code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Union[str, Any] = MgpstrTokenizer lowerCamelCase : Tuple = False lowerCamelCase : str = {} lowerCamelCase : Dict = False def lowercase__ ( self : Dict ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE__ : Optional[int] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on SCREAMING_SNAKE_CASE__ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowercase ) + '''\n''' ) def lowercase__ ( self : Any , **_lowercase : List[Any] ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : int , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : Tuple = '''tester''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def lowercase__ ( self : Dict ): pass def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE__ : List[str] = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_input_output_texts(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.convert_tokens_to_ids(_lowercase ) SCREAMING_SNAKE_CASE__ : str = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : int = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) SCREAMING_SNAKE_CASE__ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _lowercase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def lowercase__ ( self : Optional[int] ): pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def lowercase__ ( self : int ): pass
35
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ :Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name a_ :Dict = 2_56 class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = ['''melgan'''] def __init__( self : str , _lowercase : SpectrogramNotesEncoder , _lowercase : SpectrogramContEncoder , _lowercase : TaFilmDecoder , _lowercase : DDPMScheduler , _lowercase : OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN SCREAMING_SNAKE_CASE__ : List[str] = math.log(1E-5 ) # Matches MelGAN training. SCREAMING_SNAKE_CASE__ : str = 4.0 # Largest value for most examples SCREAMING_SNAKE_CASE__ : str = 1_28 self.register_modules( notes_encoder=_lowercase , continuous_encoder=_lowercase , decoder=_lowercase , scheduler=_lowercase , melgan=_lowercase , ) def lowercase__ ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=(-1.0, 1.0) , _lowercase : Dict=False ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = output_range if clip: SCREAMING_SNAKE_CASE__ : Tuple = torch.clip(_lowercase , self.min_value , self.max_value ) # Scale to [0, 1]. SCREAMING_SNAKE_CASE__ : List[str] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowercase__ ( self : Optional[Any] , _lowercase : str , _lowercase : Any=(-1.0, 1.0) , _lowercase : Tuple=False ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = input_range SCREAMING_SNAKE_CASE__ : str = torch.clip(_lowercase , _lowercase , _lowercase ) if clip else outputs # Scale to [0, 1]. SCREAMING_SNAKE_CASE__ : int = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowercase__ ( self : str , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : str = input_tokens > 0 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.notes_encoder( encoder_input_tokens=_lowercase , encoder_inputs_mask=_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.continuous_encoder( encoder_inputs=_lowercase , encoder_inputs_mask=_lowercase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Dict = noise_time if not torch.is_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_lowercase ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ : Any = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE__ : int = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE__ : Any = self.decoder( encodings_and_masks=_lowercase , decoder_input_tokens=_lowercase , decoder_noise_time=_lowercase ) return logits @torch.no_grad() def __call__( self : Any , _lowercase : List[List[int]] , _lowercase : Optional[torch.Generator] = None , _lowercase : int = 1_00 , _lowercase : bool = True , _lowercase : str = "numpy" , _lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowercase : int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_lowercase )}.""" ) SCREAMING_SNAKE_CASE__ : Tuple = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = np.zeros([1, 0, self.n_dims] , np.floataa ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowercase , device=self.device ) for i, encoder_input_tokens in enumerate(_lowercase ): if i == 0: SCREAMING_SNAKE_CASE__ : Dict = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. SCREAMING_SNAKE_CASE__ : Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowercase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. SCREAMING_SNAKE_CASE__ : Dict = ones SCREAMING_SNAKE_CASE__ : Dict = self.scale_features( _lowercase , output_range=[-1.0, 1.0] , clip=_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowercase , continuous_mask=_lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop SCREAMING_SNAKE_CASE__ : List[Any] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_lowercase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE__ : int = self.decode( encodings_and_masks=_lowercase , input_tokens=_lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 SCREAMING_SNAKE_CASE__ : Any = self.scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : List[Any] = self.scale_to_features(_lowercase , input_range=[-1.0, 1.0] ) SCREAMING_SNAKE_CASE__ : List[str] = mel[:1] SCREAMING_SNAKE_CASE__ : List[str] = mel.cpu().float().numpy() SCREAMING_SNAKE_CASE__ : Optional[Any] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase ) logger.info('''Generated segment''' , _lowercase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": SCREAMING_SNAKE_CASE__ : List[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: SCREAMING_SNAKE_CASE__ : Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_lowercase )
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ :Optional[Any] = 16 a_ :Dict = 32 def a ( A__ ) -> Dict: '''simple docstring''' return int(x / 2**2_0 ) class lowercase : def __enter__( self : List[str] ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero SCREAMING_SNAKE_CASE__ : Any = torch.cuda.memory_allocated() return self def __exit__( self : Union[str, Any] , *_lowercase : Tuple ): gc.collect() torch.cuda.empty_cache() SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.max_memory_allocated() SCREAMING_SNAKE_CASE__ : Union[str, Any] = bamb(self.end - self.begin ) SCREAMING_SNAKE_CASE__ : str = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a ( A__ , A__ = 1_6 , A__ = "bert-base-cased" , A__ = 3_2_0 , A__ = 1_6_0 , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained(A__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': f"""train[:{n_train}]""", '''validation''': f"""validation[:{n_val}]"""} ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE__ : str = datasets.map( A__ , batched=A__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(A__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def a ( A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : int = config['''lr'''] SCREAMING_SNAKE_CASE__ : Optional[int] = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE__ : List[str] = int(config['''seed'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE__ : Tuple = args.model_name_or_path set_seed(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = get_dataloaders(A__ , A__ , A__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : str = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE__ : Dict = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: SCREAMING_SNAKE_CASE__ : Optional[int] = 1 SCREAMING_SNAKE_CASE__ : Tuple = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE__ : List[str] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE__ : Any = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE__ : int = 0 # Now we train the model SCREAMING_SNAKE_CASE__ : Dict = {} for epoch in range(A__ , A__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = model(**A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.loss SCREAMING_SNAKE_CASE__ : Tuple = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) SCREAMING_SNAKE_CASE__ : Dict = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(A__ , A__ ) def a ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=A__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=A__ , ) parser.add_argument( '''--output_dir''' , type=A__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=A__ , default=A__ , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=A__ , default=3_2_0 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=A__ , default=1_6_0 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=A__ , default=1 , help='''Number of train epochs.''' , ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Dict = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 4_2, '''batch_size''': 1_6} training_function(A__ , A__ ) if __name__ == "__main__": main()
35
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
1
class lowercase : def __init__( self : int , _lowercase : Dict ): # we need a list not a string, so do something to change the type SCREAMING_SNAKE_CASE__ : int = arr.split(''',''' ) def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Any = [int(self.array[0] )] * len(self.array ) SCREAMING_SNAKE_CASE__ : Dict = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): SCREAMING_SNAKE_CASE__ : str = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) SCREAMING_SNAKE_CASE__ : Any = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": a_ :Tuple = input('please input some numbers:') a_ :Optional[Any] = SubArray(whole_array) a_ :Any = array.solve_sub_array() print(('the results is:', re))
35
