case = expand_ratios __snake_case = squeeze_expansion_ratio __snake_case = hidden_act __snake_case = hidden_dim __snake_case = pooling_type __snake_case = initializer_range __snake_case = batch_norm_eps __snake_case = batch_norm_momentum __snake_case = dropout_rate __snake_case = drop_connect_rate __snake_case = sum(a_ ) * 4 class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A ( self : List[str] ): """simple docstring""" return 1e-5
69
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
0
def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' assert column_title.isupper() lowerCamelCase_ = 0 lowerCamelCase_ = len(lowercase ) - 1 lowerCamelCase_ = 0 while index >= 0: lowerCamelCase_ = (ord(column_title[index] ) - 64) * pow(26 , lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
70
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class _snake_case (__SCREAMING_SNAKE_CASE): __A : str ="xmod" def __init__( self ,_snake_case=3_05_22 ,_snake_case=7_68 ,_snake_case=12 ,_snake_case=12 ,_snake_case=30_72 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=2 ,_snake_case=0.02 ,_snake_case=1E-12 ,_snake_case=1 ,_snake_case=0 ,_snake_case=2 ,_snake_case="absolute" ,_snake_case=True ,_snake_case=None ,_snake_case=False ,_snake_case=2 ,_snake_case=False ,_snake_case=True ,_snake_case=True ,_snake_case=("en_XX",) ,_snake_case=None ,**_snake_case ,): super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Any = position_embedding_type UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Union[str, Any] = classifier_dropout UpperCAmelCase_ : Optional[Any] = pre_norm UpperCAmelCase_ : int = adapter_reduction_factor UpperCAmelCase_ : Dict = adapter_layer_norm UpperCAmelCase_ : str = adapter_reuse_layer_norm UpperCAmelCase_ : Dict = ln_before_adapter UpperCAmelCase_ : List[Any] = list(_snake_case ) UpperCAmelCase_ : Optional[Any] = default_language class _snake_case (__SCREAMING_SNAKE_CASE): @property def UpperCamelCase__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
71
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def UpperCamelCase ( lowercase_ : List[str] , lowercase_ : Union[str, Any]=1_0 ) -> List[Any]: '''simple docstring''' lowercase =[] for _ in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : str=1_0 ) -> Dict: '''simple docstring''' lowercase =[] for step in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowercase =os.path.join(lowercase_ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , lowercase_ ) lowercase =torch.load(lowercase_ ) scheduler.load_state_dict(lowercase_ ) return lrs @require_torch class __magic_name__ ( unittest.TestCase ): def _A( self , snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ ) def _A( self ): lowercase =torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) lowercase =torch.tensor([0.4, 0.2, -0.5] ) lowercase =nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase =AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_00 ): lowercase =criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def _A( self ): lowercase =torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) lowercase =torch.tensor([0.4, 0.2, -0.5] ) lowercase =nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase =Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case_ , weight_decay=0.0 , relative_step=snake_case_ , scale_parameter=snake_case_ , warmup_init=snake_case_ , ) for _ in range(10_00 ): lowercase =criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __magic_name__ ( unittest.TestCase ): UpperCamelCase__ = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCamelCase__ = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCamelCase__ = 10 def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ , msg=snake_case_ ) def _A( self ): lowercase ={'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowercase ={ get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): lowercase , lowercase =data lowercase =scheduler_func(self.optimizer , **snake_case_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowercase =unwrap_schedule(snake_case_ , self.num_steps ) self.assertListAlmostEqual( snake_case_ , snake_case_ , tol=1E-2 , msg=f'failed for {scheduler_func} in normal scheduler' , ) lowercase =scheduler_func(self.optimizer , **snake_case_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case_ ) # wrap to test picklability of the schedule lowercase =unwrap_and_save_reload_schedule(snake_case_ , self.num_steps ) self.assertListEqual(snake_case_ , snake_case_ , msg=f'failed for {scheduler_func} in save and reload' ) class __magic_name__ : def __init__( self , snake_case_ ): lowercase =fn def __call__( self , *snake_case_ , **snake_case_ ): return self.fn(*snake_case_ , **snake_case_ ) @classmethod def _A( self , snake_case_ ): lowercase =list(map(self , scheduler.lr_lambdas ) )
72
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( A__ , unittest.TestCase ): _lowercase : int = BertTokenizer _lowercase : str = BertTokenizerFast _lowercase : List[Any] = True _lowercase : List[Any] = True _lowercase : Dict = filter_non_english def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: super().setUp() SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = 'unwanted, running' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file) SCREAMING_SNAKE_CASE = tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(a , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , [9, 6, 7, 12, 10, 11]) def SCREAMING_SNAKE_CASE__ ( self) -> Any: if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = tokenizer.tokenize(a) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(a) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a) self.assertListEqual(a , a) # With lower casing SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=a) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=a) SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = tokenizer.tokenize(a) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(a) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a) self.assertListEqual(a , a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz']) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , strip_accents=a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo']) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , strip_accents=a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , strip_accents=a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?']) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , strip_accents=a) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?']) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , never_split=['[UNK]']) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]']) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = BasicTokenizer() SCREAMING_SNAKE_CASE = 'a\n\'ll !!to?\'d of, can\'t.' SCREAMING_SNAKE_CASE = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(a) , a) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(a): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=a , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing']) self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing']) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: self.assertTrue(_is_whitespace(' ')) self.assertTrue(_is_whitespace('\t')) self.assertTrue(_is_whitespace('\r')) self.assertTrue(_is_whitespace('\n')) self.assertTrue(_is_whitespace('\u00A0')) self.assertFalse(_is_whitespace('A')) self.assertFalse(_is_whitespace('-')) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: self.assertTrue(_is_control('\u0005')) self.assertFalse(_is_control('A')) self.assertFalse(_is_control(' ')) self.assertFalse(_is_control('\t')) self.assertFalse(_is_control('\r')) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: self.assertTrue(_is_punctuation('-')) self.assertTrue(_is_punctuation('$')) self.assertTrue(_is_punctuation('`')) self.assertTrue(_is_punctuation('.')) self.assertFalse(_is_punctuation('A')) self.assertFalse(_is_punctuation(' ')) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) self.assertListEqual( [rust_tokenizer.tokenize(a) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('bert-base-uncased') SCREAMING_SNAKE_CASE = tokenizer.encode('sequence builders' , add_special_tokens=a) SCREAMING_SNAKE_CASE = tokenizer.encode('multi-sequence build' , add_special_tokens=a) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(a) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(a , a) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE__ ( self) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(a , **a) SCREAMING_SNAKE_CASE = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( a , return_attention_mask=a , return_token_type_ids=a , return_offsets_mapping=a , add_special_tokens=a , ) SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(a , 'do_lower_case') else False SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'])) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping']) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = ['的', '人', '有'] SCREAMING_SNAKE_CASE = ''.join(a) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(a , **a) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(a , **a) SCREAMING_SNAKE_CASE = tokenizer_p.encode(a , add_special_tokens=a) SCREAMING_SNAKE_CASE = tokenizer_r.encode(a , add_special_tokens=a) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(a) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(a) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a , a) self.assertListEqual(a , a) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(a , **a) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(a , **a) SCREAMING_SNAKE_CASE = tokenizer_r.encode(a , add_special_tokens=a) SCREAMING_SNAKE_CASE = tokenizer_p.encode(a , add_special_tokens=a) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(a) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(a) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(a) ] self.assertListEqual(a , a) self.assertListEqual(a , a)
73
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCAmelCase_ = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCAmelCase_ = '''document_qa''' lowerCAmelCase_ = AutoProcessor lowerCAmelCase_ = VisionEncoderDecoderModel lowerCAmelCase_ = ['''image''', '''text'''] lowerCAmelCase_ = ['''text'''] def __init__( self : Tuple , *_A : Tuple , **_A : Tuple ): """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_A , **_A ) def UpperCAmelCase__ ( self : List[Any] , _A : "Image" , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __SCREAMING_SNAKE_CASE : str = task_prompt.replace('''{user_input}''' , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.pre_processor.tokenizer( _A , add_special_tokens=_A , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE : int = self.pre_processor(_A , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase__ ( self : Dict , _A : Optional[Any] ): """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_A , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_A , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_A , ).sequences def UpperCAmelCase__ ( self : Dict , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.pre_processor.batch_decode(_A )[0] __SCREAMING_SNAKE_CASE : List[str] = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __SCREAMING_SNAKE_CASE : int = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __SCREAMING_SNAKE_CASE : List[Any] = re.sub(r'''<.*?>''' , '''''' , _A , count=1 ).strip() # remove first task start token __SCREAMING_SNAKE_CASE : Optional[int] = self.pre_processor.tokenajson(_A ) return sequence["answer"]
74
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'dandelin/vilt-b32-finetuned-vqa' lowerCAmelCase__ = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) lowerCAmelCase__ = 'image_qa' lowerCAmelCase__ = AutoProcessor lowerCAmelCase__ = AutoModelForVisualQuestionAnswering lowerCAmelCase__ = ['image', 'text'] lowerCAmelCase__ = ['text'] def __init__( self : Dict , *_A : int , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*_A , **_A ) def lowercase_ ( self : str , _A : "Image" , _A : str ): '''simple docstring''' return self.pre_processor(_A , _A , return_tensors='''pt''' ) def lowercase_ ( self : List[str] , _A : Optional[Any] ): '''simple docstring''' with torch.no_grad(): return self.model(**_A ).logits def lowercase_ ( self : int , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
75
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=snake_case ): UpperCamelCase =["note_seq"] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> str: requires_backends(self , ['''note_seq'''] ) @classmethod def _lowerCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ) -> Tuple: requires_backends(cls , ['''note_seq'''] ) @classmethod def _lowerCamelCase ( cls , *UpperCamelCase_ , **UpperCamelCase_ ) -> Tuple: requires_backends(cls , ['''note_seq'''] )
76
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
77
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = f"""Input value of [number={number}] must be an integer""" raise TypeError(snake_case_ ) if number < 1: UpperCAmelCase_ = f"""Input value of [number={number}] must be > 0""" raise ValueError(snake_case_ ) UpperCAmelCase_ = 1 for i in range(1 , snake_case_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
78
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : Optional[int] = """""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = """""" SCREAMING_SNAKE_CASE__ : Any = """""" SCREAMING_SNAKE_CASE__ : List[Any] = 1 # (0 is vertical, 1 is horizontal) def _lowerCamelCase ( ) -> None: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = get_dataset(__lowerCamelCase , __lowerCamelCase ) print("""Processing...""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = update_image_and_anno(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for index, image in enumerate(__lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase__ : Tuple = random_chars(32 ) UpperCAmelCase__ : List[str] = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] UpperCAmelCase__ : Optional[Any] = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__lowerCamelCase )} with {file_name}" ) UpperCAmelCase__ : str = [] for anno in new_annos[index]: UpperCAmelCase__ : List[str] = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__lowerCamelCase ) with open(F"/{file_root}.txt" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = [] for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ): UpperCAmelCase__ : str = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCamelCase ) as in_file: UpperCAmelCase__ : Tuple = in_file.readlines() UpperCAmelCase__ : Optional[Any] = os.path.join(__lowerCamelCase , F"{label_name}.jpg" ) UpperCAmelCase__ : List[str] = [] for obj_list in obj_lists: UpperCAmelCase__ : Optional[int] = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCamelCase ) labels.append(__lowerCamelCase ) return img_paths, labels def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 ) -> tuple[list, list, list]: '''simple docstring''' UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Tuple = [] for idx in range(len(__lowerCamelCase ) ): UpperCAmelCase__ : str = [] UpperCAmelCase__ : str = img_list[idx] path_list.append(__lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = anno_list[idx] UpperCAmelCase__ : Any = cva.imread(__lowerCamelCase ) if flip_type == 1: UpperCAmelCase__ : str = cva.flip(__lowerCamelCase , __lowerCamelCase ) for bbox in img_annos: UpperCAmelCase__ : Tuple = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase__ : int = cva.flip(__lowerCamelCase , __lowerCamelCase ) for bbox in img_annos: UpperCAmelCase__ : Any = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCamelCase ) new_imgs_list.append(__lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def _lowerCamelCase ( __lowerCamelCase = 32 ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase__ : int = ascii_lowercase + digits return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
79
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __UpperCamelCase ( unittest.TestCase ): __snake_case :Union[str, Any] = StableDiffusionLDMaDPipeline __snake_case :List[str] = TEXT_TO_IMAGE_PARAMS __snake_case :List[str] = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case :str = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __lowercase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowercase = CLIPTextModel(_lowerCAmelCase ) __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : Dict=0 ) -> List[Any]: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableDiffusionLDMaDPipeline(**_lowerCAmelCase ) __lowercase = ldmad_pipe.to(_lowerCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) __lowercase = ldmad_pipe(**_lowerCAmelCase ) __lowercase , __lowercase = output.rgb, output.depth __lowercase = rgb[0, -3:, -3:, -1] __lowercase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __lowercase = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) __lowercase = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_dummy_components() __lowercase = StableDiffusionLDMaDPipeline(**_lowerCAmelCase ) __lowercase = ldmad_pipe.to(_lowerCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = ldmad_pipe(**_lowerCAmelCase ) __lowercase , __lowercase = output.rgb, output.depth __lowercase = rgb_slice_a[0, -3:, -3:, -1] __lowercase = depth_slice_a[0, -3:, -1] __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = ldmad_pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""pt""" , ) __lowercase = text_inputs["""input_ids"""].to(_lowerCAmelCase ) __lowercase = ldmad_pipe.text_encoder(_lowerCAmelCase )[0] __lowercase = prompt_embeds # forward __lowercase = ldmad_pipe(**_lowerCAmelCase ) __lowercase , __lowercase = output.rgb, output.depth __lowercase = rgb_slice_a[0, -3:, -3:, -1] __lowercase = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def _a ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) __lowercase = StableDiffusionLDMaDPipeline(**_lowerCAmelCase ) __lowercase = ldmad_pipe.to(_lowerCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) __lowercase = """french fries""" __lowercase = ldmad_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) __lowercase , __lowercase = output.rgb, output.depth __lowercase = rgb[0, -3:, -3:, -1] __lowercase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __lowercase = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) __lowercase = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]="cpu" , _lowerCAmelCase : int=torch.floataa , _lowerCAmelCase : int=0 ) -> Optional[int]: """simple docstring""" __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = np.random.RandomState(_lowerCAmelCase ).standard_normal((1, 4, 64, 64) ) __lowercase = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ) __lowercase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) __lowercase = ldmad_pipe.to(_lowerCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_inputs(_lowerCAmelCase ) __lowercase = ldmad_pipe(**_lowerCAmelCase ) __lowercase , __lowercase = output.rgb, output.depth __lowercase = rgb[0, -3:, -3:, -1].flatten() __lowercase = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) __lowercase = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) __lowercase = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : int ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]="cpu" , _lowerCAmelCase : Dict=torch.floataa , _lowerCAmelCase : Optional[int]=0 ) -> Tuple: """simple docstring""" __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = np.random.RandomState(_lowerCAmelCase ).standard_normal((1, 4, 64, 64) ) __lowercase = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ) __lowercase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(_lowerCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_inputs(_lowerCAmelCase ) __lowercase = ldmad_pipe(**_lowerCAmelCase ) __lowercase , __lowercase = output.rgb, output.depth __lowercase = 0.495_586 __lowercase = 0.33_795_515 __lowercase = 112.48_518 __lowercase = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def _a ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(_lowerCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_inputs(_lowerCAmelCase ) __lowercase = ldmad_pipe(**_lowerCAmelCase ) __lowercase , __lowercase = output.rgb, output.depth __lowercase = 0.4_194_127 __lowercase = 0.35_375_586 __lowercase = 0.5_638_502 __lowercase = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