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Optional[int] = CycleDiffusionPipeline lowerCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } lowerCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} lowerCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) lowerCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ : int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) SCREAMING_SNAKE_CASE__ : int = CLIPTextModel(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase__ ( self : int , _lowercase : List[str] , _lowercase : int=0 ): SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : int = image / 2 + 0.5 if str(_lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : List[Any] = torch.manual_seed(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : str = CycleDiffusionPipeline(**_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_dummy_inputs(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe(**_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = output.images SCREAMING_SNAKE_CASE__ : int = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : str = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , '''half''' ): SCREAMING_SNAKE_CASE__ : str = module.half() SCREAMING_SNAKE_CASE__ : str = CycleDiffusionPipeline(**_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_inputs(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = pipe(**_lowercase ) SCREAMING_SNAKE_CASE__ : str = output.images SCREAMING_SNAKE_CASE__ : List[str] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowercase__ ( self : List[Any] ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def lowercase__ ( self : str ): return super().test_inference_batch_single_identical() @skip_mps def lowercase__ ( self : Union[str, Any] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase__ ( self : Optional[Any] ): return super().test_save_load_optional_components() @skip_mps def lowercase__ ( self : Optional[Any] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def lowercase__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) SCREAMING_SNAKE_CASE__ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = init_image.resize((5_12, 5_12) ) SCREAMING_SNAKE_CASE__ : List[Any] = '''CompVis/stable-diffusion-v1-4''' SCREAMING_SNAKE_CASE__ : List[str] = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ : Tuple = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : List[str] = '''A black colored car''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''A blue colored car''' SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) SCREAMING_SNAKE_CASE__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = init_image.resize((5_12, 5_12) ) SCREAMING_SNAKE_CASE__ : int = '''CompVis/stable-diffusion-v1-4''' SCREAMING_SNAKE_CASE__ : Dict = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ : str = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Optional[int] = '''A black colored car''' SCREAMING_SNAKE_CASE__ : int = '''A blue colored car''' SCREAMING_SNAKE_CASE__ : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : int = output.images assert np.abs(image - expected_image ).max() < 2E-2
35
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
1
from __future__ import annotations from typing import Any class lowercase : def __init__( self : Optional[int] , _lowercase : int = 6 ): SCREAMING_SNAKE_CASE__ : Node | None = None SCREAMING_SNAKE_CASE__ : Node | None = None self.create_linked_list(_lowercase ) def lowercase__ ( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Dict = Node() SCREAMING_SNAKE_CASE__ : str = current_node SCREAMING_SNAKE_CASE__ : Any = current_node SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_node for _ in range(1 , _lowercase ): SCREAMING_SNAKE_CASE__ : List[str] = Node() SCREAMING_SNAKE_CASE__ : Optional[Any] = current_node SCREAMING_SNAKE_CASE__ : Optional[Any] = previous_node SCREAMING_SNAKE_CASE__ : Tuple = current_node SCREAMING_SNAKE_CASE__ : List[Any] = self.front SCREAMING_SNAKE_CASE__ : List[str] = previous_node def lowercase__ ( self : Optional[Any] ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowercase__ ( self : List[Any] ): self.check_can_perform_operation() return self.front.data if self.front else None def lowercase__ ( self : Dict , _lowercase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): SCREAMING_SNAKE_CASE__ : Optional[int] = self.rear.next if self.rear: SCREAMING_SNAKE_CASE__ : str = data def lowercase__ ( self : str ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: SCREAMING_SNAKE_CASE__ : List[str] = self.front.data SCREAMING_SNAKE_CASE__ : Any = None return data SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.front SCREAMING_SNAKE_CASE__ : List[Any] = old_front.next SCREAMING_SNAKE_CASE__ : str = old_front.data SCREAMING_SNAKE_CASE__ : List[Any] = None return data def lowercase__ ( self : Tuple ): if self.is_empty(): raise Exception('''Empty Queue''' ) def lowercase__ ( self : Optional[int] ): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class lowercase : def __init__( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any | None = None SCREAMING_SNAKE_CASE__ : Node | None = None SCREAMING_SNAKE_CASE__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
35
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
1
from __future__ import annotations def a ( A__ ) -> bool: '''simple docstring''' if len(A__ ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) SCREAMING_SNAKE_CASE__ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
35
from __future__ import annotations def a ( A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import requests from bsa import BeautifulSoup def a ( A__ = "https://www.worldometers.info/coronavirus" ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = BeautifulSoup(requests.get(A__ ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ : List[str] = soup.findAll('''h1''' ) SCREAMING_SNAKE_CASE__ : int = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
35
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowercase ( unittest.TestCase ): lowerCamelCase : Any = MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase : Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE__ : List[str] = text_generator('''This is a test''' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) SCREAMING_SNAKE_CASE__ : List[Any] = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _lowercase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) SCREAMING_SNAKE_CASE__ : List[str] = text_generator('''This is a test''' , do_sample=_lowercase , num_return_sequences=2 , return_tensors=_lowercase ) self.assertEqual( _lowercase , [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[int] = text_generator.model.config.eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = '''<pad>''' SCREAMING_SNAKE_CASE__ : Tuple = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowercase , ) self.assertEqual( _lowercase , [ [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ], [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ], ] , ) @require_tf def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE__ : Optional[int] = text_generator('''This is a test''' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) SCREAMING_SNAKE_CASE__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def lowercase__ ( self : Dict , _lowercase : int , _lowercase : Tuple , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Tuple = TextGenerationPipeline(model=_lowercase , tokenizer=_lowercase ) return text_generator, ["This is a test", "Another test"] def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''Hello I believe in''' SCREAMING_SNAKE_CASE__ : int = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text_generator(_lowercase ) self.assertEqual( _lowercase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) SCREAMING_SNAKE_CASE__ : str = text_generator(_lowercase , stop_sequence=''' fe''' ) self.assertEqual(_lowercase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def lowercase__ ( self : Union[str, Any] , _lowercase : Optional[int] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = text_generator.model SCREAMING_SNAKE_CASE__ : Tuple = text_generator.tokenizer SCREAMING_SNAKE_CASE__ : Any = text_generator('''This is a test''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text_generator('''This is a test''' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) SCREAMING_SNAKE_CASE__ : Tuple = pipeline(task='''text-generation''' , model=_lowercase , tokenizer=_lowercase , return_full_text=_lowercase ) SCREAMING_SNAKE_CASE__ : int = text_generator('''This is a test''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text_generator('''This is a test''' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], ] , ) if text_generator.tokenizer.pad_token is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], ] , ) with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = text_generator('''test''' , return_full_text=_lowercase , return_text=_lowercase ) with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] = text_generator('''test''' , return_full_text=_lowercase , return_tensors=_lowercase ) with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : List[str] = text_generator('''test''' , return_text=_lowercase , return_tensors=_lowercase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = text_generator('''''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): SCREAMING_SNAKE_CASE__ : int = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. SCREAMING_SNAKE_CASE__ : Optional[int] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_00 , max_new_tokens=20 ) SCREAMING_SNAKE_CASE__ : Any = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_lowercase ): text_generator( '''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def lowercase__ ( self : str ): import torch # Classic `model_kwargs` SCREAMING_SNAKE_CASE__ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE__ : int = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) SCREAMING_SNAKE_CASE__ : int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 SCREAMING_SNAKE_CASE__ : List[str] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def lowercase__ ( self : Optional[int] ): import torch SCREAMING_SNAKE_CASE__ : Tuple = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def lowercase__ ( self : Any ): import torch SCREAMING_SNAKE_CASE__ : List[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_lowercase , top_p=0.5 ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Optional[Any] = '''Hello world''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger('''transformers.generation.tf_utils''' ) else: SCREAMING_SNAKE_CASE__ : Any = logging.get_logger('''transformers.generation.utils''' ) SCREAMING_SNAKE_CASE__ : Tuple = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowercase ) as cl: SCREAMING_SNAKE_CASE__ : Dict = text_generator(_lowercase , max_length=10 , max_new_tokens=1 ) self.assertIn(_lowercase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_lowercase ) as cl: SCREAMING_SNAKE_CASE__ : Union[str, Any] = text_generator(_lowercase , max_new_tokens=1 ) self.assertNotIn(_lowercase , cl.out ) with CaptureLogger(_lowercase ) as cl: SCREAMING_SNAKE_CASE__ : Tuple = text_generator(_lowercase , max_length=10 ) self.assertNotIn(_lowercase , cl.out )
35
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
1
def a ( A__ , A__ ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = len(A__ ) print('''The following activities are selected:''' ) # The first activity is always selected SCREAMING_SNAKE_CASE__ : List[str] = 0 print(A__ , end=''',''' ) # Consider rest of the activities for j in range(A__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A__ , end=''',''' ) SCREAMING_SNAKE_CASE__ : int = j if __name__ == "__main__": import doctest doctest.testmod() a_ :Dict = [1, 3, 0, 5, 8, 5] a_ :int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
35
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
1
a_ :int = 6_55_21 def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = 1 SCREAMING_SNAKE_CASE__ : str = 0 for plain_chr in plain_text: SCREAMING_SNAKE_CASE__ : Any = (a + ord(A__ )) % MOD_ADLER SCREAMING_SNAKE_CASE__ : Optional[int] = (b + a) % MOD_ADLER return (b << 1_6) | a
35
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets a_ :List[Any] = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' a_ :Union[str, Any] = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' a_ :Optional[int] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def a ( A__ ) -> Any: '''simple docstring''' def remove_articles(A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(A__ , ''' ''' , A__ ) def white_space_fix(A__ ): return " ".join(text.split() ) def remove_punc(A__ ): SCREAMING_SNAKE_CASE__ : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def a ( A__ , A__ ) -> Tuple: '''simple docstring''' return int(normalize_answer(A__ ) == normalize_answer(A__ ) ) def a ( A__ , A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [any(compute_exact(A__ , A__ ) for ref in refs ) for pred, refs in zip(A__ , A__ )] return (sum(A__ ) / len(A__ )) * 1_0_0 def a ( A__ , A__ , A__ , A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [rgram for rgrams in rgramslist for rgram in rgrams] SCREAMING_SNAKE_CASE__ : Optional[int] = Counter(A__ ) SCREAMING_SNAKE_CASE__ : str = Counter(A__ ) SCREAMING_SNAKE_CASE__ : Any = Counter() for sgram, scount in sgramcounter.items(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = scount * numref SCREAMING_SNAKE_CASE__ : Tuple = Counter(A__ ) SCREAMING_SNAKE_CASE__ : List[str] = Counter() for cgram, ccount in cgramcounter.items(): SCREAMING_SNAKE_CASE__ : Tuple = ccount * numref # KEEP SCREAMING_SNAKE_CASE__ : int = sgramcounter_rep & cgramcounter_rep SCREAMING_SNAKE_CASE__ : Any = keepgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE__ : Tuple = sgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : int = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : Dict = 1 if len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : Optional[int] = keeptmpscorea / len(A__ ) if len(A__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) SCREAMING_SNAKE_CASE__ : Dict = keeptmpscorea / sum(keepgramcounterall_rep.values() ) SCREAMING_SNAKE_CASE__ : Dict = 0 if keepscore_precision > 0 or keepscore_recall > 0: SCREAMING_SNAKE_CASE__ : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION SCREAMING_SNAKE_CASE__ : int = sgramcounter_rep - cgramcounter_rep SCREAMING_SNAKE_CASE__ : Any = delgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE__ : Optional[int] = sgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : Tuple = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE__ : List[Any] = 1 if len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : List[str] = deltmpscorea / len(A__ ) # ADDITION SCREAMING_SNAKE_CASE__ : List[Any] = set(A__ ) - set(A__ ) SCREAMING_SNAKE_CASE__ : str = set(A__ ) & set(A__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = set(A__ ) - set(A__ ) SCREAMING_SNAKE_CASE__ : str = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE__ : Optional[int] = 1 SCREAMING_SNAKE_CASE__ : List[Any] = 1 if len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : str = addtmpscore / len(A__ ) if len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : int = addtmpscore / len(A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: SCREAMING_SNAKE_CASE__ : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = len(A__ ) SCREAMING_SNAKE_CASE__ : Dict = ssent.split(''' ''' ) SCREAMING_SNAKE_CASE__ : Dict = csent.split(''' ''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : str = [] for rsent in rsents: SCREAMING_SNAKE_CASE__ : Dict = rsent.split(''' ''' ) SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] ragramslist.append(A__ ) for i in range(0 , len(A__ ) - 1 ): if i < len(A__ ) - 1: SCREAMING_SNAKE_CASE__ : Tuple = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(A__ ) if i < len(A__ ) - 2: SCREAMING_SNAKE_CASE__ : Optional[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(A__ ) if i < len(A__ ) - 3: SCREAMING_SNAKE_CASE__ : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(A__ ) ragramslist.append(A__ ) ragramslist.append(A__ ) ragramslist.append(A__ ) for i in range(0 , len(A__ ) - 1 ): if i < len(A__ ) - 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(A__ ) if i < len(A__ ) - 2: SCREAMING_SNAKE_CASE__ : Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(A__ ) if i < len(A__ ) - 3: SCREAMING_SNAKE_CASE__ : List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(A__ ) for i in range(0 , len(A__ ) - 1 ): if i < len(A__ ) - 1: SCREAMING_SNAKE_CASE__ : List[str] = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(A__ ) if i < len(A__ ) - 2: SCREAMING_SNAKE_CASE__ : List[Any] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(A__ ) if i < len(A__ ) - 3: SCREAMING_SNAKE_CASE__ : Dict = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(A__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Tuple = SARIngram(A__ , A__ , A__ , A__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Union[str, Any] = SARIngram(A__ , A__ , A__ , A__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : str = SARIngram(A__ , A__ , A__ , A__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Optional[int] = SARIngram(A__ , A__ , A__ , A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 SCREAMING_SNAKE_CASE__ : Optional[int] = sum([delascore, delascore, delascore, delascore] ) / 4 SCREAMING_SNAKE_CASE__ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4 SCREAMING_SNAKE_CASE__ : int = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def a ( A__ , A__ = True , A__ = "13a" , A__ = True ) -> Optional[int]: '''simple docstring''' if lowercase: SCREAMING_SNAKE_CASE__ : List[str] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: SCREAMING_SNAKE_CASE__ : str = sacrebleu.metrics.bleu._get_tokenizer(A__ )()(A__ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = sacrebleu.TOKENIZERS[tokenizer]()(A__ ) elif tokenizer == "moses": SCREAMING_SNAKE_CASE__ : str = sacremoses.MosesTokenizer().tokenize(A__ , return_str=A__ , escape=A__ ) elif tokenizer == "penn": SCREAMING_SNAKE_CASE__ : int = sacremoses.MosesTokenizer().penn_tokenize(A__ , return_str=A__ ) else: SCREAMING_SNAKE_CASE__ : Tuple = sentence if not return_str: SCREAMING_SNAKE_CASE__ : List[str] = normalized_sent.split() return normalized_sent def a ( A__ , A__ , A__ ) -> int: '''simple docstring''' if not (len(A__ ) == len(A__ ) == len(A__ )): raise ValueError('''Sources length must match predictions and references lengths.''' ) SCREAMING_SNAKE_CASE__ : str = 0 for src, pred, refs in zip(A__ , A__ , A__ ): sari_score += SARIsent(normalize(A__ ) , normalize(A__ ) , [normalize(A__ ) for sent in refs] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sari_score / len(A__ ) return 1_0_0 * sari_score def a ( A__ , A__ , A__="exp" , A__=None , A__=False , A__=False , A__=False , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = len(references[0] ) if any(len(A__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) SCREAMING_SNAKE_CASE__ : Tuple = [[refs[i] for refs in references] for i in range(A__ )] SCREAMING_SNAKE_CASE__ : Optional[int] = sacrebleu.corpus_bleu( A__ , A__ , smooth_method=A__ , smooth_value=A__ , force=A__ , lowercase=A__ , use_effective_order=A__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowercase__ ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} result.update({'''sari''': compute_sari(sources=_lowercase , predictions=_lowercase , references=_lowercase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowercase , references=_lowercase )} ) result.update({'''exact''': compute_em(predictions=_lowercase , references=_lowercase )} ) return result
35
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowercase ( unittest.TestCase ): def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above SCREAMING_SNAKE_CASE__ : Optional[int] = tf_top_k_top_p_filtering(_lowercase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = output[output != -float('''inf''' )] SCREAMING_SNAKE_CASE__ : Dict = tf.cast( tf.where(tf.not_equal(_lowercase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_lowercase , _lowercase , rtol=1E-12 ) tf.debugging.assert_equal(_lowercase , _lowercase ) @require_tf class lowercase ( unittest.TestCase , _UpperCAmelCase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowerCamelCase : Optional[int] = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : Any ): # TF-only test: tf.saved_model export SCREAMING_SNAKE_CASE__ : Any = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Dict = 2 class lowercase ( tf.Module ): def __init__( self : List[str] , _lowercase : List[Any] ): super(_lowercase , self ).__init__() SCREAMING_SNAKE_CASE__ : Tuple = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_lowercase , ) def lowercase__ ( self : List[str] , _lowercase : Tuple , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : str = self.model.generate( input_ids=_lowercase , attention_mask=_lowercase , max_new_tokens=_lowercase , return_dict_in_generate=_lowercase , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE__ : Any = [[2, 0], [1_02, 1_03]] SCREAMING_SNAKE_CASE__ : Any = [[1, 0], [1, 1]] SCREAMING_SNAKE_CASE__ : List[Any] = DummyModel(model=_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowercase , _lowercase , signatures={'''serving_default''': dummy_model.serving} ) SCREAMING_SNAKE_CASE__ : str = tf.saved_model.load(_lowercase ).signatures['''serving_default'''] for batch_size in range(1 , len(_lowercase ) + 1 ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } SCREAMING_SNAKE_CASE__ : Optional[int] = serving_func(**_lowercase )['''sequences'''] SCREAMING_SNAKE_CASE__ : Optional[int] = test_model.generate(**_lowercase , max_new_tokens=_lowercase ) tf.debugging.assert_equal(_lowercase , _lowercase ) @slow def lowercase__ ( self : Optional[Any] ): # TF-only test: tf.saved_model export SCREAMING_SNAKE_CASE__ : List[str] = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : Tuple = 2 class lowercase ( tf.Module ): def __init__( self : Union[str, Any] , _lowercase : int ): super(_lowercase , self ).__init__() SCREAMING_SNAKE_CASE__ : List[str] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_lowercase , ) def lowercase__ ( self : Dict , _lowercase : Tuple , _lowercase : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Any = self.model.generate( input_ids=_lowercase , attention_mask=_lowercase , max_new_tokens=_lowercase , return_dict_in_generate=_lowercase , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[2], [1_02, 1_03]] SCREAMING_SNAKE_CASE__ : int = [[1], [1, 1]] SCREAMING_SNAKE_CASE__ : Any = DummyModel(model=_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowercase , _lowercase , signatures={'''serving_default''': dummy_model.serving} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.saved_model.load(_lowercase ).signatures['''serving_default'''] for input_row in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : str = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } SCREAMING_SNAKE_CASE__ : List[str] = serving_func(**_lowercase )['''sequences'''] SCREAMING_SNAKE_CASE__ : Optional[int] = test_model.generate(**_lowercase , max_new_tokens=_lowercase ) tf.debugging.assert_equal(_lowercase , _lowercase ) @slow @require_tensorflow_text def lowercase__ ( self : Optional[int] ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_lowercase ) class lowercase ( tf.keras.layers.Layer ): def __init__( self : Any ): super().