80
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a : """simple docstring""" def __init__( self : Any , lowerCamelCase : Optional[int] , ) -> Tuple: __snake_case : Union[str, Any] = parent __snake_case : Dict = 13 __snake_case : Tuple = 7 __snake_case : Dict = 30 __snake_case : Any = self.seq_length + self.mem_len __snake_case : int = 15 __snake_case : Union[str, Any] = True __snake_case : List[Any] = True __snake_case : List[Any] = 99 __snake_case : Optional[int] = [10, 50, 80] __snake_case : List[str] = 32 __snake_case : List[Any] = 32 __snake_case : int = 4 __snake_case : Optional[Any] = 8 __snake_case : Union[str, Any] = 128 __snake_case : Optional[Any] = 2 __snake_case : Any = 2 __snake_case : str = None __snake_case : Optional[int] = 1 __snake_case : str = 0 __snake_case : Union[str, Any] = 3 __snake_case : Tuple = self.vocab_size - 1 __snake_case : List[str] = 0.01 def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __snake_case ( self : Any ) -> Union[str, Any]: random.seed(self.seed ) tf.random.set_seed(self.seed ) def __snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : str ) -> Optional[Any]: __snake_case : List[str] = TFTransfoXLModel(lowerCamelCase ) __snake_case , __snake_case : str = model(lowerCamelCase ).to_tuple() __snake_case : Optional[Any] = {"input_ids": input_ids_a, "mems": mems_a} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : int ) -> Dict: __snake_case : int = TFTransfoXLLMHeadModel(lowerCamelCase ) __snake_case , __snake_case : str = model(lowerCamelCase ).to_tuple() __snake_case : Tuple = {"input_ids": input_ids_a, "labels": lm_labels} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() __snake_case , __snake_case : Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() __snake_case : List[str] = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : str , lowerCamelCase : Optional[int] ) -> List[str]: __snake_case : str = TFTransfoXLForSequenceClassification(lowerCamelCase ) __snake_case : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : List[Any] ) -> Any: __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Tuple = config_and_inputs __snake_case : Dict = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : List[Any] = () if is_tf_available() else () __UpperCAmelCase : Dict = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : int = False def __snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Any ) -> Optional[int]: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __snake_case ( self : int ) -> int: __snake_case : List[Any] = TFTransfoXLModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=lowerCamelCase , d_embed=37 ) def __snake_case ( self : int ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case ( self : List[Any] ) -> Dict: self.model_tester.set_seed() __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: self.model_tester.set_seed() __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Tuple: __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __snake_case : str = model_class(lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __snake_case : int = model.get_output_embeddings() assert isinstance(lowerCamelCase , tf.keras.layers.Layer ) __snake_case : Optional[Any] = model.get_bias() assert name is None else: __snake_case : Optional[int] = model.get_output_embeddings() assert x is None __snake_case : Tuple = model.get_bias() assert name is None def __snake_case ( self : List[Any] ) -> List[Any]: # TODO JP: Make TransfoXL XLA compliant pass @slow def __snake_case ( self : Optional[int] ) -> Dict: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Union[str, Any] = TFTransfoXLModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def __snake_case ( self : str ) -> Optional[int]: pass @require_tf class a (unittest.TestCase ): """simple docstring""" @unittest.skip("Skip test until #12651 is resolved." ) @slow def __snake_case ( self : List[Any] ) -> Tuple: __snake_case : Dict = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __snake_case : Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __snake_case : List[str] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __snake_case : Optional[int] = model.generate(lowerCamelCase , max_length=200 , do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase )
81
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''ssube/stable-diffusion-x4-upscaler-onnx''' def lowercase__ ( self : str , _UpperCAmelCase : int=0 ) -> int: '''simple docstring''' UpperCAmelCase_ = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs() UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase_ = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A fantasy landscape, trending on artstation" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase_ = init_image.resize((128, 128) ) UpperCAmelCase_ = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) UpperCAmelCase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A fantasy landscape, trending on artstation" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
82
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __snake_case ( _lowercase): def __init__( self : Tuple , __lowerCAmelCase : str=0.01 , __lowerCAmelCase : Any=1_0_0_0 ): """simple docstring""" _lowerCamelCase : List[str] = p_stop _lowerCamelCase : List[Any] = max_length def __iter__( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : Dict = False while not stop and count < self.max_length: yield count count += 1 _lowerCamelCase : int = random.random() < self.p_stop class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int=False , __lowerCAmelCase : Dict=True ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] _lowerCamelCase : List[str] = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Dict = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : str = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Tuple = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Tuple = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : str = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : List[str] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : Dict = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : Tuple = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : int = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : List[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Tuple = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : List[str] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Dict = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : str = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] _lowerCamelCase : Any = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Any=False ): """simple docstring""" random.seed(__lowerCAmelCase ) _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) _lowerCamelCase : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCamelCase : Union[str, Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) _lowerCamelCase : List[str] = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : List[Any] = 4_2 _lowerCamelCase : Any = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset _lowerCamelCase : Optional[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Dict = DataLoader(list(range(1_6 ) ) , batch_size=4 ) _lowerCamelCase : str = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" Accelerator() _lowerCamelCase : Any = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
83
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCAmelCase = logging.get_logger(__name__) @dataclass class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **snake_case ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(snake_case ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase = kwargs.pop('tpu_name' , self.tpu_name ) lowercase = kwargs.pop('device_idx' , self.device_idx ) lowercase = kwargs.pop('eager_mode' , self.eager_mode ) lowercase = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**snake_case ) _UpperCamelCase : str = field( default=__lowerCamelCase , metadata={"""help""": """Name of TPU"""} , ) _UpperCamelCase : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) _UpperCamelCase : bool = field(default=__lowerCamelCase , metadata={"""help""": """Benchmark models in eager model."""} ) _UpperCamelCase : bool = field( default=__lowerCamelCase , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ): requires_backends(self , ['tf'] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def SCREAMING_SNAKE_CASE__ ( self ): requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) lowercase = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def SCREAMING_SNAKE_CASE__ ( self ): requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def SCREAMING_SNAKE_CASE__ ( self ): requires_backends(self , ['tf'] ) return self._setup_strategy @property def SCREAMING_SNAKE_CASE__ ( self ): requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def SCREAMING_SNAKE_CASE__ ( self ): requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def SCREAMING_SNAKE_CASE__ ( self ): return self.n_gpu > 0
84
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __a :Tuple = logging.get_logger(__name__) __a :Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __a :Any = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } __a :Union[str, Any] = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] _lowerCamelCase : Tuple = RobertaTokenizer def __init__( self : int , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Optional[Any]="replace" , UpperCAmelCase : Optional[int]="<s>" , UpperCAmelCase : Tuple="</s>" , UpperCAmelCase : Tuple="</s>" , UpperCAmelCase : Optional[Any]="<s>" , UpperCAmelCase : Optional[int]="<unk>" , UpperCAmelCase : Any="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Optional[int]=True , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: A_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) A_ = add_prefix_space A_ = pre_tok_class(**UpperCAmelCase ) A_ = add_prefix_space A_ = "post_processor" A_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: A_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ = tuple(state["sep"] ) if "cls" in state: A_ = tuple(state["cls"] ) A_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: A_ = add_prefix_space A_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: A_ = trim_offsets A_ = True if changes_to_apply: A_ = getattr(UpperCAmelCase , state.pop("type" ) ) A_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def __A ( self : Tuple ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __A ( self : List[Any] , UpperCAmelCase : str ): A_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value A_ = value def __A ( self : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : List[str] ): A_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): A_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def __A ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=None ): A_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __A ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
86
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp _lowerCamelCase : str = 5 _lowerCamelCase : int = 10 @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = SpeechaTextTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' super().setUp() A__ = sp.SentencePieceProcessor() spm_model.Load(UpperCAmelCase__) A__ = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(UpperCAmelCase__))] A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__)))) A__ = Path(self.tmpdirname) save_json(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''spm_file''']) A__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = '''<pad>''' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<s>''') self.assertEqual(vocab_keys[1] , '''<pad>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(UpperCAmelCase__) , 1_001) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_001) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) A__ = tokenizer.tokenize('''This is a test''') self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [289, 50, 14, 174, 386] , ) A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( UpperCAmelCase__ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) A__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8]) A__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__) self.assertListEqual( UpperCAmelCase__ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: '''simple docstring''' A__ = {'''input_ids''': [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , ) @require_sentencepiece class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = '''valhalla/s2t_mustc_multilinguial_medium''' UpperCAmelCase__ = '''C\'est trop cool''' UpperCAmelCase__ = '''Esto es genial''' @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict) ->Dict: '''simple docstring''' A__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 11) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 10_000) def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: '''simple docstring''' self.assertIn(UpperCAmelCase__ , self.tokenizer.all_special_ids) A__ = [ES_CODE, 4, 1_601, 47, 7_647, 2] A__ = self.tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase__) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' A__ = '''fr''' A__ = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , UpperCAmelCase__) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) A__ = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
87
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): __UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Union[str, Any]: _lowerCamelCase : Tuple = TextaTextGenerationPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE) return generator, ["Something to write", "Something else"] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : str = generator("""Something there""") self.assertEqual(SCREAMING_SNAKE_CASE , [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""")) _lowerCamelCase : Dict = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=SCREAMING_SNAKE_CASE) self.assertEqual( SCREAMING_SNAKE_CASE , [ [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}, {"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}], [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}, {"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}], ] , ) _lowerCamelCase : int = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=SCREAMING_SNAKE_CASE) self.assertEqual( SCREAMING_SNAKE_CASE , [ [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}, {"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}], [{"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}, {"""generated_text""": ANY(SCREAMING_SNAKE_CASE)}], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE): generator(4) @require_torch def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Union[str, Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""") # do_sample=False necessary for reproducibility _lowerCamelCase : Union[str, Any] = generator("""Something there""" , do_sample=SCREAMING_SNAKE_CASE) self.assertEqual(SCREAMING_SNAKE_CASE , [{"""generated_text""": """"""}]) _lowerCamelCase : Dict = 3 _lowerCamelCase : List[str] = generator( """Something there""" , num_return_sequences=SCREAMING_SNAKE_CASE , num_beams=SCREAMING_SNAKE_CASE , ) _lowerCamelCase : Tuple = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = generator("""This is a test""" , do_sample=SCREAMING_SNAKE_CASE , num_return_sequences=2 , return_tensors=SCREAMING_SNAKE_CASE) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""generated_token_ids""": ANY(torch.Tensor)}, {"""generated_token_ids""": ANY(torch.Tensor)}, ] , ) _lowerCamelCase : Union[str, Any] = generator.model.config.eos_token_id _lowerCamelCase : List[Any] = """<pad>""" _lowerCamelCase : str = generator( ["""This is a test""", """This is a second test"""] , do_sample=SCREAMING_SNAKE_CASE , num_return_sequences=2 , batch_size=2 , return_tensors=SCREAMING_SNAKE_CASE , ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"""generated_token_ids""": ANY(torch.Tensor)}, {"""generated_token_ids""": ANY(torch.Tensor)}, ], [ {"""generated_token_ids""": ANY(torch.Tensor)}, {"""generated_token_ids""": ANY(torch.Tensor)}, ], ] , ) @require_tf def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : str = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""") # do_sample=False necessary for reproducibility _lowerCamelCase : List[Any] = generator("""Something there""" , do_sample=SCREAMING_SNAKE_CASE) self.assertEqual(SCREAMING_SNAKE_CASE , [{"""generated_text""": """"""}])
88
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: if "cls_token" in name: _lowercase : int = name.replace('cls_token' , 'vit.embeddings.cls_token' ) if "mask_token" in name: _lowercase : List[str] = name.replace('mask_token' , 'decoder.mask_token' ) if "decoder_pos_embed" in name: _lowercase : int = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _lowercase : int = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _lowercase : List[Any] = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Optional[int] = name.replace('patch_embed.norm' , 'vit.embeddings.norm' ) if "decoder_blocks" in name: _lowercase : Optional[Any] = name.replace('decoder_blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _lowercase : Optional[int] = name.replace('blocks' , 'vit.encoder.layer' ) if "attn.proj" in name: _lowercase : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowercase : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowercase : str = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowercase : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _lowercase : Any = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _lowercase : Dict = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _lowercase : List[Any] = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: _lowercase : str = name.replace('norm.weight' , 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: _lowercase : Tuple = name.replace('norm.bias' , 'vit.layernorm.bias' ) return name def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): _lowercase : List[Any] = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: _lowercase : Dict = key.split('.' ) _lowercase : Any = int(key_split[1] ) if "decoder_blocks" in key: _lowercase : int = config.decoder_hidden_size _lowercase : Any = 'decoder.decoder_layers.' if "weight" in key: _lowercase : str = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] elif "bias" in key: _lowercase : Optional[int] = val[:dim] _lowercase : Union[str, Any] = val[dim : dim * 2] _lowercase : str = val[-dim:] else: _lowercase : Any = config.hidden_size _lowercase : Union[str, Any] = 'vit.encoder.layer.' if "weight" in key: _lowercase : Tuple = val[:dim, :] _lowercase : Union[str, Any] = val[dim : dim * 2, :] _lowercase : Dict = val[-dim:, :] elif "bias" in key: _lowercase : int = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : Tuple = val[-dim:] else: _lowercase : str = val return orig_state_dict def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : str = ViTMAEConfig() if "large" in checkpoint_url: _lowercase : Dict = 1024 _lowercase : List[str] = 4096 _lowercase : str = 24 _lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: _lowercase : int = 14 _lowercase : Union[str, Any] = 1280 _lowercase : Union[str, Any] = 5120 _lowercase : Tuple = 32 _lowercase : Optional[Any] = 16 _lowercase : Union[str, Any] = ViTMAEForPreTraining(lowerCamelCase_ ) _lowercase : Dict = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' )['model'] _lowercase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) _lowercase : Optional[Any] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() _lowercase : Optional[Any] = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' _lowercase : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) _lowercase : List[str] = ViTMAEImageProcessor(size=config.image_size ) _lowercase : str = image_processor(images=lowerCamelCase_ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) _lowercase : str = model(**lowerCamelCase_ ) _lowercase : Optional[int] = outputs.logits if "large" in checkpoint_url: _lowercase : Union[str, Any] = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: _lowercase : Any = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: _lowercase : Optional[int] = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