__init__() SCREAMING_SNAKE_CASE__ : int = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_lowercase , '''spiece.model''' ) , '''rb''' ).read() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def lowercase__ ( self : List[str] , _lowercase : Optional[Any] , *_lowercase : Tuple , **_lowercase : str ): SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.tokenize(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = text.pad_model_inputs( _lowercase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase ) return self.tokenizer.detokenize(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = CompleteSentenceTransformer() SCREAMING_SNAKE_CASE__ : str = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) SCREAMING_SNAKE_CASE__ : Dict = complete_model(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.keras.Model(_lowercase , _lowercase ) keras_model.save(_lowercase ) def lowercase__ ( self : str ): # Has PT equivalent: this test relies on random sampling SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 10, '''temperature''': 0.7, } SCREAMING_SNAKE_CASE__ : Any = 14 SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''Hello, my dog is cute and''' SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(_lowercase , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE__ : List[str] = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ : List[str] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = model.generate(**_lowercase , eos_token_id=_lowercase , **_lowercase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) SCREAMING_SNAKE_CASE__ : List[str] = [6_38, 1_98] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate(**_lowercase , eos_token_id=_lowercase , **_lowercase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Optional[int] ): # Has PT equivalent: ample use of framework-specific code SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) SCREAMING_SNAKE_CASE__ : List[Any] = '''Hugging Face is a technology company based in New York and Paris.''' SCREAMING_SNAKE_CASE__ : Optional[int] = bart_tokenizer(_lowercase , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE__ : str = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) SCREAMING_SNAKE_CASE__ : str = bart_model.generate(_lowercase ).numpy() class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[str]=None , **_lowercase : Union[str, Any] ): return super().call(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) SCREAMING_SNAKE_CASE__ : List[Any] = bart_model.generate(_lowercase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_lowercase , _lowercase ) ) class lowercase ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] , **_lowercase : List[str] ): return super().call(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = FakeEncoder(bart_model.config , bart_model.model.shared ) SCREAMING_SNAKE_CASE__ : List[Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) SCREAMING_SNAKE_CASE__ : Dict = bart_model.generate(_lowercase ).numpy() with self.assertRaises(_lowercase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_lowercase , foo='''bar''' )
35
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Union[str, Any] = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } a_ :List[str] = { 'google/realm-cc-news-pretrained-embedder': 5_12, 'google/realm-cc-news-pretrained-encoder': 5_12, 'google/realm-cc-news-pretrained-scorer': 5_12, 'google/realm-cc-news-pretrained-openqa': 5_12, 'google/realm-orqa-nq-openqa': 5_12, 'google/realm-orqa-nq-reader': 5_12, 'google/realm-orqa-wq-openqa': 5_12, 'google/realm-orqa-wq-reader': 5_12, } a_ :Tuple = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = RealmTokenizer def __init__( self : Any , _lowercase : Any=None , _lowercase : Any=None , _lowercase : List[Any]=True , _lowercase : Any="[UNK]" , _lowercase : int="[SEP]" , _lowercase : List[Any]="[PAD]" , _lowercase : Union[str, Any]="[CLS]" , _lowercase : str="[MASK]" , _lowercase : Optional[int]=True , _lowercase : Any=None , **_lowercase : List[str] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE__ : Tuple = getattr(_lowercase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE__ : Any = strip_accents SCREAMING_SNAKE_CASE__ : Dict = tokenize_chinese_chars SCREAMING_SNAKE_CASE__ : str = normalizer_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : Any = do_lower_case def lowercase__ ( self : Dict , _lowercase : Tuple , **_lowercase : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = PaddingStrategy.MAX_LENGTH SCREAMING_SNAKE_CASE__ : Any = text SCREAMING_SNAKE_CASE__ : List[str] = kwargs.pop('''text_pair''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = kwargs.pop('''return_tensors''' , _lowercase ) SCREAMING_SNAKE_CASE__ : str = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(_lowercase ): if batch_text_pair is not None: SCREAMING_SNAKE_CASE__ : Dict = batch_text_pair[idx] else: SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : Any = super().__call__(_lowercase , _lowercase , return_tensors=_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = encoded_candidates.get('''input_ids''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = encoded_candidates.get('''attention_mask''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(_lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = {key: item for key, item in output_data.items() if len(_lowercase ) != 0} return BatchEncoding(_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[int] , _lowercase : List[str]=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Optional[int] , _lowercase : str , _lowercase : Optional[str] = None ): SCREAMING_SNAKE_CASE__ : Optional[int] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
35
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
1
from timeit import timeit def a ( A__ ) -> int: '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 while number: number &= number - 1 result += 1 return result def a ( A__ ) -> int: '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) SCREAMING_SNAKE_CASE__ : List[str] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a ( ) -> None: '''simple docstring''' def do_benchmark(A__ ) -> None: SCREAMING_SNAKE_CASE__ : List[Any] = '''import __main__ as z''' print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(A__ ) = }""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=A__ ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(A__ ) = }""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=A__ , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(A__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
35
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = (CMStochasticIterativeScheduler,) lowerCamelCase : str = 10 def lowercase__ ( self : Optional[Any] , **_lowercase : int ): SCREAMING_SNAKE_CASE__ : str = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_lowercase ) return config def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = 10 SCREAMING_SNAKE_CASE__ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Any = self.scheduler_classes[0](**_lowercase ) scheduler.set_timesteps(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = scheduler.timesteps[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.timesteps[1] SCREAMING_SNAKE_CASE__ : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE__ : str = 0.1 * sample SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : str ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def lowercase__ ( self : Tuple ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_lowercase ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = 1 scheduler.set_timesteps(_lowercase ) SCREAMING_SNAKE_CASE__ : int = scheduler.timesteps SCREAMING_SNAKE_CASE__ : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_lowercase ): # 1. scale model input SCREAMING_SNAKE_CASE__ : Any = scheduler.scale_model_input(_lowercase , _lowercase ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ : Dict = model(_lowercase , _lowercase ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ : Any = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : List[Any] = pred_prev_sample SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.sum(torch.abs(_lowercase ) ) SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : List[Any] = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [1_06, 0] scheduler.set_timesteps(timesteps=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.timesteps SCREAMING_SNAKE_CASE__ : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = self.dummy_model() SCREAMING_SNAKE_CASE__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE__ : int = scheduler.scale_model_input(_lowercase , _lowercase ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ : int = model(_lowercase , _lowercase ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ : Tuple = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : Tuple = pred_prev_sample SCREAMING_SNAKE_CASE__ : int = torch.sum(torch.abs(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Dict = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : str = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = [39, 30, 12, 15, 0] with self.assertRaises(_lowercase , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_lowercase ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Any = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : int = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE__ : Optional[int] = len(_lowercase ) with self.assertRaises(_lowercase , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_lowercase )
35
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ :Union[str, Any] = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Union[str, Any] = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a_ :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): lowerCamelCase : Any = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowerCamelCase : int = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowercase__ ( self : str , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[Any] = AudioClassificationPipeline(model=_lowercase , feature_extractor=_lowercase ) # test with a raw waveform SCREAMING_SNAKE_CASE__ : List[Any] = np.zeros((3_40_00,) ) SCREAMING_SNAKE_CASE__ : Dict = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def lowercase__ ( self : List[str] , _lowercase : Optional[int] , _lowercase : Dict ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = examples SCREAMING_SNAKE_CASE__ : Dict = audio_classifier(_lowercase ) # by default a model is initialized with num_labels=2 self.assertEqual( _lowercase , [ {'''score''': ANY(_lowercase ), '''label''': ANY(_lowercase )}, {'''score''': ANY(_lowercase ), '''label''': ANY(_lowercase )}, ] , ) SCREAMING_SNAKE_CASE__ : str = audio_classifier(_lowercase , top_k=1 ) self.assertEqual( _lowercase , [ {'''score''': ANY(_lowercase ), '''label''': ANY(_lowercase )}, ] , ) self.run_torchaudio(_lowercase ) @require_torchaudio def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): import datasets # test with a local file SCREAMING_SNAKE_CASE__ : str = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) SCREAMING_SNAKE_CASE__ : int = dataset[0]['''audio''']['''array'''] SCREAMING_SNAKE_CASE__ : str = audio_classifier(_lowercase ) self.assertEqual( _lowercase , [ {'''score''': ANY(_lowercase ), '''label''': ANY(_lowercase )}, {'''score''': ANY(_lowercase ), '''label''': ANY(_lowercase )}, ] , ) @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : int = '''anton-l/wav2vec2-random-tiny-classifier''' SCREAMING_SNAKE_CASE__ : str = pipeline('''audio-classification''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.ones((80_00,) ) SCREAMING_SNAKE_CASE__ : List[str] = audio_classifier(_lowercase , top_k=4 ) SCREAMING_SNAKE_CASE__ : Dict = [ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] SCREAMING_SNAKE_CASE__ : Optional[int] = [ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(_lowercase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) SCREAMING_SNAKE_CASE__ : Tuple = {'''array''': np.ones((80_00,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} SCREAMING_SNAKE_CASE__ : List[str] = audio_classifier(_lowercase , top_k=4 ) self.assertIn(nested_simplify(_lowercase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def lowercase__ ( self : List[str] ): import datasets SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''superb/wav2vec2-base-superb-ks''' SCREAMING_SNAKE_CASE__ : Any = pipeline('''audio-classification''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array(dataset[3]['''speech'''] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : int = audio_classifier(_lowercase , top_k=4 ) self.assertEqual( nested_simplify(_lowercase , decimals=3 ) , [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def lowercase__ ( self : Union[str, Any] ): pass
35
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase ( _UpperCAmelCase ): lowerCamelCase : Union[str, Any] = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) lowerCamelCase : int = '''CIDAS/clipseg-rd64-refined''' lowerCamelCase : Optional[int] = '''image_segmenter''' lowerCamelCase : int = CLIPSegForImageSegmentation lowerCamelCase : Tuple = ['''image''', '''text'''] lowerCamelCase : List[str] = ['''image'''] def __init__( self : Optional[Any] , *_lowercase : List[Any] , **_lowercase : List[str] ): requires_backends(self , ['''vision'''] ) super().__init__(*_lowercase , **_lowercase ) def lowercase__ ( self : str , _lowercase : "Image" , _lowercase : str ): return self.pre_processor(text=[label] , images=[image] , padding=_lowercase , return_tensors='''pt''' ) def lowercase__ ( self : int , _lowercase : Dict ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model(**_lowercase ).logits return logits def lowercase__ ( self : Tuple , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : Tuple = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
35
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
1
import baseaa def a ( A__ ) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode('''utf-8''' ) ) def a ( A__ ) -> str: '''simple docstring''' return baseaa.baadecode(A__ ).decode('''utf-8''' ) if __name__ == "__main__": a_ :Tuple = 'Hello World!' a_ :List[str] = baseaa_encode(test) print(encoded) a_ :Optional[int] = baseaa_decode(encoded) print(decoded)
35
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a_ :Any = TypeVar('T') class lowercase ( Generic[T] ): def __init__( self : Union[str, Any] , _lowercase : bool = True ): SCREAMING_SNAKE_CASE__ : dict[T, list[T]] = {} # dictionary of lists SCREAMING_SNAKE_CASE__ : int = directed def lowercase__ ( self : Optional[Any] , _lowercase : T , _lowercase : T ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowercase ) self.adj_list[destination_vertex].append(_lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: SCREAMING_SNAKE_CASE__ : List[str] = [destination_vertex] SCREAMING_SNAKE_CASE__ : str = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: SCREAMING_SNAKE_CASE__ : List[Any] = [destination_vertex] SCREAMING_SNAKE_CASE__ : Any = [] return self def __repr__( self : Tuple ): return pformat(self.adj_list )
35
def a ( A__ ) -> str: '''simple docstring''' return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def a ( A__ ) -> bytes: '''simple docstring''' if (len(A__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ :Union[str, Any] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": a_ :int = 'hopper-medium-v2' a_ :Any = gym.make(env_name) a_ :List[str] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) a_ :Optional[Any] = env.reset() a_ :Optional[int] = 0 a_ :List[str] = 0 a_ :List[Any] = 10_00 a_ :Dict = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ :int = pipeline(obs, planning_horizon=32) # execute action in environment a_ , a_ , a_ , a_ :List[Any] = env.step(denorm_actions) a_ :Tuple = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) a_ :List[Any] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
35
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor a_ :List[str] = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): def __init__( self : Dict , *_lowercase : Tuple , **_lowercase : Tuple ): warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
def a ( A__ , A__ ) -> str: '''simple docstring''' return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
35
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ :Union[str, Any] = 16 a_ :Any = 32 def a ( A__ , A__ , A__ , A__ , A__ = 1_6 ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ : Any = DatasetDict( { '''train''': dataset['''train'''].select(A__ ), '''validation''': dataset['''train'''].select(A__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : List[str] = datasets.map( A__ , batched=A__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : Tuple = 8 else: SCREAMING_SNAKE_CASE__ : int = None return tokenizer.pad( A__ , padding='''longest''' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='''pt''' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) SCREAMING_SNAKE_CASE__ : Tuple = DataLoader( tokenized_datasets['''test'''] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader, test_dataloader def a ( A__ , A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # Download the dataset SCREAMING_SNAKE_CASE__ : List[Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits SCREAMING_SNAKE_CASE__ : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator SCREAMING_SNAKE_CASE__ : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : Union[str, Any] = config['''lr'''] SCREAMING_SNAKE_CASE__ : List[Any] = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(config['''seed'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE__ : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(A__ ) # New Code # # Create our folds: SCREAMING_SNAKE_CASE__ : Optional[Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) SCREAMING_SNAKE_CASE__ : List[str] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_fold_dataloaders( A__ , A__ , A__ , A__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Optional[int] = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=1_0_0 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(**A__ ) SCREAMING_SNAKE_CASE__ : Tuple = outputs.loss SCREAMING_SNAKE_CASE__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**A__ ) SCREAMING_SNAKE_CASE__ : Dict = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A__ , references=A__ , ) SCREAMING_SNAKE_CASE__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A__ ) # New Code # # We also run predictions on the test set at the very end SCREAMING_SNAKE_CASE__ : List[str] = [] for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**A__ ) SCREAMING_SNAKE_CASE__ : List[str] = outputs.logits SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.cat(A__ , dim=0 ) SCREAMING_SNAKE_CASE__ : List[str] = torch.stack(A__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ : List[str] = metric.compute(predictions=A__ , references=A__ ) accelerator.print('''Average test metrics from all folds:''' , A__ ) def a ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A__ , default=A__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=A__ , default=3 , help='''The number of splits to perform across the dataset''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(A__ , A__ ) if __name__ == "__main__": main()
35
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = SwinConfig(image_size=1_9_2 ) if "base" in model_name: SCREAMING_SNAKE_CASE__ : Optional[Any] = 6 SCREAMING_SNAKE_CASE__ : str = 1_2_8 SCREAMING_SNAKE_CASE__ : Optional[Any] = (2, 2, 1_8, 2) SCREAMING_SNAKE_CASE__ : List[Any] = (4, 8, 1_6, 3_2) elif "large" in model_name: SCREAMING_SNAKE_CASE__ : Dict = 1_2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1_9_2 SCREAMING_SNAKE_CASE__ : List[str] = (2, 2, 1_8, 2) SCREAMING_SNAKE_CASE__ : str = (6, 1_2, 2_4, 4_8) else: raise ValueError('''Model not supported, only supports base and large variants''' ) SCREAMING_SNAKE_CASE__ : int = window_size SCREAMING_SNAKE_CASE__ : int = embed_dim SCREAMING_SNAKE_CASE__ : List[Any] = depths SCREAMING_SNAKE_CASE__ : Dict = num_heads return config def a ( A__ ) -> Union[str, Any]: '''simple docstring''' if "encoder.mask_token" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ : str = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: SCREAMING_SNAKE_CASE__ : int = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE__ : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE__ : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE__ : int = '''layernorm.weight''' if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE__ : List[str] = '''layernorm.bias''' if "decoder" in name: pass else: SCREAMING_SNAKE_CASE__ : List[str] = '''swin.''' + name return name def a ( A__ , A__ ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ : Any = orig_state_dict.pop(A__ ) if "attn_mask" in key: pass elif "qkv" in key: SCREAMING_SNAKE_CASE__ : Union[str, Any] = key.split('''.''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = int(key_split[2] ) SCREAMING_SNAKE_CASE__ : Dict = int(key_split[4] ) SCREAMING_SNAKE_CASE__ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE__ : int = val[:dim, :] SCREAMING_SNAKE_CASE__ : Optional[Any] = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ : Dict = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = val[ :dim ] SCREAMING_SNAKE_CASE__ : Optional[int] = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ : List[Any] = val[ -dim: ] else: SCREAMING_SNAKE_CASE__ : Tuple = val return orig_state_dict def a ( A__ , A__ , A__ , A__ ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = torch.load(A__ , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE__ : List[Any] = get_swin_config(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = SwinForMaskedImageModeling(A__ ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) SCREAMING_SNAKE_CASE__ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ : Dict = ViTImageProcessor(size={'''height''': 1_9_2, '''width''': 1_9_2} ) SCREAMING_SNAKE_CASE__ : Any = Image.open(requests.get(A__ , stream=A__ ).raw ) SCREAMING_SNAKE_CASE__ : List[str] = image_processor(images=A__ , return_tensors='''pt''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**A__ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": a_ :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ :str = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
35