89
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
0
'''simple docstring''' def _snake_case ( A , A , A ) -> float: return round(float(moles / volume ) * nfactor ) def _snake_case ( A , A , A ) -> float: return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def _snake_case ( A , A , A ) -> float: return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def _snake_case ( A , A , A ) -> float: return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
90
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
0
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Any ) -> Optional[Any]: A = val A = None A = None def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Union[str, Any]: if self.val: if val < self.val: if self.left is None: A = Node(A_ ) else: self.left.insert(A_ ) elif val > self.val: if self.right is None: A = Node(A_ ) else: self.right.insert(A_ ) else: A = val def _snake_case ( snake_case__ : str , snake_case__ : List[Any] ): # Recursive traversal if root: inorder(root.left , snake_case__ ) res.append(root.val ) inorder(root.right , snake_case__ ) def _snake_case ( snake_case__ : Tuple ): # Build BST if len(snake_case__ ) == 0: return arr A = Node(arr[0] ) for i in range(1 , len(snake_case__ ) ): root.insert(arr[i] ) # Traverse BST in order. A = [] inorder(snake_case__ , snake_case__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
91
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
0
"""simple docstring""" import os import sys import unittest __A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A = os.path.join(git_repo_path, """src""", """transformers""") __A = """ {0} = None """ __A = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ __A = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(__UpperCAmelCase ) lowerCAmelCase__ :int = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(__UpperCAmelCase , 'tokenizers' ) lowerCAmelCase__ :List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(__UpperCAmelCase , 'tensorflow_text' ) lowerCAmelCase__ :List[Any] = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(__UpperCAmelCase , 'sentencepiece_and_tokenizers' ) lowerCAmelCase__ :str = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(__UpperCAmelCase , 'sentencepiece_and_tensorflow_text' ) lowerCAmelCase__ :Any = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(__UpperCAmelCase , 'sentencepiece_and_tokenizers_and_vision' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , __UpperCAmelCase ) self.assertIn('tensorflow_text' , __UpperCAmelCase ) self.assertIn('sentencepiece_and_tokenizers' , __UpperCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(__UpperCAmelCase , '\nCONSTANT = None\n' ) lowerCAmelCase__ :Optional[int] = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( __UpperCAmelCase , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) lowerCAmelCase__ :Union[str, Any] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' lowerCAmelCase__ :Union[str, Any] = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' lowerCAmelCase__ :Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , __UpperCAmelCase )
93
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
'''simple docstring''' def lowercase_ ( __A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
0
"""simple docstring""" import operator def snake_case ( A__ ,A__ = False ,A__ = None ): UpperCAmelCase_ : Any = operator.lt if reverse else operator.gt UpperCAmelCase_ : List[Any] = solution or [] if not arr: return solution UpperCAmelCase_ : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(A__ ): if _operator(A__ ,sublist[-1] ): sublist.append(A__ ) arr.pop(A__ ) # merging sublist into solution list if not solution: solution.extend(A__ ) else: while sublist: UpperCAmelCase_ : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(A__ ): if not _operator(A__ ,A__ ): solution.insert(A__ ,A__ ) break else: solution.append(A__ ) strand_sort(A__ ,A__ ,A__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
95
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
0
"""simple docstring""" from math import factorial class __A : def __init__( self : Any , __snake_case : Any , __snake_case : Optional[Any] ) -> List[Any]: __magic_name__: int = real if isinstance(__snake_case , __snake_case ): __magic_name__: int = [1] * rank else: __magic_name__: Union[str, Any] = rank def __repr__( self : int ) -> List[str]: return ( F'{self.real}+' F'{"+".join(str(__snake_case )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: __magic_name__: Dict = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , __snake_case ) def __add__( self : Dict , __snake_case : int ) -> Any: if not isinstance(__snake_case , __snake_case ): return Dual(self.real + other , self.duals ) __magic_name__: Optional[Any] = self.duals.copy() __magic_name__: str = other.duals.copy() if len(__snake_case ) > len(__snake_case ): o_dual.extend([1] * (len(__snake_case ) - len(__snake_case )) ) elif len(__snake_case ) < len(__snake_case ): s_dual.extend([1] * (len(__snake_case ) - len(__snake_case )) ) __magic_name__: Any = [] for i in range(len(__snake_case ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , __snake_case ) UpperCAmelCase__ = __add__ def __sub__( self : Dict , __snake_case : List[Any] ) -> str: return self + other * -1 def __mul__( self : Optional[int] , __snake_case : Any ) -> Dict: if not isinstance(__snake_case , __snake_case ): __magic_name__: Optional[int] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , __snake_case ) __magic_name__: Any = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , __snake_case ) UpperCAmelCase__ = __mul__ def __truediv__( self : List[Any] , __snake_case : Optional[int] ) -> Dict: if not isinstance(__snake_case , __snake_case ): __magic_name__: Any = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , __snake_case ) raise ValueError def __floordiv__( self : Dict , __snake_case : str ) -> Optional[Any]: if not isinstance(__snake_case , __snake_case ): __magic_name__: str = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , __snake_case ) raise ValueError def __pow__( self : Tuple , __snake_case : Union[str, Any] ) -> List[str]: if n < 0 or isinstance(__snake_case , __snake_case ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self __magic_name__: List[str] = self for _ in range(n - 1 ): x *= self return x def a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] ) -> Optional[int]: if not callable(__UpperCAmelCase ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(__UpperCAmelCase , (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError("""differentiate() requires an int as input for order""" ) __magic_name__: Tuple = Dual(__UpperCAmelCase , 1 ) __magic_name__: int = func(__UpperCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def a ( __UpperCAmelCase : List[str] ) -> Optional[int]: return y**2 * y**4 print(differentiate(f, 9, 2))
96
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def a ( snake_case__: Dict , snake_case__: Any , snake_case__: Dict ): '''simple docstring''' lowercase_ = AutoConfig.from_pretrained(snake_case__ ) lowercase_ = FlaxAutoModelForSeqaSeqLM.from_config(config=snake_case__ ) lowercase_ = checkpoints.load_tax_checkpoint(snake_case__ ) lowercase_ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": lowercase_ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase_ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): lowercase_ = F'''layers_{str(snake_case__ )}''' # Self-Attention lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase_ = flax_model.params['''encoder''']['''block'''][str(snake_case__ )]['''layer'''] lowercase_ = tax_attention_key lowercase_ = tax_attention_out lowercase_ = tax_attention_query lowercase_ = tax_attention_value lowercase_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ = tax_global_layer_norm if split_mlp_wi: lowercase_ = tax_mlp_wi_a lowercase_ = tax_mlp_wi_a else: lowercase_ = tax_mlp_wi lowercase_ = tax_mlp_wo lowercase_ = tax_mlp_layer_norm lowercase_ = flax_model_encoder_layer_block # Only for layer 0: lowercase_ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T lowercase_ = tax_encoder_global_rel_embedding # Assigning lowercase_ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] lowercase_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowercase_ = F'''layers_{str(snake_case__ )}''' # Self-Attention lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] lowercase_ = tax_enc_dec_attention_module['''key''']['''kernel'''] lowercase_ = tax_enc_dec_attention_module['''out''']['''kernel'''] lowercase_ = tax_enc_dec_attention_module['''query''']['''kernel'''] lowercase_ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase_ = flax_model.params['''decoder''']['''block'''][str(snake_case__ )]['''layer'''] lowercase_ = tax_attention_key lowercase_ = tax_attention_out lowercase_ = tax_attention_query lowercase_ = tax_attention_value lowercase_ = tax_pre_attention_layer_norm lowercase_ = tax_enc_dec_attention_key lowercase_ = tax_enc_dec_attention_out lowercase_ = tax_enc_dec_attention_query lowercase_ = tax_enc_dec_attention_value lowercase_ = tax_cross_layer_norm if split_mlp_wi: lowercase_ = tax_mlp_wi_a lowercase_ = tax_mlp_wi_a else: lowercase_ = tax_mlp_wi lowercase_ = tax_mlp_wo lowercase_ = txa_mlp_layer_norm lowercase_ = flax_model_decoder_layer_block # Decoder Normalization lowercase_ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] lowercase_ = txa_decoder_norm # Only for layer 0: lowercase_ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase_ = tax_decoder_rel_embedding # Token Embeddings lowercase_ = tax_model['''target''']['''token_embedder''']['''embedding'''] lowercase_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase_ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(snake_case__ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) __a = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
97
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
0
'''simple docstring''' from collections.abc import Sequence def a__ ( lowercase : Sequence[float], lowercase : float ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(lowercase ) ) def a__ ( lowercase : Sequence[float], lowercase : float ) -> float: """simple docstring""" _UpperCamelCase = 0.0 for coeff in reversed(lowercase ): _UpperCamelCase = result * x + coeff return result if __name__ == "__main__": lowercase__ : Dict = (0.0, 0.0, 5.0, 9.3, 7.0) lowercase__ : Optional[int] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
98
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } SCREAMING_SNAKE_CASE = {'mobilebert-uncased': 5_1_2} SCREAMING_SNAKE_CASE = {} class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = MobileBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ): super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __A ) != do_lower_case or normalizer_state.get("""strip_accents""" , __A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __A ) != tokenize_chinese_chars ): __a = getattr(__A , normalizer_state.pop("""type""" ) ) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**__A ) __a = do_lower_case def snake_case_ ( self , __A , __A=None ): __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , __A , __A = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , __A , __A = None ): __a = self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
99
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
0
# Function to print upper half of diamond (pyramid) def __snake_case ( lowerCAmelCase_ ) -> List[Any]: for i in range(0 , lowerCAmelCase_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def __snake_case ( lowerCAmelCase_ ) -> Tuple: for i in range(lowerCAmelCase_ , 0 , -1 ): for _ in range(lowerCAmelCase_ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def __snake_case ( lowerCAmelCase_ ) -> Tuple: if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") _A : str = 1 while K: _A : str = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) _A : Dict = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
100
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any =logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] ={ 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """swin2sr""" _UpperCAmelCase = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase__=6_4 , lowerCAmelCase__=1 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8_0 , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=8 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=2 , lowerCAmelCase__=1.0 , lowerCAmelCase__="1conv" , lowerCAmelCase__="pixelshuffle" , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : List[Any] = num_channels SCREAMING_SNAKE_CASE_ : Optional[int] = embed_dim SCREAMING_SNAKE_CASE_ : Optional[int] = depths SCREAMING_SNAKE_CASE_ : Any = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = num_heads SCREAMING_SNAKE_CASE_ : Any = window_size SCREAMING_SNAKE_CASE_ : str = mlp_ratio SCREAMING_SNAKE_CASE_ : Any = qkv_bias SCREAMING_SNAKE_CASE_ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = drop_path_rate SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = use_absolute_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = upscale SCREAMING_SNAKE_CASE_ : int = img_range SCREAMING_SNAKE_CASE_ : Optional[int] = resi_connection SCREAMING_SNAKE_CASE_ : List[Any] = upsampler
101
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __magic_name__ : str = logging.get_logger(__name__) def UpperCamelCase (SCREAMING_SNAKE_CASE ): if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : int = ["""pixel_values"""] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BILINEAR , _A = True , _A = None , _A = True , _A = 1 / 2_5_5 , _A = True , _A = None , _A = None , **_A , ): '''simple docstring''' super().__init__(**_A ) UpperCamelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_2_4} UpperCamelCase : List[Any] = get_size_dict(_A , default_to_square=_A ) UpperCamelCase : Dict = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} UpperCamelCase : Optional[Any] = get_size_dict(_A , param_name="""crop_size""" ) UpperCamelCase : Dict = do_resize UpperCamelCase : List[Any] = size UpperCamelCase : Tuple = do_center_crop UpperCamelCase : Any = crop_size UpperCamelCase : int = resample UpperCamelCase : str = do_rescale UpperCamelCase : Optional[int] = rescale_factor UpperCamelCase : Tuple = do_normalize UpperCamelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self , _A , _A , _A = PILImageResampling.BILINEAR , _A = None , **_A , ): '''simple docstring''' UpperCamelCase : int = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: UpperCamelCase : List[Any] = get_resize_output_image_size(_A , size["""shortest_edge"""] , default_to_square=_A ) elif "height" in size and "width" in size: UpperCamelCase : List[str] = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def _a ( self , _A , _A , _A = None , **_A , ): '''simple docstring''' UpperCamelCase : Any = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A ) def _a ( self , _A , _A , _A = None , **_A , ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def _a ( self , _A , _A , _A , _A = None , **_A , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def _a ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCamelCase : List[Any] = to_numpy_array(_A ) if do_resize: UpperCamelCase : Optional[int] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: UpperCamelCase : Optional[Any] = self.center_crop(_A , size=_A ) if do_rescale: UpperCamelCase : List[str] = self.rescale(image=_A , scale=_A ) if do_normalize: UpperCamelCase : Dict = self.normalize(image=_A , mean=_A , std=_A ) UpperCamelCase : Optional[int] = to_channel_dimension_format(_A , _A ) return image def _a ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ): '''simple docstring''' UpperCamelCase : int = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Tuple = resample if resample is not None else self.resample UpperCamelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean UpperCamelCase : Dict = image_std if image_std is not None else self.image_std UpperCamelCase : List[str] = size if size is not None else self.size UpperCamelCase : Optional[Any] = get_size_dict(_A , default_to_square=_A ) UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size UpperCamelCase : List[Any] = get_size_dict(_A , param_name="""crop_size""" ) if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) UpperCamelCase : List[Any] = make_batched(_A ) UpperCamelCase : Optional[int] = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] UpperCamelCase : List[str] = {"""pixel_values""": videos} return BatchFeature(data=_A , tensor_type=_A )
102
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case = '''▁''' snake_case = {'''vocab_file''': '''spiece.model'''} snake_case = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } snake_case = { '''google/pegasus-xsum''': 5_1_2, } snake_case = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Tuple = VOCAB_FILES_NAMES A__ : List[Any] = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int]="<pad>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Any="<unk>" , __lowerCamelCase : Union[str, Any]="<mask_2>" , __lowerCamelCase : Optional[Any]="<mask_1>" , __lowerCamelCase : List[Any]=None , __lowerCamelCase : int=1_0_3 , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[str] , ): """simple docstring""" _snake_case = offset if additional_special_tokens is not None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(__lowerCamelCase )}, but is""" f""" {type(__lowerCamelCase )}""" ) _snake_case = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(__lowerCamelCase ) , self.offset - 1 ) ] if len(set(__lowerCamelCase ) ) != len(__lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _snake_case = additional_special_tokens_extended else: _snake_case = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , mask_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token_sent=__lowerCamelCase , offset=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _snake_case = mask_token_sent _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) # add special tokens to encoder dict _snake_case = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _snake_case = {v: k for k, v in self.encoder.items()} @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return len(self.sp_model ) + self.offset def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : Union[str, Any] , __lowerCamelCase : Any ): """simple docstring""" _snake_case = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : str ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _snake_case = self.sp_model.piece_to_id(__lowerCamelCase ) return sp_id + self.offset def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _snake_case = self.sp_model.IdToPiece(index - self.offset ) return token def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = [] _snake_case = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token _snake_case = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __UpperCAmelCase ( self : int , __lowerCamelCase : Optional[int]=False ): """simple docstring""" return 1 def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str ): """simple docstring""" _snake_case = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __UpperCAmelCase ( self : str , __lowerCamelCase : List , __lowerCamelCase : Optional[List] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(__lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
103
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ) -> None: """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"""| 0 | 0 | {nor_gate(0, 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0, 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1, 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1, 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
104
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
0
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(lowerCamelCase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
105
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case :Optional[int] ='▁' __snake_case :int =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : Union[str, Any] = BertGenerationTokenizer A_ : List[str] = False A_ : Optional[int] = True def __UpperCamelCase ( self : int ) -> Optional[int]: super().setUp() A = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Any ) -> str: A = '<s>' A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(__UpperCamelCase ) , 1_002 ) def __UpperCamelCase ( self : int ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __UpperCamelCase ( self : List[str] ) -> Dict: A = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) A = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [285, 46, 10, 170, 382] , ) A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def __UpperCamelCase ( self : List[str] ) -> str: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def __UpperCamelCase ( self : Dict ) -> Optional[int]: A = 'Hello World!' A = [18_536, 2_260, 101] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def __UpperCamelCase ( self : List[str] ) -> Optional[int]: A = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @require_torch @slow def __UpperCamelCase ( self : Optional[int] ) -> Tuple: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence A = list(self.big_tokenizer.get_vocab().keys() )[:10] A = ' '.join(__UpperCamelCase ) A = self.big_tokenizer.encode_plus(__UpperCamelCase , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) A = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) A = BertGenerationConfig() A = BertGenerationEncoder(__UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCamelCase ) model(**__UpperCamelCase ) @slow def __UpperCamelCase ( self : Optional[int] ) -> str: # fmt: off A = {'input_ids': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
106
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Any=7 ): _A = None if token is not None: _A = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) _A = '636036' _A = F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' _A = requests.get(__snake_case , headers=__snake_case ).json() return result["workflow_runs"] def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] ): _A = get_daily_ci_runs(__snake_case ) _A = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _A = workflow_run['id'] break return workflow_run_id def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : int , __snake_case : List[str] ): _A = get_last_daily_ci_runs(__snake_case ) if workflow_run_id is not None: _A = get_artifacts_links(worflow_run_id=__snake_case , token=__snake_case ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _A = artifacts_links[artifact_name] download_artifact( artifact_name=__snake_case , artifact_url=__snake_case , output_dir=__snake_case , token=__snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : List[Any] ): get_last_daily_ci_artifacts(__snake_case , __snake_case , __snake_case ) _A = {} for artifact_name in artifact_names: _A = os.path.join(__snake_case , F'{artifact_name}.zip' ) if os.path.isfile(__snake_case ): _A = {} with zipfile.ZipFile(__snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(__snake_case ): # read the file with z.open(__snake_case ) as f: _A = f.read().decode('UTF-8' ) return results
107
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __snake_case ) -> int: _UpperCAmelCase = len(__snake_case ) // 2 # choose the middle 3 elements _UpperCAmelCase = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
108
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __a ( unittest.TestCase ): @require_torch def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( task="""zero-shot-audio-classification""" ,model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) __SCREAMING_SNAKE_CASE = load_dataset("""ashraq/esc50""" ) __SCREAMING_SNAKE_CASE = dataset["""train"""]["""audio"""][-1]["""array"""] __SCREAMING_SNAKE_CASE = audio_classifier(lowerCamelCase ,candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,[{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] ,) @unittest.skip("""No models are available in TF""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' pass @slow @require_torch def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( task="""zero-shot-audio-classification""" ,model="""laion/clap-htsat-unfused""" ,) # This is an audio of a dog __SCREAMING_SNAKE_CASE = load_dataset("""ashraq/esc50""" ) __SCREAMING_SNAKE_CASE = dataset["""train"""]["""audio"""][-1]["""array"""] __SCREAMING_SNAKE_CASE = audio_classifier(lowerCamelCase ,candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,[ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] ,) __SCREAMING_SNAKE_CASE = audio_classifier([audio] * 5 ,candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,[ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 ,) __SCREAMING_SNAKE_CASE = audio_classifier( [audio] * 5 ,candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ,batch_size=5 ) self.assertEqual( nested_simplify(lowerCamelCase ) ,[ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 ,) @unittest.skip("""No models are available in TF""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass
109
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
0
"""simple docstring""" import numpy class a : def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : int = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCAmelCase__ : Tuple = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCAmelCase__ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCAmelCase__ : List[str] = numpy.random.rand(3 , 1 ) # Real output values provided. UpperCAmelCase__ : List[str] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCAmelCase__ : str = numpy.zeros(output_array.shape ) def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCAmelCase__ : Dict = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCAmelCase__ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) UpperCAmelCase__ : Union[str, Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) UpperCAmelCase__ : Optional[Any] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): for iteration in range(1 , iterations + 1 ): UpperCAmelCase__ : Optional[Any] = self.feedforward() self.back_propagation() if give_loss: UpperCAmelCase__ : Union[str, Any] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : int = input_arr UpperCAmelCase__ : Optional[int] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) UpperCAmelCase__ : List[str] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) UpperCAmelCase__ : List[str] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCamelCase ( _snake_case ): return 1 / (1 + numpy.exp(-value )) def lowerCamelCase ( _snake_case ): return (value) * (1 - (value)) def lowerCamelCase ( ): UpperCAmelCase__ : Tuple = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) ,dtype=numpy.floataa ,) # True output values for the given input values. UpperCAmelCase__ : List[str] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) ,dtype=numpy.floataa ) # Calling neural network class. UpperCAmelCase__ : Optional[Any] = TwoHiddenLayerNeuralNetwork( input_array=_snake_case ,output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case ,iterations=10 ,give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) ,dtype=numpy.floataa ) ) if __name__ == "__main__": example()
110
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
0
from __future__ import annotations def __UpperCamelCase ( _A , _A , _A , _A ): lowerCAmelCase_ = [] lowerCAmelCase_ , lowerCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowerCAmelCase_ = result + left + right return input_list def __UpperCamelCase ( _A ): if len(__lowerCAmelCase ) <= 1: return input_list lowerCAmelCase_ = list(__lowerCAmelCase ) # iteration for two-way merging lowerCAmelCase_ = 2 while p <= len(__lowerCAmelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): lowerCAmelCase_ = i lowerCAmelCase_ = i + p - 1 lowerCAmelCase_ = (low + high + 1) // 2 lowerCAmelCase_ = merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # final merge of last two parts if p * 2 >= len(__lowerCAmelCase ): lowerCAmelCase_ = i lowerCAmelCase_ = merge(__lowerCAmelCase , 0 , __lowerCAmelCase , len(__lowerCAmelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _A = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": _A = [] else: _A = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
431
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
0
import numpy as np def UpperCamelCase( __UpperCamelCase : List[str] ): return 1 / (1 + np.exp(-vector )) def UpperCamelCase( __UpperCamelCase : Any ): return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
171
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict = "laptop" ) -> DataFrame: SCREAMING_SNAKE_CASE_ : str =f'https://www.amazon.in/laptop/s?k={product}' SCREAMING_SNAKE_CASE_ : Union[str, Any] ={ '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } SCREAMING_SNAKE_CASE_ : List[str] =BeautifulSoup(requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE_ : Optional[int] =DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: SCREAMING_SNAKE_CASE_ : str =item.ha.text SCREAMING_SNAKE_CASE_ : Union[str, Any] ='''https://www.amazon.in/''' + item.ha.a['''href'''] SCREAMING_SNAKE_CASE_ : int =item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: SCREAMING_SNAKE_CASE_ : Union[str, Any] =item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: SCREAMING_SNAKE_CASE_ : List[Any] ='''Not available''' try: SCREAMING_SNAKE_CASE_ : Tuple =( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: SCREAMING_SNAKE_CASE_ : List[str] ='''''' try: SCREAMING_SNAKE_CASE_ : Union[str, Any] =float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_0_0 ) except ValueError: SCREAMING_SNAKE_CASE_ : str =float('''nan''' ) except AttributeError: pass SCREAMING_SNAKE_CASE_ : Dict =[ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE_ : Any =''' ''' SCREAMING_SNAKE_CASE_ : Optional[Any] =''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": _lowercase = """headphones""" get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
443
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase__ = """src/transformers""" # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(r'\s+\"\S*\":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(r'^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile('^\s+\"([^\"]+)\",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCAmelCase__ = re.compile(r'^\s*try:') # Catches a line with else: lowerCAmelCase__ = re.compile(r'^\s*else:') def _lowerCamelCase ( __a ): if _re_test_backend.search(__lowerCAmelCase ) is None: return None SCREAMING_SNAKE_CASE_ = [b[0] for b in _re_backend.findall(__lowerCAmelCase )] backends.sort() return "_and_".join(__lowerCAmelCase ) def _lowerCamelCase ( __a ): with open(__lowerCAmelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() SCREAMING_SNAKE_CASE_ = 0 while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure SCREAMING_SNAKE_CASE_ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: SCREAMING_SNAKE_CASE_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0] SCREAMING_SNAKE_CASE_ = re.findall('''\[([^\]]+)\]''', __lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue SCREAMING_SNAKE_CASE_ = _re_import_struct_key_value.search(__lowerCAmelCase ) if single_line_import_search is not None: SCREAMING_SNAKE_CASE_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 SCREAMING_SNAKE_CASE_ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): SCREAMING_SNAKE_CASE_ = lines[line_index] if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None: SCREAMING_SNAKE_CASE_ = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(''', ''' ) SCREAMING_SNAKE_CASE_ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_between_brackets.search(__lowerCAmelCase ) is not None: SCREAMING_SNAKE_CASE_ = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(''', ''' ) SCREAMING_SNAKE_CASE_ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_quote_object.search(__lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 SCREAMING_SNAKE_CASE_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend SCREAMING_SNAKE_CASE_ = [] while ( line_index < len(__lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): SCREAMING_SNAKE_CASE_ = lines[line_index] SCREAMING_SNAKE_CASE_ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 SCREAMING_SNAKE_CASE_ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): SCREAMING_SNAKE_CASE_ = lines[line_index] SCREAMING_SNAKE_CASE_ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 SCREAMING_SNAKE_CASE_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowerCamelCase ( __a, __a ): def find_duplicates(__a ): return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] SCREAMING_SNAKE_CASE_ = [] for key in import_dict_objects.keys(): SCREAMING_SNAKE_CASE_ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) SCREAMING_SNAKE_CASE_ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): SCREAMING_SNAKE_CASE_ = '''base imports''' if key == '''none''' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCAmelCase, '''__init__.py''' ) SCREAMING_SNAKE_CASE_ = parse_init(__lowerCAmelCase ) if objects is not None: SCREAMING_SNAKE_CASE_ = analyze_results(*__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('''\n'''.join(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: raise ValueError('''\n\n'''.join(__lowerCAmelCase ) ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = [] for path, directories, files in os.walk(__lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue SCREAMING_SNAKE_CASE_ = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = short_path.replace(os.path.sep, '''.''' ) submodules.append(__lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue SCREAMING_SNAKE_CASE_ = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = short_path.replace('''.py''', '''''' ).replace(os.path.sep, '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__lowerCAmelCase ) return submodules lowerCAmelCase__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def _lowerCamelCase ( ): # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE_ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(__lowerCAmelCase, '''__init__.py''' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) SCREAMING_SNAKE_CASE_ = spec.loader.load_module() SCREAMING_SNAKE_CASE_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ = '''\n'''.join(F'- {module}' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F'{list_of_modules}\n' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
626
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
0
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process A_ = logging.getLogger(__name__) A_ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) A_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default=snake_case_ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) a__: Optional[str] = field( default=snake_case_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(snake_case_ )} , ) a__: Optional[str] = field( default=snake_case_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) a__: Optional[str] = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=snake_case_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=snake_case_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCAmelCase__ ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default=snake_case_ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default=snake_case_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field(default=snake_case_ , metadata={'help': 'The input training data file (a text file).'