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed a_ :str = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) a_ :int = 'sshleifer/student_marian_en_ro_6_1' a_ :List[str] = 'sshleifer/tiny-mbart' @require_torch class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : List[str] , _lowercase : Dict=False , _lowercase : Optional[Any]=None , _lowercase : Dict=True , _lowercase : str=True , _lowercase : Optional[Any]=True , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Any = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) SCREAMING_SNAKE_CASE__ : List[str] = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''' ) ).log_history if not do_eval: return SCREAMING_SNAKE_CASE__ : Union[str, Any] = [log for log in logs if '''eval_loss''' in log.keys()] SCREAMING_SNAKE_CASE__ : Tuple = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats SCREAMING_SNAKE_CASE__ : Optional[Any] = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowercase__ ( self : int ): self.run_seqaseq_quick() @require_torch_multi_gpu def lowercase__ ( self : Optional[int] ): self.run_seqaseq_quick(distributed=_lowercase ) @require_torch_multi_gpu def lowercase__ ( self : Any ): self.run_seqaseq_quick(distributed=_lowercase ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self : str ): self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self : List[Any] ): self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self : int ): self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def lowercase__ ( self : Any ): self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase ) @require_apex @require_torch_gpu def lowercase__ ( self : Any ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def lowercase__ ( self : Optional[int] , _lowercase : Optional[int] ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout SCREAMING_SNAKE_CASE__ : Dict = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = experiments[experiment_id] SCREAMING_SNAKE_CASE__ : str = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} SCREAMING_SNAKE_CASE__ : int = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str'''] ) SCREAMING_SNAKE_CASE__ : Tuple = len(re.findall(_lowercase , cl.err ) ) self.assertEqual(_lowercase , data['''n_matches'''] ) @slow def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''' ) ).log_history SCREAMING_SNAKE_CASE__ : str = [log for log in logs if '''eval_loss''' in log.keys()] SCREAMING_SNAKE_CASE__ : Tuple = eval_metrics[0] SCREAMING_SNAKE_CASE__ : Any = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase ) # test if do_predict saves generations and metrics SCREAMING_SNAKE_CASE__ : Optional[Any] = os.listdir(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {os.path.basename(_lowercase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowercase__ ( self : Dict ): from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase : str ) -> Tuple[int, float]: SCREAMING_SNAKE_CASE__ : Optional[Any] = '''--skip_memory_metrics 0''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.run_trainer( max_len=1_28 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics SCREAMING_SNAKE_CASE__ : Any = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''' ) ).log_history SCREAMING_SNAKE_CASE__ : Tuple = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) SCREAMING_SNAKE_CASE__ : str = gpu_alloc_mem_orig - gpu_alloc_mem_bnb SCREAMING_SNAKE_CASE__ : str = gpu_peak_mem_orig + gpu_alloc_mem_orig SCREAMING_SNAKE_CASE__ : List[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb SCREAMING_SNAKE_CASE__ : Optional[Any] = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings SCREAMING_SNAKE_CASE__ : List[str] = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" f""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" f""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( _lowercase , _lowercase , f"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def lowercase__ ( self : str , _lowercase : int , _lowercase : str , _lowercase : int , _lowercase : float = 3E-3 , _lowercase : str = "adafactor" , _lowercase : bool = False , _lowercase : str = None , _lowercase : int = 0 , _lowercase : bool = True , _lowercase : bool = True , _lowercase : bool = True , _lowercase : bool = True , _lowercase : int = None , ): SCREAMING_SNAKE_CASE__ : Any = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' SCREAMING_SNAKE_CASE__ : List[str] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ : Dict = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(_lowercase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(_lowercase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() SCREAMING_SNAKE_CASE__ : Union[str, Any] = f""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(_lowercase )} """.split() SCREAMING_SNAKE_CASE__ : List[Any] = ''' --do_predict '''.split() SCREAMING_SNAKE_CASE__ : Optional[Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: SCREAMING_SNAKE_CASE__ : str = get_gpu_count() SCREAMING_SNAKE_CASE__ : int = get_torch_dist_unique_port() SCREAMING_SNAKE_CASE__ : Optional[int] = f""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() SCREAMING_SNAKE_CASE__ : int = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env() ) else: SCREAMING_SNAKE_CASE__ : int = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase ): main() return output_dir
35
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ :str = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Tuple = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Tuple = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
from __future__ import annotations def a ( A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
1
from math import log from scipy.constants import Boltzmann, physical_constants a_ :Dict = 3_00 # TEMPERATURE (unit = K) def a ( A__ , A__ , A__ , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
35
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self : Tuple , _lowercase : List[Any] , _lowercase : str=13 , _lowercase : Dict=3 , _lowercase : Union[str, Any]=True , _lowercase : str=True , _lowercase : Dict=0.1 , _lowercase : List[str]=0.1 , _lowercase : Optional[Any]=2_24 , _lowercase : Optional[Any]=10_00 , _lowercase : str=[3, 3, 6, 4] , _lowercase : List[str]=[48, 56, 1_12, 2_20] , ): SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : str = use_labels SCREAMING_SNAKE_CASE__ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = num_labels SCREAMING_SNAKE_CASE__ : Any = image_size SCREAMING_SNAKE_CASE__ : List[Any] = layer_depths SCREAMING_SNAKE_CASE__ : Optional[Any] = embed_dims def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Tuple = self.get_config() return config, pixel_values, labels def lowercase__ ( self : int ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowercase , layer_scale_init_value=1E-5 , ) def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = SwiftFormerModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowercase__ ( self : Optional[Any] , _lowercase : List[str] , _lowercase : Any , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Dict = self.num_labels SCREAMING_SNAKE_CASE__ : Optional[int] = SwiftFormerForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE__ : List[Any] = SwiftFormerForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Any = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict ): ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase : Tuple = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase : str = False lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : str = False lowerCamelCase : Optional[Any] = False def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE__ : List[str] = ConfigTester( self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowercase__ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowercase__ ( self : Tuple ): pass def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def lowercase__ ( self : Any ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Any = SwiftFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : Union[str, Any] ): def check_hidden_states_output(_lowercase : Optional[Any] , _lowercase : int , _lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = model(**self._prepare_for_class(_lowercase , _lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE__ : Optional[int] = 8 self.assertEqual(len(_lowercase ) , _lowercase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowercase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : int = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def lowercase__ ( self : Union[str, Any] ): def _config_zero_init(_lowercase : str ): SCREAMING_SNAKE_CASE__ : Tuple = copy.deepcopy(_lowercase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowercase , _lowercase , 1E-10 ) if isinstance(getattr(_lowercase , _lowercase , _lowercase ) , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = _config_zero_init(getattr(_lowercase , _lowercase ) ) setattr(_lowercase , _lowercase , _lowercase ) return configs_no_init SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(config=_lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): pass def a ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ): return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[int] = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : int = image_processor(images=_lowercase , return_tensors='''pt''' ).to(_lowercase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_lowercase ) # verify the logits SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) )
35
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
1
import mpmath # for roots of unity import numpy as np class lowercase : def __init__( self : List[str] , _lowercase : Optional[int]=None , _lowercase : Optional[int]=None ): # Input as list SCREAMING_SNAKE_CASE__ : List[str] = list(poly_a or [0] )[:] SCREAMING_SNAKE_CASE__ : Dict = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() SCREAMING_SNAKE_CASE__ : int = len(self.polyB ) # Add 0 to make lengths equal a power of 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform SCREAMING_SNAKE_CASE__ : Any = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product SCREAMING_SNAKE_CASE__ : Any = self.__multiply() def lowercase__ ( self : Optional[int] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(_lowercase ) <= 1: return dft[0] # SCREAMING_SNAKE_CASE__ : Dict = self.c_max_length // 2 while next_ncol > 0: SCREAMING_SNAKE_CASE__ : str = [[] for i in range(_lowercase )] SCREAMING_SNAKE_CASE__ : List[Any] = self.root**next_ncol # First half of next step SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step SCREAMING_SNAKE_CASE__ : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Dict = new_dft SCREAMING_SNAKE_CASE__ : Tuple = next_ncol // 2 return dft[0] def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Tuple = self.__dft('''A''' ) SCREAMING_SNAKE_CASE__ : int = self.__dft('''B''' ) SCREAMING_SNAKE_CASE__ : int = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT SCREAMING_SNAKE_CASE__ : int = 2 while next_ncol <= self.c_max_length: SCREAMING_SNAKE_CASE__ : Any = [[] for i in range(_lowercase )] SCREAMING_SNAKE_CASE__ : Tuple = self.root ** (next_ncol // 2) SCREAMING_SNAKE_CASE__ : List[str] = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Tuple = new_inverse_c next_ncol *= 2 # Unpack SCREAMING_SNAKE_CASE__ : Tuple = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): SCREAMING_SNAKE_CASE__ : Optional[int] = '''A = ''' + ''' + '''.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) SCREAMING_SNAKE_CASE__ : int = '''B = ''' + ''' + '''.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) SCREAMING_SNAKE_CASE__ : List[str] = '''A*B = ''' + ''' + '''.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