} ) a__: Optional[str] = field( default=snake_case_ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) a__: Optional[str] = field( default=snake_case_ , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) a__: Optional[str] = field( default=snake_case_ , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) a__: bool = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) a__: Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) a__: Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) a__: Optional[int] = field( default=snake_case_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) a__: float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) a__: bool = field( default=snake_case_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def UpperCAmelCase__ ( self ): if self.train_file is not None: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): with open(__lowerCAmelCase ,'''r''' ,encoding='''utf-8''' ) as f: lowerCamelCase_ = [json.loads(__lowerCAmelCase ) for line in f.read().splitlines() if (len(__lowerCAmelCase ) > 0 and not line.isspace())] assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowerCamelCase_ = {c: dataset[c] for c in dataset.column_names} lowerCamelCase_ = refs return Dataset.from_dict(__lowerCAmelCase ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' ,__lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset(data_args.dataset_name ,data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f"train[:{data_args.validation_split_percentage}%]" ,) lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f"train[{data_args.validation_split_percentage}%:]" ,) else: lowerCamelCase_ = {} if data_args.train_file is not None: lowerCamelCase_ = data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ = data_args.validation_file lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] if extension == "txt": lowerCamelCase_ = '''text''' lowerCamelCase_ = load_dataset(__lowerCAmelCase ,data_files=__lowerCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.config_name ,**__lowerCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase_ = AutoConfig.from_pretrained(model_args.model_name_or_path ,**__lowerCAmelCase ) else: lowerCamelCase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) lowerCamelCase_ = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,**__lowerCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,**__lowerCAmelCase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: lowerCamelCase_ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=__lowerCAmelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) else: logger.info('''Training new model from scratch''' ) lowerCamelCase_ = AutoModelForMaskedLM.from_config(__lowerCAmelCase ) model.resize_token_embeddings(len(__lowerCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase_ = datasets['''train'''].column_names else: lowerCamelCase_ = datasets['''validation'''].column_names lowerCamelCase_ = '''text''' if '''text''' in column_names else column_names[0] lowerCamelCase_ = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase__ ): # Remove empty lines lowerCamelCase_ = [line for line in examples['''text'''] if len(__lowerCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=data_args.max_seq_length ) lowerCamelCase_ = datasets.map( __lowerCAmelCase ,batched=__lowerCAmelCase ,num_proc=data_args.preprocessing_num_workers ,remove_columns=[text_column_name] ,load_from_cache_file=not data_args.overwrite_cache ,) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase_ = add_chinese_references(tokenized_datasets['''train'''] ,data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCamelCase_ = add_chinese_references( tokenized_datasets['''validation'''] ,data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCamelCase_ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase_ = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase_ = DataCollatorForWholeWordMask(tokenizer=__lowerCAmelCase ,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase_ = Trainer( model=__lowerCAmelCase ,args=__lowerCAmelCase ,train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None ,eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None ,tokenizer=__lowerCAmelCase ,data_collator=__lowerCAmelCase ,) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase_ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCamelCase_ = model_args.model_name_or_path else: lowerCamelCase_ = None lowerCamelCase_ = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ = os.path.join(training_args.output_dir ,'''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase ,'''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,'''trainer_state.json''' ) ) # Evaluation lowerCamelCase_ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate() lowerCamelCase_ = math.exp(eval_output['''eval_loss'''] ) lowerCamelCase_ = perplexity lowerCamelCase_ = os.path.join(training_args.output_dir ,'''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase ,'''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) return results def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , snake_case_ , ) class _UpperCAmelCase( snake_case_ ): lowercase__ = RobertaConfig lowercase__ = 'roberta' def __init__( self , __a) -> List[str]: '''simple docstring''' super().__init__(_a) _UpperCamelCase = RobertaEmbeddings(_a) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , snake_case_ , ) class _UpperCAmelCase( snake_case_ ): lowercase__ = RobertaConfig lowercase__ = 'roberta' def __init__( self , __a) -> Any: '''simple docstring''' super().__init__(_a) _UpperCamelCase = config.num_labels _UpperCamelCase = config.num_hidden_layers _UpperCamelCase = DeeRobertaModel(_a) _UpperCamelCase = nn.Dropout(config.hidden_dropout_prob) _UpperCamelCase = nn.Linear(config.hidden_size , self.config.num_labels) @add_start_docstrings_to_model_forward(_a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , __a=-1 , __a=False , ) -> Any: '''simple docstring''' _UpperCamelCase = self.num_layers try: _UpperCamelCase = self.roberta( _a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , ) _UpperCamelCase = outputs[1] _UpperCamelCase = self.dropout(_a) _UpperCamelCase = self.classifier(_a) _UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _UpperCamelCase = e.message _UpperCamelCase = e.exit_layer _UpperCamelCase = outputs[0] if not self.training: _UpperCamelCase = entropy(_a) _UpperCamelCase = [] _UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression _UpperCamelCase = MSELoss() _UpperCamelCase = loss_fct(logits.view(-1) , labels.view(-1)) else: _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits _UpperCamelCase = [] for highway_exit in outputs[-1]: _UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(_a) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression _UpperCamelCase = MSELoss() _UpperCamelCase = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(_a) if train_highway: _UpperCamelCase = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: _UpperCamelCase = (loss,) + outputs if not self.training: _UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
0
import itertools import string from collections.abc import Generator, Iterable def _a ( a :List[Any] , a :Dict ) -> Generator[tuple[str, ...], None, None]: a = iter(__lowerCAmelCase ) while True: a = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) ) if not chunk: return yield chunk def _a ( a :Optional[int] ) -> str: a = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) a = '''''' if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def _a ( a :int ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) a = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler a = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def _a ( a :List[Any] , a :Union[str, Any] ) -> str: a = generate_table(__lowerCAmelCase ) a = prepare_input(__lowerCAmelCase ) a = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): a , a = divmod(table.index(__lowerCAmelCase ) , 5 ) a , a = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _a ( a :int , a :Dict ) -> str: a = generate_table(__lowerCAmelCase ) a = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): a , a = divmod(table.index(__lowerCAmelCase ) , 5 ) a , a = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
117
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _lowerCamelCase : Dict = logging.get_logger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase__=False , lowercase__=False , lowercase__=6.0 , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=None , lowercase__="fp4" , lowercase__=False , **lowercase__ , ): '''simple docstring''' __A =load_in_abit __A =load_in_abit __A =llm_inta_threshold __A =llm_inta_skip_modules __A =llm_inta_enable_fpaa_cpu_offload __A =llm_inta_has_fpaa_weight __A =bnb_abit_quant_type __A =bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __A =torch.floataa elif isinstance(_a , _a ): __A =getattr(_a , _a ) elif isinstance(_a , torch.dtype ): __A =bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def __UpperCamelCase ( self ): '''simple docstring''' if not isinstance(self.llm_inta_threshold , _a ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _a ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _a ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , _a ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , _a ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , _a ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def __UpperCamelCase ( self ): '''simple docstring''' return self.load_in_abit or self.load_in_abit def __UpperCamelCase ( self ): '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __UpperCamelCase ( cls , lowercase__ , lowercase__ , **lowercase__ ): '''simple docstring''' __A =cls(**_a ) __A =[] for key, value in kwargs.items(): if hasattr(_a , _a ): setattr(_a , _a , _a ) to_remove.append(_a ) for key in to_remove: kwargs.pop(_a , _a ) if return_unused_kwargs: return config, kwargs else: return config def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' with open(_a , '''w''' , encoding='''utf-8''' ) as writer: __A =self.to_dict() __A =json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' writer.write(_a ) def __UpperCamelCase ( self ): '''simple docstring''' __A =copy.deepcopy(self.__dict__ ) __A =str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self ): '''simple docstring''' return f'''{self.__class__.__name__} {self.to_json_string()}''' def __UpperCamelCase ( self , lowercase__ = True ): '''simple docstring''' if use_diff is True: __A =self.to_diff_dict() else: __A =self.to_dict() return json.dumps(_a , indent=2 , sort_keys=_a ) + "\n" def __UpperCamelCase ( self ): '''simple docstring''' __A =self.to_dict() # get the default config dict __A =BitsAndBytesConfig().to_dict() __A ={} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __A =value return serializable_config_dict
184
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple=7 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[Any]=18 , __lowerCamelCase : Optional[Any]=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : str=True , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Tuple=True , ) -> List[Any]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size_divisor __lowercase = do_rescale def UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class snake_case_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = GLPNImageProcessor if is_vision_available() else None def UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' __lowercase = GLPNImageProcessingTester(self ) @property def UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , 'do_resize' ) ) self.assertTrue(hasattr(_a , 'size_divisor' ) ) self.assertTrue(hasattr(_a , 'resample' ) ) self.assertTrue(hasattr(_a , 'do_rescale' ) ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
375
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase : Dict = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
568
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __lowerCAmelCase = { """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class lowerCamelCase_ ( snake_case_ ): __lowercase : int = VOCAB_FILES_NAMES __lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : int = ['input_ids', 'attention_mask'] __lowercase : int = BartTokenizer def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="replace" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_=False , lowerCamelCase_=True , **lowerCamelCase_ , ) -> Optional[int]: """simple docstring""" super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) _UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _a ) != add_prefix_space: _UpperCamelCase = getattr(_a , pre_tok_state.pop("type" ) ) _UpperCamelCase = add_prefix_space _UpperCamelCase = pre_tok_class(**_a ) _UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCamelCase = "post_processor" _UpperCamelCase = getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: _UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCamelCase = tuple(state["sep"] ) if "cls" in state: _UpperCamelCase = tuple(state["cls"] ) _UpperCamelCase = False if state.get("add_prefix_space" , _a ) != add_prefix_space: _UpperCamelCase = add_prefix_space _UpperCamelCase = True if state.get("trim_offsets" , _a ) != trim_offsets: _UpperCamelCase = trim_offsets _UpperCamelCase = True if changes_to_apply: _UpperCamelCase = getattr(_a , state.pop("type" ) ) _UpperCamelCase = component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property def lowercase ( self ) -> Optional[Any]: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self , lowerCamelCase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value _UpperCamelCase = value def lowercase ( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase = kwargs.get("is_split_into_words" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_a , **_a ) def lowercase ( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> Dict: """simple docstring""" _UpperCamelCase = kwargs.get("is_split_into_words" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_a , **_a ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> str: """simple docstring""" _UpperCamelCase = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> List[Any]: """simple docstring""" _UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
147
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _A = logging.get_logger(__name__) _A = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class A ( snake_case_ ): __snake_case = 'longformer' def __init__( self, UpperCamelCase__ = 512, UpperCamelCase__ = 2, UpperCamelCase__ = 1, UpperCamelCase__ = 0, UpperCamelCase__ = 2, UpperCamelCase__ = 3_0522, UpperCamelCase__ = 768, UpperCamelCase__ = 12, UpperCamelCase__ = 12, UpperCamelCase__ = 3072, UpperCamelCase__ = "gelu", UpperCamelCase__ = 0.1, UpperCamelCase__ = 0.1, UpperCamelCase__ = 512, UpperCamelCase__ = 2, UpperCamelCase__ = 0.02, UpperCamelCase__ = 1E-12, UpperCamelCase__ = False, **UpperCamelCase__, ): """simple docstring""" super().__init__(pad_token_id=_a, **_a ) lowerCAmelCase_ = attention_window lowerCAmelCase_ = sep_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = onnx_export class A ( snake_case_ ): def __init__( self, UpperCamelCase__, UpperCamelCase__ = "default", UpperCamelCase__ = None ): """simple docstring""" super().__init__(_a, _a, _a ) lowerCAmelCase_ = True @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = super().outputs if self.task == "default": lowerCAmelCase_ = {0: '''batch'''} return outputs @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return max(super().default_onnx_opset, 14 ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = -1, UpperCamelCase__ = -1, UpperCamelCase__ = False, UpperCamelCase__ = None, ): """simple docstring""" lowerCAmelCase_ = super().generate_dummy_inputs( preprocessor=_a, batch_size=_a, seq_length=_a, is_pair=_a, framework=_a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCAmelCase_ = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global lowerCAmelCase_ = 1 return inputs
431
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : str , A_ : int , A_ : str=7 , A_ : Optional[int]=3 , A_ : Dict=3_0 , A_ : str=4_0_0 , A_ : Optional[Any]=True , A_ : Optional[Any]=None , A_ : List[str]=True , A_ : List[str]=[0.5, 0.5, 0.5] , A_ : List[str]=[0.5, 0.5, 0.5] , A_ : Tuple=True , A_ : Tuple=1 / 2_5_5 , A_ : int=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase_ : Optional[int] = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : str = min_resolution lowerCAmelCase_ : Any = max_resolution lowerCAmelCase_ : int = do_resize lowerCAmelCase_ : Any = size lowerCAmelCase_ : int = do_normalize lowerCAmelCase_ : Union[str, Any] = image_mean lowerCAmelCase_ : str = image_std lowerCAmelCase_ : Dict = do_rescale lowerCAmelCase_ : Dict = rescale_factor lowerCAmelCase_ : Any = do_pad def UpperCAmelCase__ ( self : Any): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : List[str]=False): if not batched: lowerCAmelCase_ : int = image_inputs[0] if isinstance(_a , Image.Image): lowerCAmelCase_ , lowerCAmelCase_ : str = image.size else: lowerCAmelCase_ , lowerCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ : Dict = int(self.size['''shortest_edge'''] * h / w) lowerCAmelCase_ : Any = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase_ : List[Any] = self.size['''shortest_edge'''] lowerCAmelCase_ : Optional[Any] = int(self.size['''shortest_edge'''] * w / h) else: lowerCAmelCase_ : str = self.size['''shortest_edge'''] lowerCAmelCase_ : List[Any] = self.size['''shortest_edge'''] else: lowerCAmelCase_ : Any = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ : int = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) lowerCAmelCase_ : Any = max(_a , key=lambda A_: item[0])[0] lowerCAmelCase_ : Optional[int] = max(_a , key=lambda A_: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __snake_case ( snake_case_ ,unittest.TestCase ): _a = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Dict = ConditionalDetrImageProcessingTester(self) @property def UpperCAmelCase__ ( self : Union[str, Any]): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_a , '''image_mean''')) self.assertTrue(hasattr(_a , '''image_std''')) self.assertTrue(hasattr(_a , '''do_normalize''')) self.assertTrue(hasattr(_a , '''do_resize''')) self.assertTrue(hasattr(_a , '''size''')) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3}) self.assertEqual(image_processor.do_pad , _a) lowerCAmelCase_ : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=_a) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4}) self.assertEqual(image_processor.do_pad , _a) def UpperCAmelCase__ ( self : List[Any]): pass def UpperCAmelCase__ ( self : List[str]): # Initialize image_processing lowerCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a) for image in image_inputs: self.assertIsInstance(_a , Image.Image) # Test not batched input lowerCAmelCase_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.image_processor_tester.get_expected_values(_a) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ , lowerCAmelCase_ : Any = self.image_processor_tester.get_expected_values(_a , batched=_a) lowerCAmelCase_ : Union[str, Any] = image_processing(_a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : int): # Initialize image_processing lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a) for image in image_inputs: self.assertIsInstance(_a , np.ndarray) # Test not batched input lowerCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : int = self.image_processor_tester.get_expected_values(_a) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ : Dict = image_processing(_a , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.image_processor_tester.get_expected_values(_a , batched=_a) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Dict): # Initialize image_processing lowerCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor) # Test not batched input lowerCAmelCase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.image_processor_tester.get_expected_values(_a) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ : int = image_processing(_a , return_tensors='''pt''').pixel_values lowerCAmelCase_ , lowerCAmelCase_ : int = self.image_processor_tester.get_expected_values(_a , batched=_a) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self : Optional[Any]): # prepare image and target lowerCAmelCase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: lowerCAmelCase_ : Tuple = json.loads(f.read()) lowerCAmelCase_ : Any = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCAmelCase_ : Union[str, Any] = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''') lowerCAmelCase_ : List[Any] = image_processing(images=_a , annotations=_a , return_tensors='''pt''') # verify pixel values lowerCAmelCase_ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding['''pixel_values'''].shape , _a) lowerCAmelCase_ : Dict = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _a , atol=1e-4)) # verify area lowerCAmelCase_ : Dict = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _a)) # verify boxes lowerCAmelCase_ : Optional[Any] = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _a) lowerCAmelCase_ : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _a , atol=1e-3)) # verify image_id lowerCAmelCase_ : Dict = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _a)) # verify is_crowd lowerCAmelCase_ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _a)) # verify class_labels lowerCAmelCase_ : List[str] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _a)) # verify orig_size lowerCAmelCase_ : Optional[Any] = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _a)) # verify size lowerCAmelCase_ : Tuple = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _a)) @slow def UpperCAmelCase__ ( self : int): # prepare image, target and masks_path lowerCAmelCase_ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: lowerCAmelCase_ : Tuple = json.loads(f.read()) lowerCAmelCase_ : Dict = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCAmelCase_ : Optional[int] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them lowerCAmelCase_ : List[str] = ConditionalDetrImageProcessor(format='''coco_panoptic''') lowerCAmelCase_ : Optional[Any] = image_processing(images=_a , annotations=_a , masks_path=_a , return_tensors='''pt''') # verify pixel values lowerCAmelCase_ : Union[str, Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding['''pixel_values'''].shape , _a) lowerCAmelCase_ : Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _a , atol=1e-4)) # verify area lowerCAmelCase_ : Optional[int] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _a)) # verify boxes lowerCAmelCase_ : int = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _a) lowerCAmelCase_ : Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _a , atol=1e-3)) # verify image_id lowerCAmelCase_ : Dict = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _a)) # verify is_crowd lowerCAmelCase_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _a)) # verify class_labels lowerCAmelCase_ : Union[str, Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _a)) # verify masks lowerCAmelCase_ : Any = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _a) # verify orig_size lowerCAmelCase_ : List[Any] = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _a)) # verify size lowerCAmelCase_ : Dict = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _a))
171
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
443
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
0
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } lowerCAmelCase__ = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } lowerCAmelCase__ = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ = char SCREAMING_SNAKE_CASE_ = set(__lowerCAmelCase ) return pairs class snake_case ( snake_case_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , **_a , ) SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = merges_file SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 self.add_from_file(_a ) SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.encoder.items()} with open(_a , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE_ = merges_handle.read().split('''\n''' )[:-1] SCREAMING_SNAKE_CASE_ = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE_ = dict(zip(_a , range(len(_a ) ) ) ) SCREAMING_SNAKE_CASE_ = {} def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] SCREAMING_SNAKE_CASE_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase (self ): """simple docstring""" return len(self.encoder ) def _lowercase (self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ = tuple(_a ) SCREAMING_SNAKE_CASE_ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE_ = get_pairs(_a ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ = min(_a , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(_a , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = bigram SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 while i < len(_a ): try: SCREAMING_SNAKE_CASE_ = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ = tuple(_a ) SCREAMING_SNAKE_CASE_ = new_word if len(_a ) == 1: break else: SCREAMING_SNAKE_CASE_ = get_pairs(_a ) SCREAMING_SNAKE_CASE_ = '''@@ '''.join(_a ) SCREAMING_SNAKE_CASE_ = word[:-4] SCREAMING_SNAKE_CASE_ = word return word def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = re.findall(R'''\S+\n?''' , _a ) for token in words: split_tokens.extend(list(self.bpe(_a ).split(''' ''' ) ) ) return split_tokens def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return self.decoder.get(_a , self.unk_token ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ''' '''.join(_a ).replace('''@@ ''' , '''''' ).strip() return out_string def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): """simple docstring""" if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE_ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) if os.path.abspath(self.merges_file ) != os.path.abspath(_a ): copyfile(self.merges_file , _a ) return out_vocab_file, out_merge_file def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" if isinstance(_a , _a ): try: with open(_a , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return SCREAMING_SNAKE_CASE_ = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE_ = lineTmp.strip() SCREAMING_SNAKE_CASE_ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) SCREAMING_SNAKE_CASE_ = line[:idx] SCREAMING_SNAKE_CASE_ = len(self.encoder )
626
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __lowerCamelCase ( snake_case_ ): a__: Optional[int] = 'vivit' def __init__( self , UpperCAmelCase=224 , UpperCAmelCase=32 , UpperCAmelCase=[2, 16, 16] , UpperCAmelCase=3 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu_fast" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1e-0_6 , UpperCAmelCase=True , **UpperCAmelCase , ): lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = num_frames lowerCamelCase_ = tubelet_size lowerCamelCase_ = num_channels lowerCamelCase_ = qkv_bias super().__init__(**_a )
29
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
0
"""simple docstring""" import os import sys _a = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _a = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCamelCase__ ( *__snake_case, **__snake_case ) -> Any: """simple docstring""" return AutoConfig.from_pretrained(*__lowerCAmelCase, **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCamelCase__ ( *__snake_case, **__snake_case ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*__lowerCAmelCase, **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCamelCase__ ( *__snake_case, **__snake_case ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__lowerCAmelCase, **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCamelCase__ ( *__snake_case, **__snake_case ) -> Union[str, Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase, **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCamelCase__ ( *__snake_case, **__snake_case ) -> List[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase, **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCamelCase__ ( *__snake_case, **__snake_case ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase, **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCamelCase__ ( *__snake_case, **__snake_case ) -> Union[str, Any]: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase, **__lowerCAmelCase )
19
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
0
from copy import deepcopy class lowercase_ : '''simple docstring''' def __init__( self : int , __UpperCAmelCase : list[int] | None = None , __UpperCAmelCase : int | None = None ) ->Any: """simple docstring""" if arr is None and size is not None: a = size a = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : list[int] ) ->Union[str, Any]: """simple docstring""" a = len(_a ) a = deepcopy(_a ) for i in range(1 , self.size ): a = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" a = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): a = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : int ) ->Union[str, Any]: """simple docstring""" return index + (index & (-index)) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : int ) ->Optional[Any]: """simple docstring""" return index - (index & (-index)) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->List[Any]: """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value a = self.next_(_a ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->Tuple: """simple docstring""" self.add(_a , value - self.get(_a ) ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : int ) ->Any: """simple docstring""" if right == 0: return 0 a = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] a = self.prev(_a ) return result def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ) ->Optional[Any]: """simple docstring""" return self.prefix(_a ) - self.prefix(_a ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : int ) ->Union[str, Any]: """simple docstring""" return self.query(_a , index + 1 ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : int ) ->Union[str, Any]: """simple docstring""" value -= self.tree[0] if value < 0: return -1 a = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 a = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
117
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
0
from math import ceil def A__ ( __A : List[str] = 10_01 ) ->int: __A =1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __A =2 * i + 1 __A =2 * i __A =total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowerCamelCase : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
184
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
0
def SCREAMING_SNAKE_CASE ( snake_case ) -> str: __lowercase , __lowercase = [], [] while len(__lowerCAmelCase ) > 1: __lowercase , __lowercase = min(__lowerCAmelCase ), max(__lowerCAmelCase ) start.append(__lowerCAmelCase ) end.append(__lowerCAmelCase ) collection.remove(__lowerCAmelCase ) collection.remove(__lowerCAmelCase ) end.reverse() return start + collection + end if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE_ : int = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
375
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : str = 0 def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Any = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Any = Path(_a ) / "preprocessor_config.json" snake_case_ : Optional[int] = Path(_a ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(_a , "w" ) , ) json.dump({"model_type": "clip"} , open(_a , "w" ) ) snake_case_ : int = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ) -> List[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Tuple = Path(_a ) / "preprocessor_config.json" snake_case_ : Any = Path(_a ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(_a , "w" ) , ) json.dump({"model_type": "clip"} , open(_a , "w" ) ) snake_case_ : List[str] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Union[str, Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case_ : Optional[int] = Path(_a ) / "preprocessor_config.json" snake_case_ : Optional[Any] = Path(_a ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(_a , "w" ) , ) json.dump({"model_type": "clip"} , open(_a , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case_ : Optional[int] = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop("image_processor_type" ) snake_case_ : Optional[int] = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case_ : Dict = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case_ : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Union[str, Any] = Path(_a ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(_a , "w" ) , ) snake_case_ : Optional[int] = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ) -> Optional[Any]: with self.assertRaisesRegex( _a , "clip-base is not a local folder and is not a valid model identifier" ): snake_case_ : Tuple = AutoImageProcessor.from_pretrained("clip-base" ) def _lowerCAmelCase ( self ) -> Optional[int]: with self.assertRaisesRegex( _a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): snake_case_ : int = AutoImageProcessor.from_pretrained(_a , revision="aaaaaa" ) def _lowerCAmelCase ( self ) -> Optional[Any]: with self.assertRaisesRegex( _a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): snake_case_ : Optional[int] = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def _lowerCAmelCase ( self ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case_ : int = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case_ : int = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_a ) snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case_ : Tuple = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def _lowerCAmelCase ( self ) -> Optional[Any]: try: AutoConfig.register("custom" , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Any = Path(_a ) / "preprocessor_config.json" snake_case_ : List[Any] = Path(_a ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(_a , "w" ) , ) json.dump({"model_type": "clip"} , open(_a , "w" ) ) snake_case_ : Union[str, Any] = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case_ : Dict = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self ) -> Optional[int]: class UpperCAmelCase_ ( snake_case_ ): '''simple docstring''' A : List[str] = True try: AutoConfig.register("custom" , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case_ : int = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case_ : List[Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(_a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
568
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase_ ( snake_case_ ): __lowercase : List[Any] = ['input_features', 'is_longer'] def __init__( self , lowerCamelCase_=64 , lowerCamelCase_=4_80_00 , lowerCamelCase_=4_80 , lowerCamelCase_=10 , lowerCamelCase_=10_24 , lowerCamelCase_=0.0 , lowerCamelCase_=False , lowerCamelCase_ = 0 , lowerCamelCase_ = 1_40_00 , lowerCamelCase_ = None , lowerCamelCase_ = "fusion" , lowerCamelCase_ = "repeatpad" , **lowerCamelCase_ , ) -> Optional[int]: """simple docstring""" super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , return_attention_mask=_a , **_a , ) _UpperCamelCase = top_db _UpperCamelCase = truncation _UpperCamelCase = padding _UpperCamelCase = fft_window_size _UpperCamelCase = (fft_window_size >> 1) + 1 _UpperCamelCase = hop_length _UpperCamelCase = max_length_s _UpperCamelCase = max_length_s * sampling_rate _UpperCamelCase = sampling_rate _UpperCamelCase = frequency_min _UpperCamelCase = frequency_max _UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_a , min_frequency=_a , max_frequency=_a , sampling_rate=_a , norm=_a , mel_scale="htk" , ) _UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_a , min_frequency=_a , max_frequency=_a , sampling_rate=_a , norm="slaney" , mel_scale="slaney" , ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[str]: """simple docstring""" _UpperCamelCase = spectrogram( _a , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_a , log_mel="dB" , ) return log_mel_spectrogram.T def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: """simple docstring""" _UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _UpperCamelCase = [0] # randomly choose index for each part _UpperCamelCase = np.random.choice(ranges[0] ) _UpperCamelCase = np.random.choice(ranges[1] ) _UpperCamelCase = np.random.choice(ranges[2] ) _UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] _UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] _UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] _UpperCamelCase = torch.tensor(mel[None, None, :] ) _UpperCamelCase = torch.nn.functional.interpolate( _a , size=[chunk_frames, 64] , mode="bilinear" , align_corners=_a ) _UpperCamelCase = mel_shrink[0][0].numpy() _UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCamelCase = len(_a ) - max_length _UpperCamelCase = np.random.randint(0 , overflow + 1 ) _UpperCamelCase = waveform[idx : idx + max_length] _UpperCamelCase = self._np_extract_fbank_features(_a , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _UpperCamelCase = self._np_extract_fbank_features(_a , self.mel_filters ) _UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) _UpperCamelCase = False else: _UpperCamelCase = self._random_mel_fusion(_a , _a , _a ) _UpperCamelCase = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: _UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCamelCase = int(max_length / len(_a ) ) _UpperCamelCase = np.stack(np.tile(_a , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _UpperCamelCase = int(max_length / len(_a ) ) _UpperCamelCase = np.stack(np.tile(_a , _a ) ) _UpperCamelCase = np.pad(_a , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": _UpperCamelCase = self._np_extract_fbank_features(_a , self.mel_filters ) _UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _UpperCamelCase = self._np_extract_fbank_features(_a , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> int: """simple docstring""" _UpperCamelCase = truncation if truncation is not None else self.truncation _UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCamelCase = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _UpperCamelCase = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCamelCase = [np.asarray(_a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): _UpperCamelCase = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCamelCase = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. _UpperCamelCase = [ self._get_input_mel(_a , max_length if max_length else self.nb_max_samples , _a , _a ) for waveform in raw_speech ] _UpperCamelCase = [] _UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCamelCase = np.random.randint(0 , len(_a ) ) _UpperCamelCase = True if isinstance(input_mel[0] , _a ): _UpperCamelCase = [np.asarray(_a , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _UpperCamelCase = [[longer] for longer in is_longer] _UpperCamelCase = {"input_features": input_mel, "is_longer": is_longer} _UpperCamelCase = BatchFeature(_a ) if return_tensors is not None: _UpperCamelCase = input_features.convert_to_tensors(_a ) return input_features
147
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
0
def __UpperCamelCase ( _A , _A , _A , _A ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCAmelCase_ = mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: lowerCAmelCase_ = max( mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) lowerCAmelCase_ = val return f[i][j] def __UpperCamelCase ( _A , _A , _A , _A ): lowerCAmelCase_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCAmelCase_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCAmelCase_ = dp[i - 1][w_] return dp[n][w_], dp def __UpperCamelCase ( _A , _A , _A ): if not (isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(__lowerCAmelCase , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) lowerCAmelCase_ = len(__lowerCAmelCase ) if num_items != len(__lowerCAmelCase ): lowerCAmelCase_ = ( '''The number of weights must be the same as the number of values.\n''' f"But got {num_items} weights and {len(__lowerCAmelCase )} values" ) raise ValueError(__lowerCAmelCase ) for i in range(__lowerCAmelCase ): if not isinstance(wt[i] , __lowerCAmelCase ): lowerCAmelCase_ = ( '''All weights must be integers but got weight of ''' f"type {type(wt[i] )} at index {i}" ) raise TypeError(__lowerCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ = knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = set() _construct_solution(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return optimal_val, example_optional_set def __UpperCamelCase ( _A , _A , _A , _A , _A ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , __lowerCAmelCase , __lowerCAmelCase ) else: optimal_set.add(__lowerCAmelCase ) _construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , j - wt[i - 1] , __lowerCAmelCase ) if __name__ == "__main__": _A = [3, 2, 4, 4] _A = [4, 3, 2, 3] _A = 4 _A = 6 _A = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _A = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _A = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
431