35
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a_ :Union[str, Any] = None a_ :str = logging.get_logger(__name__) a_ :str = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a_ :Union[str, Any] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a_ :Optional[int] = { 't5-small': 5_12, 't5-base': 5_12, 't5-large': 5_12, 't5-3b': 5_12, 't5-11b': 5_12, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = ['''input_ids''', '''attention_mask'''] lowerCamelCase : Dict = TaTokenizer lowerCamelCase : List[int] = [] def __init__( self : Optional[int] , _lowercase : Any=None , _lowercase : List[Any]=None , _lowercase : Dict="</s>" , _lowercase : int="<unk>" , _lowercase : int="<pad>" , _lowercase : List[Any]=1_00 , _lowercase : Dict=None , **_lowercase : Tuple , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE__ : List[str] = [f"""<extra_id_{i}>""" for i in range(_lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(set(filter(lambda _lowercase : bool('''extra_id_''' in str(_lowercase ) ) , _lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _lowercase , tokenizer_file=_lowercase , eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , extra_ids=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : int = vocab_file SCREAMING_SNAKE_CASE__ : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ : Tuple = extra_ids @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : str , _lowercase : Union[str, Any] ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _lowercase , ) return max_model_length def lowercase__ ( self : List[str] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def lowercase__ ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: SCREAMING_SNAKE_CASE__ : Any = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowercase__ ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self : List[str] ): return list( set(filter(lambda _lowercase : bool(re.search(R'''<extra_id_\d+>''' , _lowercase ) ) is not None , self.additional_special_tokens ) ) ) def lowercase__ ( self : List[str] ): return [self.convert_tokens_to_ids(_lowercase ) for token in self.get_sentinel_tokens()]
35
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
1
def a ( A__ ) -> list: '''simple docstring''' if n_term == "": return [] SCREAMING_SNAKE_CASE__ : list = [] for temp in range(int(A__ ) ): series.append(f"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a_ :Optional[Any] = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
35
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
1
from collections import Counter from timeit import timeit def a ( A__ = "" , ) -> bool: '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def a ( A__ = "" ) -> bool: '''simple docstring''' if len(A__ ) == 0: return True SCREAMING_SNAKE_CASE__ : int = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string SCREAMING_SNAKE_CASE__ : dict[str, int] = {} for character in lower_case_input_str: SCREAMING_SNAKE_CASE__ : Union[str, Any] = character_freq_dict.get(A__ , 0 ) + 1 SCREAMING_SNAKE_CASE__ : str = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def a ( A__ = "" ) -> None: '''simple docstring''' print('''\nFor string = ''' , A__ , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(A__ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(A__ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": a_ :Tuple = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) a_ :List[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {'' if status else 'not '}be rearranged as a palindrome''')
35
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
1
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ :Tuple = logging.get_logger(__name__) a_ :Any = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = '''van''' def __init__( self : List[Any] , _lowercase : int=2_24 , _lowercase : Dict=3 , _lowercase : Tuple=[7, 3, 3, 3] , _lowercase : str=[4, 2, 2, 2] , _lowercase : Tuple=[64, 1_28, 3_20, 5_12] , _lowercase : List[str]=[3, 3, 12, 3] , _lowercase : Union[str, Any]=[8, 8, 4, 4] , _lowercase : Optional[int]="gelu" , _lowercase : Optional[int]=0.02 , _lowercase : List[Any]=1E-6 , _lowercase : Optional[Any]=1E-2 , _lowercase : str=0.0 , _lowercase : Tuple=0.0 , **_lowercase : Tuple , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : int = image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_channels SCREAMING_SNAKE_CASE__ : Union[str, Any] = patch_sizes SCREAMING_SNAKE_CASE__ : List[Any] = strides SCREAMING_SNAKE_CASE__ : str = hidden_sizes SCREAMING_SNAKE_CASE__ : Dict = depths SCREAMING_SNAKE_CASE__ : Union[str, Any] = mlp_ratios SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[Any] = layer_scale_init_value SCREAMING_SNAKE_CASE__ : List[Any] = drop_path_rate SCREAMING_SNAKE_CASE__ : Any = dropout_rate
35
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowercase : def __init__( self : Optional[int] , _lowercase : str , _lowercase : Tuple=13 , _lowercase : Union[str, Any]=32 , _lowercase : str=2 , _lowercase : Dict=3 , _lowercase : str=16 , _lowercase : str=[1, 2, 1] , _lowercase : str=[2, 2, 4] , _lowercase : str=2 , _lowercase : List[str]=2.0 , _lowercase : Optional[int]=True , _lowercase : Union[str, Any]=0.0 , _lowercase : List[str]=0.0 , _lowercase : Optional[int]=0.1 , _lowercase : Optional[int]="gelu" , _lowercase : Union[str, Any]=False , _lowercase : Tuple=True , _lowercase : Any=0.02 , _lowercase : Optional[Any]=1E-5 , _lowercase : Optional[int]=True , _lowercase : str=None , _lowercase : Optional[Any]=True , _lowercase : List[str]=10 , _lowercase : Optional[Any]=8 , _lowercase : Any=["stage1", "stage2", "stage3"] , _lowercase : str=[1, 2, 3] , ): SCREAMING_SNAKE_CASE__ : List[str] = parent SCREAMING_SNAKE_CASE__ : Optional[int] = batch_size SCREAMING_SNAKE_CASE__ : Optional[Any] = image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : List[str] = embed_dim SCREAMING_SNAKE_CASE__ : Any = depths SCREAMING_SNAKE_CASE__ : int = num_heads SCREAMING_SNAKE_CASE__ : str = window_size SCREAMING_SNAKE_CASE__ : Optional[int] = mlp_ratio SCREAMING_SNAKE_CASE__ : List[Any] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = drop_path_rate SCREAMING_SNAKE_CASE__ : int = hidden_act SCREAMING_SNAKE_CASE__ : int = use_absolute_embeddings SCREAMING_SNAKE_CASE__ : int = patch_norm SCREAMING_SNAKE_CASE__ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE__ : str = is_training SCREAMING_SNAKE_CASE__ : Optional[int] = scope SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = encoder_stride SCREAMING_SNAKE_CASE__ : Any = out_features SCREAMING_SNAKE_CASE__ : List[Any] = out_indices def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Dict = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Union[str, Any] ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase__ ( self : Any , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Tuple ): SCREAMING_SNAKE_CASE__ : List[Any] = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE__ : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : Tuple , _lowercase : int , _lowercase : Any , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Any = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : str = ['''stem'''] SCREAMING_SNAKE_CASE__ : str = MaskFormerSwinBackbone(config=_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = config_and_inputs SCREAMING_SNAKE_CASE__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : str = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : str = False lowerCamelCase : List[Any] = False lowerCamelCase : Any = False lowerCamelCase : str = False lowerCamelCase : List[str] = False def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Dict = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Optional[Any] ): return def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def lowercase__ ( self : Dict ): pass @unittest.skip('''Swin does not support feedforward chunking''' ) def lowercase__ ( self : Tuple ): pass def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def lowercase__ ( self : Union[str, Any] ): pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def lowercase__ ( self : List[str] ): pass def lowercase__ ( self : List[Any] , _lowercase : int , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**self._prepare_for_class(_lowercase , _lowercase ) ) SCREAMING_SNAKE_CASE__ : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE__ : List[Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE__ : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : int = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Dict = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Dict = 3 SCREAMING_SNAKE_CASE__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE__ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Optional[Any] = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def lowercase__ ( self : Any ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def lowercase__ ( self : List[Any] ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowercase : Tuple ): SCREAMING_SNAKE_CASE__ : Tuple = 0 return t def check_equivalence(_lowercase : int , _lowercase : int , _lowercase : Dict , _lowercase : Optional[int]={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**_lowercase , return_dict=_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase : List[Any] , _lowercase : int ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has""" f""" `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.""" ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : int = model_class(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : int = self._prepare_for_class(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : int = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ : str = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._prepare_for_class(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) SCREAMING_SNAKE_CASE__ : Dict = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) SCREAMING_SNAKE_CASE__ : str = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) @require_torch class lowercase ( unittest.TestCase , _UpperCAmelCase ): lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[Any] = MaskFormerSwinConfig def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : str = MaskFormerSwinModelTester(self ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[str] = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() SCREAMING_SNAKE_CASE__ : List[Any] = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE__ : Union[str, Any] = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE__ : Dict = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
35