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( snake_case_ ): _a = (EulerDiscreteScheduler,) _a = 10 def UpperCAmelCase__ ( self : Tuple , **A_ : str): lowerCAmelCase_ : Any = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_a) return config def UpperCAmelCase__ ( self : Optional[Any]): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a) def UpperCAmelCase__ ( self : Any): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=_a , beta_end=_a) def UpperCAmelCase__ ( self : Any): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a) def UpperCAmelCase__ ( self : str): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Any = self.scheduler_classes[0] lowerCAmelCase_ : int = self.get_scheduler_config() lowerCAmelCase_ : int = scheduler_class(**_a) scheduler.set_timesteps(self.num_inference_steps) lowerCAmelCase_ : Optional[int] = torch.manual_seed(0) lowerCAmelCase_ : Optional[int] = self.dummy_model() lowerCAmelCase_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : Union[str, Any] = sample.to(_a) for i, t in enumerate(scheduler.timesteps): lowerCAmelCase_ : Dict = scheduler.scale_model_input(_a , _a) lowerCAmelCase_ : Union[str, Any] = model(_a , _a) lowerCAmelCase_ : Optional[int] = scheduler.step(_a , _a , _a , generator=_a) lowerCAmelCase_ : Any = output.prev_sample lowerCAmelCase_ : Union[str, Any] = torch.sum(torch.abs(_a)) lowerCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 10.0807) < 1e-2 assert abs(result_mean.item() - 0.0131) < 1e-3 def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Tuple = self.scheduler_classes[0] lowerCAmelCase_ : str = self.get_scheduler_config(prediction_type='''v_prediction''') lowerCAmelCase_ : Tuple = scheduler_class(**_a) scheduler.set_timesteps(self.num_inference_steps) lowerCAmelCase_ : Dict = torch.manual_seed(0) lowerCAmelCase_ : List[str] = self.dummy_model() lowerCAmelCase_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : Tuple = sample.to(_a) for i, t in enumerate(scheduler.timesteps): lowerCAmelCase_ : Optional[Any] = scheduler.scale_model_input(_a , _a) lowerCAmelCase_ : int = model(_a , _a) lowerCAmelCase_ : int = scheduler.step(_a , _a , _a , generator=_a) lowerCAmelCase_ : Dict = output.prev_sample lowerCAmelCase_ : Any = torch.sum(torch.abs(_a)) lowerCAmelCase_ : List[str] = torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 0.0002) < 1e-2 assert abs(result_mean.item() - 2.2676e-06) < 1e-3 def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ : Optional[Any] = self.get_scheduler_config() lowerCAmelCase_ : int = scheduler_class(**_a) scheduler.set_timesteps(self.num_inference_steps , device=_a) lowerCAmelCase_ : List[str] = torch.manual_seed(0) lowerCAmelCase_ : Optional[int] = self.dummy_model() lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase_ : Optional[int] = sample.to(_a) for t in scheduler.timesteps: lowerCAmelCase_ : Dict = scheduler.scale_model_input(_a , _a) lowerCAmelCase_ : str = model(_a , _a) lowerCAmelCase_ : List[str] = scheduler.step(_a , _a , _a , generator=_a) lowerCAmelCase_ : str = output.prev_sample lowerCAmelCase_ : List[Any] = torch.sum(torch.abs(_a)) lowerCAmelCase_ : List[str] = torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 10.0807) < 1e-2 assert abs(result_mean.item() - 0.0131) < 1e-3 def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase_ : int = self.get_scheduler_config() lowerCAmelCase_ : Any = scheduler_class(**_a , use_karras_sigmas=_a) scheduler.set_timesteps(self.num_inference_steps , device=_a) lowerCAmelCase_ : str = torch.manual_seed(0) lowerCAmelCase_ : Dict = self.dummy_model() lowerCAmelCase_ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase_ : Tuple = sample.to(_a) for t in scheduler.timesteps: lowerCAmelCase_ : Optional[Any] = scheduler.scale_model_input(_a , _a) lowerCAmelCase_ : Optional[Any] = model(_a , _a) lowerCAmelCase_ : Optional[int] = scheduler.step(_a , _a , _a , generator=_a) lowerCAmelCase_ : str = output.prev_sample lowerCAmelCase_ : str = torch.sum(torch.abs(_a)) lowerCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(_a)) assert abs(result_sum.item() - 124.52_2994_9951_1719) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963) < 1e-3
171
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _lowercase = ( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode("""utf-8""").split() ) _lowercase = """|""".join(sys.argv[1:]) _lowercase = re.compile(RF"^({joined_dirs}).*?\.py$") _lowercase = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
443
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase, __lowerCAmelCase ) def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = emb.weight.shape SCREAMING_SNAKE_CASE_ = nn.Linear(__lowerCAmelCase, __lowerCAmelCase, bias=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = emb.weight.data return lin_layer def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = torch.load(__lowerCAmelCase, map_location='''cpu''' ) SCREAMING_SNAKE_CASE_ = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] SCREAMING_SNAKE_CASE_ = mam_aaa['''model'''] remove_ignore_keys_(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] SCREAMING_SNAKE_CASE_ = MaMaaaConfig( vocab_size=__lowerCAmelCase, max_position_embeddings=1_024, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', ) SCREAMING_SNAKE_CASE_ = state_dict['''decoder.embed_tokens.weight'''] SCREAMING_SNAKE_CASE_ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase, strict=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
626
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowerCamelCase ( snake_case_ ): a__: Union[str, Any] = 'trocr' a__: Optional[Any] = ['past_key_values'] a__: Union[str, Any] = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , UpperCAmelCase=5_0265 , UpperCAmelCase=1024 , UpperCAmelCase=12 , UpperCAmelCase=16 , UpperCAmelCase=4096 , UpperCAmelCase="gelu" , UpperCAmelCase=512 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ): lowerCamelCase_ = vocab_size lowerCamelCase_ = d_model lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = activation_function lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = init_std lowerCamelCase_ = decoder_layerdrop lowerCamelCase_ = use_cache lowerCamelCase_ = scale_embedding lowerCamelCase_ = use_learned_position_embeddings lowerCamelCase_ = layernorm_embedding super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
29
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _a = """hf-internal-testing/tiny-random-bert""" _a = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") _a = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = cached_file(_a , _a) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_a)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_a , _a))) with open(os.path.join(_a , '''refs''' , '''main''')) as f: _UpperCamelCase = f.read() self.assertEqual(_a , os.path.join(_a , '''snapshots''' , _a , _a)) self.assertTrue(os.path.isfile(_a)) # File is cached at the same place the second time. _UpperCamelCase = cached_file(_a , _a) self.assertEqual(_a , _a) # Using a specific revision to test the full commit hash. _UpperCamelCase = cached_file(_a , _a , revision='''9b8c223''') self.assertEqual(_a , os.path.join(_a , '''snapshots''' , _a , _a)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' with self.assertRaisesRegex(_a , '''is not a valid model identifier'''): _UpperCamelCase = cached_file('''tiny-random-bert''' , _a) with self.assertRaisesRegex(_a , '''is not a valid git identifier'''): _UpperCamelCase = cached_file(_a , _a , revision='''aaaa''') with self.assertRaisesRegex(_a , '''does not appear to have a file named'''): _UpperCamelCase = cached_file(_a , '''conf''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex(_a , '''does not appear to have a file named'''): _UpperCamelCase = cached_file(_a , '''conf''') with open(os.path.join(_a , '''refs''' , '''main''')) as f: _UpperCamelCase = f.read() self.assertTrue(os.path.isfile(os.path.join(_a , '''.no_exist''' , _a , '''conf'''))) _UpperCamelCase = cached_file(_a , '''conf''' , _raise_exceptions_for_missing_entries=_a) self.assertIsNone(_a) _UpperCamelCase = cached_file(_a , '''conf''' , local_files_only=_a , _raise_exceptions_for_missing_entries=_a) self.assertIsNone(_a) _UpperCamelCase = mock.Mock() _UpperCamelCase = 5_00 _UpperCamelCase = {} _UpperCamelCase = HTTPError _UpperCamelCase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_a) as mock_head: _UpperCamelCase = cached_file(_a , '''conf''' , _raise_exceptions_for_connection_errors=_a) self.assertIsNone(_a) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _a)) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _a)) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _a)) def UpperCAmelCase ( self) -> int: '''simple docstring''' # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_a , '''is not a valid model identifier'''): get_file_from_repo('''bert-base-case''' , _a) # The function raises if the revision does not exist. with self.assertRaisesRegex(_a , '''is not a valid git identifier'''): get_file_from_repo('''bert-base-cased''' , _a , revision='''ahaha''') _UpperCamelCase = get_file_from_repo('''bert-base-cased''' , _a) # The name is the cached name which is not very easy to test, so instead we load the content. _UpperCamelCase = json.loads(open(_a , '''r''').read()) self.assertEqual(config['''hidden_size'''] , 7_68) def UpperCAmelCase ( self) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = Path(_a) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_a , '''a.txt''') , str(_a)) self.assertIsNone(get_file_from_repo(_a , '''b.txt'''))
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = inspect.getfile(accelerate.test_utils ) a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" print(F"""Found {torch.cuda.device_count()} devices.""" ) a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" print(F"""Found {torch.cuda.device_count()} devices.""" ) a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase__ = Accelerator() UpperCAmelCase__ = (accelerator.state.process_index + 2, 10) UpperCAmelCase__ = torch.randint(0, 10, shape).to(accelerator.device) UpperCAmelCase__ = """""" UpperCAmelCase__ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCAmelCase__ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCAmelCase__ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
117
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class lowerCAmelCase__ ( snake_case_ ): '''simple docstring''' lowercase_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowercase_ = Features({"""text""": Value("""string""" )} ) lowercase_ = Features({} ) lowercase_ = "text" @property def __UpperCamelCase ( self ): '''simple docstring''' return {self.text_column: "text"}
184
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
0
SCREAMING_SNAKE_CASE_ : int = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def SCREAMING_SNAKE_CASE ( snake_case ) -> int: __lowercase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution SCREAMING_SNAKE_CASE_ : list[bool | None] = [None] * 1000_0000 SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( snake_case ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __lowercase = chain(next_number(__lowerCAmelCase ) ) __lowercase = number_chain while number < 10_000_000: __lowercase = number_chain number *= 10 return number_chain def SCREAMING_SNAKE_CASE ( snake_case = 10_000_000 ) -> int: for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
375
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowercase : int = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): '''simple docstring''' A : Optional[datasets.Features] = None A : str = "utf-8" A : Optional[str] = None A : Optional[str] = None A : bool = True # deprecated A : Optional[int] = None # deprecated A : int = 10 << 20 # 10MB A : Optional[bool] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' A : int = JsonConfig def _lowerCAmelCase ( self ) -> List[str]: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) snake_case_ : int = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): snake_case_ : Optional[Any] = data_files if isinstance(_a , _a ): snake_case_ : List[Any] = [files] snake_case_ : List[str] = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] snake_case_ : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): snake_case_ : List[str] = [files] snake_case_ : List[Any] = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case_ : Optional[Any] = self.config.features.arrow_schema.field(_a ).type snake_case_ : Optional[Any] = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case_ : List[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case_ : List[Any] = json.load(_a ) # We keep only the field we are interested in snake_case_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_a , (list, tuple) ): snake_case_ : str = set().union(*[row.keys() for row in dataset] ) snake_case_ : List[str] = {col: [row.get(_a ) for row in dataset] for col in keys} else: snake_case_ : Dict = dataset snake_case_ : str = pa.Table.from_pydict(_a ) yield file_idx, self._cast_table(_a ) # If the file has one json object per line else: with open(_a , "rb" ) as f: snake_case_ : Dict = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case_ : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) snake_case_ : Optional[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: snake_case_ : int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case_ : Tuple = batch.decode(self.config.encoding , errors=_a ).encode("utf-8" ) try: while True: try: snake_case_ : Any = paj.read_json( io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_a , pa.ArrowInvalid ) and "straddling" not in str(_a ) or block_size > len(_a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(_a )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case_ : str = json.load(_a ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_a , _a ): # list is the only sequence type supported in JSON try: snake_case_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) snake_case_ : Tuple = {col: [row.get(_a ) for row in dataset] for col in keys} snake_case_ : Tuple = pa.Table.from_pydict(_a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_a ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) batch_idx += 1
568
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) _UpperCamelCase = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) sd_pipe.set_scheduler("sample_euler" ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _UpperCamelCase = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) sd_pipe.set_scheduler("sample_euler" ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _UpperCamelCase = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , generator=_a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=_a , ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
147
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
0
import requests from bsa import BeautifulSoup def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , '''html.parser''' ) lowerCAmelCase_ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) lowerCAmelCase_ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _A = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2_018, """hl""": """en""", } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
431
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : List[Any] = logging.get_logger(__name__) A__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __snake_case ( snake_case_ ): _a = 'data2vec-vision' def __init__( self : int , A_ : Tuple=7_6_8 , A_ : int=1_2 , A_ : Any=1_2 , A_ : Optional[int]=3_0_7_2 , A_ : Optional[int]="gelu" , A_ : Any=0.0 , A_ : Any=0.0 , A_ : List[str]=0.02 , A_ : Dict=1e-12 , A_ : Tuple=2_2_4 , A_ : Any=1_6 , A_ : str=3 , A_ : str=False , A_ : Union[str, Any]=False , A_ : Optional[int]=False , A_ : Any=False , A_ : Dict=0.1 , A_ : Dict=0.1 , A_ : str=True , A_ : str=[3, 5, 7, 1_1] , A_ : List[str]=[1, 2, 3, 6] , A_ : List[str]=True , A_ : Any=0.4 , A_ : str=2_5_6 , A_ : Union[str, Any]=1 , A_ : int=False , A_ : Optional[int]=2_5_5 , **A_ : Dict , ): super().__init__(**_a) lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Any = image_size lowerCAmelCase_ : Dict = patch_size lowerCAmelCase_ : str = num_channels lowerCAmelCase_ : Any = use_mask_token lowerCAmelCase_ : Dict = use_absolute_position_embeddings lowerCAmelCase_ : Any = use_relative_position_bias lowerCAmelCase_ : List[Any] = use_shared_relative_position_bias lowerCAmelCase_ : int = layer_scale_init_value lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase_ : List[Any] = out_indices lowerCAmelCase_ : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ : List[str] = use_auxiliary_head lowerCAmelCase_ : Optional[Any] = auxiliary_loss_weight lowerCAmelCase_ : Dict = auxiliary_channels lowerCAmelCase_ : List[Any] = auxiliary_num_convs lowerCAmelCase_ : Tuple = auxiliary_concat_input lowerCAmelCase_ : Any = semantic_loss_ignore_index class __snake_case ( snake_case_ ): _a = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self : List[str]): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def UpperCAmelCase__ ( self : Tuple): return 1e-4
171
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 1_0, '''max_num_jobs''': 1}, [range(1_0 )]), ({'''num_shards''': 1_0, '''max_num_jobs''': 1_0}, [range(__lowerCAmelCase , i + 1 ) for i in range(1_0 )]), ({'''num_shards''': 1, '''max_num_jobs''': 1_0}, [range(1 )]), ({'''num_shards''': 1_0, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({'''num_shards''': 3, '''max_num_jobs''': 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : List[str] =_distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 1_0, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ : List[str] =_split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Dict =_number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
443
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _lowerCamelCase ( __a ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def _lowerCamelCase ( __a, __a ): SCREAMING_SNAKE_CASE_ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue SCREAMING_SNAKE_CASE_ = key.replace('''heads.cmd.mim_head.cls.predictions''', '''mmm_image_head''' ) SCREAMING_SNAKE_CASE_ = key.replace('''heads.cmd.mlm_head.cls.predictions''', '''mmm_text_head''' ) SCREAMING_SNAKE_CASE_ = key.replace('''heads.cmd.itm_head.cls''', '''itm_head''' ) SCREAMING_SNAKE_CASE_ = key.replace('''heads.cmd.itm_head.pooler''', '''itm_head.pooler''' ) SCREAMING_SNAKE_CASE_ = key.replace('''heads.cmd.clip_head.logit_scale''', '''flava.logit_scale''' ) SCREAMING_SNAKE_CASE_ = key.replace('''heads.fairseq_mlm.cls.predictions''', '''mlm_head''' ) SCREAMING_SNAKE_CASE_ = key.replace('''heads.imagenet.mim_head.cls.predictions''', '''mim_head''' ) SCREAMING_SNAKE_CASE_ = key.replace('''mm_text_projection''', '''flava.text_to_mm_projection''' ) SCREAMING_SNAKE_CASE_ = key.replace('''mm_image_projection''', '''flava.image_to_mm_projection''' ) SCREAMING_SNAKE_CASE_ = key.replace('''image_encoder.module''', '''flava.image_model''' ) SCREAMING_SNAKE_CASE_ = key.replace('''text_encoder.module''', '''flava.text_model''' ) SCREAMING_SNAKE_CASE_ = key.replace('''mm_encoder.module.encoder.cls_token''', '''flava.multimodal_model.cls_token''' ) SCREAMING_SNAKE_CASE_ = key.replace('''mm_encoder.module''', '''flava.multimodal_model''' ) SCREAMING_SNAKE_CASE_ = key.replace('''text_projection''', '''flava.text_projection''' ) SCREAMING_SNAKE_CASE_ = key.replace('''image_projection''', '''flava.image_projection''' ) SCREAMING_SNAKE_CASE_ = value.float() for key, value in codebook_state_dict.items(): SCREAMING_SNAKE_CASE_ = value return upgrade @torch.no_grad() def _lowerCamelCase ( __a, __a, __a, __a=None ): if config_path is not None: SCREAMING_SNAKE_CASE_ = FlavaConfig.from_pretrained(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = FlavaConfig() SCREAMING_SNAKE_CASE_ = FlavaForPreTraining(__lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = convert_dalle_checkpoint(__lowerCAmelCase, __lowerCAmelCase, save_checkpoint=__lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = torch.load(__lowerCAmelCase, map_location='''cpu''' ) else: SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase, map_location='''cpu''' ) SCREAMING_SNAKE_CASE_ = upgrade_state_dict(__lowerCAmelCase, __lowerCAmelCase ) hf_model.load_state_dict(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = hf_model.state_dict() SCREAMING_SNAKE_CASE_ = count_parameters(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = count_parameters(__lowerCAmelCase ) + count_parameters(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase, __lowerCAmelCase, atol=1E-3 ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowerCAmelCase__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
626
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
0
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline A_ = """path-to-your-trained-model""" A_ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") A_ = """A photo of sks dog in a bucket""" A_ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
29
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" def count_of_possible_combinations(__snake_case ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__lowerCAmelCase ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( __snake_case, __snake_case ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _UpperCamelCase = sum( count_of_possible_combinations_with_dp_array(target - item, __lowerCAmelCase ) for item in array ) _UpperCamelCase = answer return answer _UpperCamelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__lowerCAmelCase, __lowerCAmelCase ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = [0] * (target + 1) _UpperCamelCase = 1 for i in range(1, target + 1 ): for j in range(__lowerCAmelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _a = 3 _a = 5 _a = [1, 2, 5] print(combination_sum_iv(n, array, target))
19
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( snake_case_ ): '''simple docstring''' def __init__( self : List[str] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Optional[Any] ) ->int: """simple docstring""" warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
117
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCAmelCase__ ( snake_case_ ): '''simple docstring''' lowercase_ = 'unispeech' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 2, 2, 2, 2, 2) , lowercase__=(1_0, 3, 3, 3, 3, 2, 2) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=False , lowercase__=True , lowercase__=0.05 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__=3_2_0 , lowercase__=2 , lowercase__=0.1 , lowercase__=1_0_0 , lowercase__=2_5_6 , lowercase__=2_5_6 , lowercase__=0.1 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=8_0 , lowercase__=0 , lowercase__=1 , lowercase__=2 , lowercase__=0.5 , **lowercase__ , ): '''simple docstring''' super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) __A =hidden_size __A =feat_extract_norm __A =feat_extract_activation __A =list(_a ) __A =list(_a ) __A =list(_a ) __A =conv_bias __A =num_conv_pos_embeddings __A =num_conv_pos_embedding_groups __A =len(self.conv_dim ) __A =num_hidden_layers __A =intermediate_size __A =hidden_act __A =num_attention_heads __A =hidden_dropout __A =attention_dropout __A =activation_dropout __A =feat_proj_dropout __A =final_dropout __A =layerdrop __A =layer_norm_eps __A =initializer_range __A =num_ctc_classes __A =vocab_size __A =do_stable_layer_norm __A =use_weighted_layer_sum __A =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A =apply_spec_augment __A =mask_time_prob __A =mask_time_length __A =mask_time_min_masks __A =mask_feature_prob __A =mask_feature_length __A =mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A =num_codevectors_per_group __A =num_codevector_groups __A =contrastive_logits_temperature __A =feat_quantizer_dropout __A =num_negatives __A =codevector_dim __A =proj_codevector_dim __A =diversity_loss_weight # ctc loss __A =ctc_loss_reduction __A =ctc_zero_infinity # pretraining loss __A =replace_prob @property def __UpperCamelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
184
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( snake_case = "" ) -> dict[str, float]: __lowercase = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __lowercase = BeautifulSoup(requests.get(__lowerCAmelCase ).text , 'html.parser' ) __lowercase = soup.find_all('td' , attrs='titleColumn' ) __lowercase = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCAmelCase , __lowerCAmelCase ) } def SCREAMING_SNAKE_CASE ( snake_case = "IMDb_Top_250_Movies.csv" ) -> None: __lowercase = get_imdb_top_aaa_movies() with open(__lowerCAmelCase , 'w' , newline='' ) as out_file: __lowercase = csv.writer(__lowerCAmelCase ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
375
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
568
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
0
from __future__ import annotations def _lowercase ( a__ : Tuple ) -> bool: """simple docstring""" _UpperCamelCase = str(__lowerCAmelCase ) return n == n[::-1] def _lowercase ( a__ : Tuple = 1_00_00_00 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = 0 for i in range(1 , __lowerCAmelCase ): if is_palindrome(__lowerCAmelCase ) and is_palindrome(bin(__lowerCAmelCase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
147
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
0
import argparse import os import re import packaging.version _A = """examples/""" _A = { """examples""": (re.compile(R'''^check_min_version\(\"[^\"]+\"\)\s*$''', re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R'''^__version__\s+=\s+\"([^\"]+)\"\s*$''', re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R'''^(\s*)version\s*=\s*\"[^\"]+\",''', re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(R'''^(\s*)release\s*=\s*\"[^\"]+\"$''', re.MULTILINE), """release = \"VERSION\"\n"""), } _A = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _A = """README.md""" def __UpperCamelCase ( _A , _A , _A ): with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase_ = f.read() lowerCAmelCase_ , lowerCAmelCase_ = REPLACE_PATTERNS[pattern] lowerCAmelCase_ = replace.replace('''VERSION''' , __lowerCAmelCase ) lowerCAmelCase_ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__lowerCAmelCase ) def __UpperCamelCase ( _A ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern='''examples''' ) def __UpperCamelCase ( _A , _A=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def __UpperCamelCase ( ): lowerCAmelCase_ = '''🤗 Transformers currently provides the following architectures''' lowerCAmelCase_ = '''1. Want to contribute a new model?''' with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase_ = f.readlines() # Find the start of the list. lowerCAmelCase_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCAmelCase_ = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__lowerCAmelCase ) def __UpperCamelCase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowerCAmelCase_ = f.read() lowerCAmelCase_ = REPLACE_PATTERNS['''init'''][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def __UpperCamelCase ( _A=False ): lowerCAmelCase_ = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCAmelCase_ = default_version.base_version elif patch: lowerCAmelCase_ = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowerCAmelCase_ = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowerCAmelCase_ = input(f"Which version are you releasing? [{default_version}]" ) if len(__lowerCAmelCase ) == 0: lowerCAmelCase_ = default_version print(f"Updating version to {version}." ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCamelCase ( ): lowerCAmelCase_ = get_version() lowerCAmelCase_ = f"{current_version.major}.{current_version.minor + 1}.0.dev0" lowerCAmelCase_ = current_version.base_version # Check with the user we got that right. lowerCAmelCase_ = input(f"Which version are we developing now? [{dev_version}]" ) if len(__lowerCAmelCase ) == 0: lowerCAmelCase_ = dev_version print(f"Updating version to {version}." ) global_version_update(__lowerCAmelCase ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') _A = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
431
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : str , *A_ : Tuple , **A_ : str): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : str , *A_ : Optional[int] , **A_ : Optional[Any]): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : str , *A_ : Union[str, Any] , **A_ : List[str]): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : Dict , *A_ : int , **A_ : List[str]): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : List[str] , **A_ : List[Any]): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Any , *A_ : Tuple , **A_ : List[str]): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : List[Any] , *A_ : Any , **A_ : int): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Any , *A_ : List[str] , **A_ : Tuple): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : int , *A_ : str , **A_ : int): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : Tuple , *A_ : List[Any] , **A_ : Tuple): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , *A_ : Any , **A_ : int): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : Optional[int] , **A_ : List[str]): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : List[str] , *A_ : Any , **A_ : int): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Any , *A_ : Optional[Any] , **A_ : Optional[int]): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *A_ : Any , **A_ : Tuple): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : Optional[Any] , *A_ : int , **A_ : List[str]): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , *A_ : Tuple , **A_ : Any): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : Any , **A_ : Any): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : Any , *A_ : Any , **A_ : Tuple): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : int , *A_ : Dict , **A_ : Union[str, Any]): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : int , *A_ : int , **A_ : List[str]): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : Any , *A_ : Optional[int] , **A_ : Any): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , *A_ : List[Any] , **A_ : Tuple): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : List[str] , *A_ : Any , **A_ : List[Any]): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : Optional[Any] , *A_ : Any , **A_ : List[Any]): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Any , *A_ : List[Any] , **A_ : List[str]): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : str , *A_ : Dict , **A_ : List[str]): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : int , *A_ : Union[str, Any] , **A_ : Tuple): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : Optional[int] , **A_ : int): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , *A_ : List[str] , **A_ : Optional[Any]): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : str , *A_ : List[str] , **A_ : List[Any]): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : int , **A_ : Union[str, Any]): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Tuple , *A_ : Optional[int] , **A_ : List[str]): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : Optional[Any] , *A_ : Optional[int] , **A_ : Optional[Any]): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Any , *A_ : Any , **A_ : Any): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Any , *A_ : Optional[Any] , **A_ : Union[str, Any]): requires_backends(cls , ['''flax''']) class __snake_case ( metaclass=snake_case_ ): _a = ['flax'] def __init__( self : Optional[Any] , *A_ : Optional[Any] , **A_ : Any): requires_backends(self , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : Union[str, Any] , **A_ : Dict): requires_backends(cls , ['''flax''']) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *A_ : Any , **A_ : str): requires_backends(cls , ['''flax'''])
171
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class lowercase_ ( snake_case_ ): __lowerCamelCase = 'switch_transformers' __lowerCamelCase = ['past_key_values'] __lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , __A=32_128 , __A=768 , __A=64 , __A=2_048 , __A=64 , __A=12 , __A=3 , __A=12 , __A=3 , __A=12 , __A=8 , __A=False , __A=0.01 , __A="float32" , __A=False , __A=32 , __A=128 , __A=0.1 , __A=1e-6 , __A=0.001 , __A=0.001 , __A=1.0 , __A="relu" , __A=True , __A=False , __A=True , __A=0 , __A=1 , **__A , ) -> str: SCREAMING_SNAKE_CASE_ : Dict =vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] =d_model SCREAMING_SNAKE_CASE_ : Optional[int] =d_kv SCREAMING_SNAKE_CASE_ : Tuple =d_ff SCREAMING_SNAKE_CASE_ : Tuple =num_sparse_encoder_layers SCREAMING_SNAKE_CASE_ : Tuple =num_layers SCREAMING_SNAKE_CASE_ : Optional[Any] =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE_ : Any =num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: SCREAMING_SNAKE_CASE_ : Dict =self.num_layers // self.num_sparse_encoder_layers else: SCREAMING_SNAKE_CASE_ : str =self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: SCREAMING_SNAKE_CASE_ : Dict =self.num_decoder_layers // self.num_sparse_decoder_layers else: SCREAMING_SNAKE_CASE_ : Dict =self.num_decoder_layers # HACK: this will create 0 sparse layers SCREAMING_SNAKE_CASE_ : Optional[int] =num_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] =num_experts SCREAMING_SNAKE_CASE_ : Union[str, Any] =expert_capacity SCREAMING_SNAKE_CASE_ : Optional[int] =router_bias SCREAMING_SNAKE_CASE_ : Dict =router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =router_dtype SCREAMING_SNAKE_CASE_ : Optional[Any] =router_ignore_padding_tokens SCREAMING_SNAKE_CASE_ : List[Any] =relative_attention_num_buckets SCREAMING_SNAKE_CASE_ : str =relative_attention_max_distance SCREAMING_SNAKE_CASE_ : Optional[Any] =dropout_rate SCREAMING_SNAKE_CASE_ : Optional[int] =layer_norm_epsilon SCREAMING_SNAKE_CASE_ : int =initializer_factor SCREAMING_SNAKE_CASE_ : Optional[int] =feed_forward_proj SCREAMING_SNAKE_CASE_ : List[Any] =use_cache SCREAMING_SNAKE_CASE_ : Optional[Any] =add_router_probs SCREAMING_SNAKE_CASE_ : str =router_z_loss_coef SCREAMING_SNAKE_CASE_ : Tuple =router_aux_loss_coef SCREAMING_SNAKE_CASE_ : str =self.feed_forward_proj.split('''-''' ) SCREAMING_SNAKE_CASE_ : List[str] =act_info[-1] SCREAMING_SNAKE_CASE_ : Any =act_info[0] == '''gated''' if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE_ : Optional[int] ='''gelu_new''' super().__init__( pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , )
443
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
0
"""simple docstring""" lowerCAmelCase__ = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) lowerCAmelCase__ = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def _lowerCamelCase ( __a, __a, __a ): SCREAMING_SNAKE_CASE_ = from_type.lower().strip('''s''' ) SCREAMING_SNAKE_CASE_ = to_type.lower().strip('''s''' ) SCREAMING_SNAKE_CASE_ = UNIT_SYMBOL.get(__lowerCAmelCase, __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = UNIT_SYMBOL.get(__lowerCAmelCase, __lowerCAmelCase ) if from_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE_ = ( F'Invalid \'from_type\' value: {from_type!r}.\n' F'Conversion abbreviations are: {", ".join(__lowerCAmelCase )}' ) raise ValueError(__lowerCAmelCase ) if to_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE_ = ( F'Invalid \'to_type\' value: {to_type!r}.\n' F'Conversion abbreviations are: {", ".join(__lowerCAmelCase )}' ) raise ValueError(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = METRIC_CONVERSION[from_sanitized] SCREAMING_SNAKE_CASE_ = METRIC_CONVERSION[to_sanitized] SCREAMING_SNAKE_CASE_ = 1 if from_exponent > to_exponent: SCREAMING_SNAKE_CASE_ = from_exponent - to_exponent else: SCREAMING_SNAKE_CASE_ = -(to_exponent - from_exponent) return value * pow(10, __lowerCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
626
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
0
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" def get_masked_lm_array(__snake_case ): _UpperCamelCase = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _UpperCamelCase = tf.train.load_variable(__lowerCAmelCase, __lowerCAmelCase ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__lowerCAmelCase ) def get_encoder_array(__snake_case ): _UpperCamelCase = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _UpperCamelCase = tf.train.load_variable(__lowerCAmelCase, __lowerCAmelCase ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__lowerCAmelCase ) def get_encoder_layer_array(__snake_case, __snake_case ): _UpperCamelCase = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _UpperCamelCase = tf.train.load_variable(__lowerCAmelCase, __lowerCAmelCase ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__lowerCAmelCase ) def get_encoder_attention_layer_array(__snake_case, __snake_case, __snake_case ): _UpperCamelCase = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _UpperCamelCase = tf.train.load_variable(__lowerCAmelCase, __lowerCAmelCase ) _UpperCamelCase = array.reshape(__lowerCAmelCase ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__lowerCAmelCase ) print(F'''Loading model based on config from {config_path}...''' ) _UpperCamelCase = BertConfig.from_json_file(__lowerCAmelCase ) _UpperCamelCase = BertForMaskedLM(__lowerCAmelCase ) # Layers for layer_index in range(0, config.num_hidden_layers ): _UpperCamelCase = model.bert.encoder.layer[layer_index] # Self-attention _UpperCamelCase = layer.attention.self _UpperCamelCase = get_encoder_attention_layer_array( __lowerCAmelCase, '''_query_dense/kernel''', self_attn.query.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __lowerCAmelCase, '''_query_dense/bias''', self_attn.query.bias.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __lowerCAmelCase, '''_key_dense/kernel''', self_attn.key.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __lowerCAmelCase, '''_key_dense/bias''', self_attn.key.bias.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __lowerCAmelCase, '''_value_dense/kernel''', self_attn.value.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __lowerCAmelCase, '''_value_dense/bias''', self_attn.value.bias.data.shape ) # Self-attention Output _UpperCamelCase = layer.attention.output _UpperCamelCase = get_encoder_attention_layer_array( __lowerCAmelCase, '''_output_dense/kernel''', self_output.dense.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __lowerCAmelCase, '''_output_dense/bias''', self_output.dense.bias.data.shape ) _UpperCamelCase = get_encoder_layer_array(__lowerCAmelCase, '''_attention_layer_norm/gamma''' ) _UpperCamelCase = get_encoder_layer_array(__lowerCAmelCase, '''_attention_layer_norm/beta''' ) # Intermediate _UpperCamelCase = layer.intermediate _UpperCamelCase = get_encoder_layer_array(__lowerCAmelCase, '''_intermediate_dense/kernel''' ) _UpperCamelCase = get_encoder_layer_array(__lowerCAmelCase, '''_intermediate_dense/bias''' ) # Output _UpperCamelCase = layer.output _UpperCamelCase = get_encoder_layer_array(__lowerCAmelCase, '''_output_dense/kernel''' ) _UpperCamelCase = get_encoder_layer_array(__lowerCAmelCase, '''_output_dense/bias''' ) _UpperCamelCase = get_encoder_layer_array(__lowerCAmelCase, '''_output_layer_norm/gamma''' ) _UpperCamelCase = get_encoder_layer_array(__lowerCAmelCase, '''_output_layer_norm/beta''' ) # Embeddings _UpperCamelCase = get_encoder_array('''_position_embedding_layer/embeddings''' ) _UpperCamelCase = get_encoder_array('''_type_embedding_layer/embeddings''' ) _UpperCamelCase = get_encoder_array('''_embedding_norm_layer/gamma''' ) _UpperCamelCase = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head _UpperCamelCase = model.cls.predictions.transform _UpperCamelCase = get_masked_lm_array('''dense/kernel''' ) _UpperCamelCase = get_masked_lm_array('''dense/bias''' ) _UpperCamelCase = get_masked_lm_array('''layer_norm/gamma''' ) _UpperCamelCase = get_masked_lm_array('''layer_norm/beta''' ) _UpperCamelCase = get_masked_lm_array('''embedding_table''' ) # Pooling _UpperCamelCase = BertPooler(config=__lowerCAmelCase ) _UpperCamelCase = get_encoder_array('''_pooler_layer/kernel''' ) _UpperCamelCase = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__lowerCAmelCase ) # Integration test - should load without any errors ;) _UpperCamelCase = BertForMaskedLM.from_pretrained(__lowerCAmelCase ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) _a = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
0