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
1
import unittest from knapsack import knapsack as k class lowercase ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = [0] SCREAMING_SNAKE_CASE__ : Tuple = [0] SCREAMING_SNAKE_CASE__ : str = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [60] SCREAMING_SNAKE_CASE__ : Dict = [10] SCREAMING_SNAKE_CASE__ : Dict = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Tuple = 3 SCREAMING_SNAKE_CASE__ : Tuple = [1, 2, 3] SCREAMING_SNAKE_CASE__ : Any = [3, 2, 1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 5 ) def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = 50 SCREAMING_SNAKE_CASE__ : Tuple = [60, 1_00, 1_20] SCREAMING_SNAKE_CASE__ : Any = [10, 20, 30] SCREAMING_SNAKE_CASE__ : int = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 2_20 ) if __name__ == "__main__": unittest.main()
35
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ :Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ :List[Any] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def a ( A__ , A__ , A__=8 ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE__ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase ( _UpperCAmelCase ): def __init__( self : Optional[Any] , _lowercase : UNetaDConditionModel , _lowercase : DDPMScheduler , _lowercase : VQModel , ): super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase__ ( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : str , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Dict ): if latents is None: SCREAMING_SNAKE_CASE__ : Optional[int] = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) SCREAMING_SNAKE_CASE__ : Dict = latents.to(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = latents * scheduler.init_noise_sigma return latents def lowercase__ ( self : Any , _lowercase : Optional[int]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE__ : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def lowercase__ ( self : List[Any] , _lowercase : List[str]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE__ : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase__ ( self : Optional[Any] ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self : Dict , _lowercase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowercase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowercase : int = 5_12 , _lowercase : int = 5_12 , _lowercase : int = 1_00 , _lowercase : float = 4.0 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): SCREAMING_SNAKE_CASE__ : List[Any] = self._execution_device SCREAMING_SNAKE_CASE__ : Optional[Any] = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat(_lowercase , dim=0 ) SCREAMING_SNAKE_CASE__ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Any = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ : Tuple = image_embeds.repeat_interleave(_lowercase , dim=0 ) SCREAMING_SNAKE_CASE__ : Dict = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) SCREAMING_SNAKE_CASE__ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.scheduler.timesteps SCREAMING_SNAKE_CASE__ : Dict = self.unet.config.in_channels SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowercase , _lowercase , _lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE__ : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''image_embeds''': image_embeds} SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE__ : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE__ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing SCREAMING_SNAKE_CASE__ : Tuple = self.movq.decode(_lowercase , force_not_quantize=_lowercase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE__ : List[str] = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE__ : Optional[int] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ : str = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
35
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
from __future__ import annotations def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = str(A__ ) return len(A__ ) == 9 and set(A__ ) == set('''123456789''' ) def a ( ) -> int | None: '''simple docstring''' for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ): SCREAMING_SNAKE_CASE__ : Optional[Any] = 1_0_0_0_0_2 * base_num if is_9_pandigital(A__ ): return candidate for base_num in range(3_3_3 , 9_9 , -1 ): SCREAMING_SNAKE_CASE__ : Tuple = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(A__ ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
35
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowercase ( unittest.TestCase ): def __init__( self : Dict , _lowercase : Tuple , _lowercase : Optional[Any]=2 , _lowercase : int=56 , _lowercase : List[str]=True , _lowercase : Tuple=True , _lowercase : Optional[Any]=True , _lowercase : Optional[Any]=True , _lowercase : List[str]=99 , _lowercase : Dict=32 , _lowercase : Dict=2 , _lowercase : str=2 , _lowercase : Union[str, Any]=7 , _lowercase : Union[str, Any]="gelu_new" , _lowercase : List[Any]=0.1 , _lowercase : str=0.1 , _lowercase : Dict=5_12 , _lowercase : List[Any]=16 , _lowercase : Optional[int]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[int]=4 , _lowercase : str="block_sparse" , _lowercase : str=True , _lowercase : List[str]=False , _lowercase : Any=2 , _lowercase : Tuple=3 , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : int = batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE__ : Tuple = is_training SCREAMING_SNAKE_CASE__ : Optional[Any] = use_attention_mask SCREAMING_SNAKE_CASE__ : int = use_token_type_ids SCREAMING_SNAKE_CASE__ : Dict = use_labels SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Any = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Optional[Any] = num_choices SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_embeddings SCREAMING_SNAKE_CASE__ : Tuple = attention_type SCREAMING_SNAKE_CASE__ : List[Any] = use_bias SCREAMING_SNAKE_CASE__ : int = block_size SCREAMING_SNAKE_CASE__ : Dict = num_random_blocks def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = config_and_inputs SCREAMING_SNAKE_CASE__ : Dict = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : str = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase : int = False lowerCamelCase : Optional[int] = False def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Tuple = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : Optional[int] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : Tuple ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : Optional[int] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : Tuple ): super().test_hidden_states_output() @slow def lowercase__ ( self : Tuple ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Tuple = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(_lowercase ) def lowercase__ ( self : Union[str, Any] ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE__ : str = self._prepare_for_class(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : int = model_class(_lowercase ) @jax.jit def model_jitted(_lowercase : Optional[int] , _lowercase : List[Any]=None , **_lowercase : Tuple ): return model(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_jitted(**_lowercase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : List[Any] , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Tuple=1E-5 , _lowercase : Dict="outputs" , _lowercase : Optional[Any]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
35
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def a ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=A__ ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=A__ ) env_command_parser(subparsers=A__ ) launch_command_parser(subparsers=A__ ) tpu_command_parser(subparsers=A__ ) test_command_parser(subparsers=A__ ) # Let's go SCREAMING_SNAKE_CASE__ : str = parser.parse_args() if not hasattr(A__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(A__ ) if __name__ == "__main__": main()
35
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def a ( A__ , A__ , A__ , A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE__ : str = { '''wmt16-en-de-dist-12-1''': [2_8.3, 2_7.5_2], '''wmt16-en-de-dist-6-1''': [2_7.4, 2_7.1_1], '''wmt16-en-de-12-1''': [2_6.9, 2_5.7_5], } SCREAMING_SNAKE_CASE__ : int = f"""{src_lang}-{tgt_lang}""" SCREAMING_SNAKE_CASE__ : str = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=A__ , exist_ok=A__ ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(A__ , '''README.md''' ) print(f"""Generating {path}""" ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(A__ ) # make sure we are under the root of the project a_ :Optional[Any] = Path(__file__).resolve().parent.parent.parent a_ :Union[str, Any] = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ :Union[str, Any] = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
35
def a ( A__ ) -> str: '''simple docstring''' return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def a ( A__ ) -> bytes: '''simple docstring''' if (len(A__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ :List[str] = logging.get_logger(__name__) a_ :str = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class lowercase ( _UpperCAmelCase ): lowerCamelCase : int = '''roberta-prelayernorm''' def __init__( self : int , _lowercase : Any=5_02_65 , _lowercase : Union[str, Any]=7_68 , _lowercase : Any=12 , _lowercase : List[Any]=12 , _lowercase : List[str]=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : str=0.1 , _lowercase : Dict=0.1 , _lowercase : Optional[int]=5_12 , _lowercase : Any=2 , _lowercase : str=0.02 , _lowercase : Optional[int]=1E-12 , _lowercase : Tuple=1 , _lowercase : Optional[int]=0 , _lowercase : int=2 , _lowercase : Optional[Any]="absolute" , _lowercase : List[str]=True , _lowercase : int=None , **_lowercase : List[Any] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE__ : str = classifier_dropout class lowercase ( _UpperCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ : int = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
35
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels a_ :Tuple = object() # For specifying empty leaf dict `{}` a_ :str = object() def a ( A__ , A__ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(A__ ) - len(A__ ) + 1 ): SCREAMING_SNAKE_CASE__ : str = [x.match(A__ ) for x, y in zip(A__ , ks[i:] )] if matches and all(A__ ): return True return False def a ( A__ ) -> Dict: '''simple docstring''' def replace(A__ , A__ ): for rule, replacement in rules: if _match(A__ , A__ ): return replacement return val return replace def a ( ) -> Optional[int]: '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , A__ )), (("transformer", "wte", "embedding"), P('''mp''' , A__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(A__ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , A__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(A__ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , A__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a ( A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = _get_partition_rules() SCREAMING_SNAKE_CASE__ : Dict = _replacement_rules(A__ ) SCREAMING_SNAKE_CASE__ : List[str] = {k: _unmatched for k in flatten_dict(A__ )} SCREAMING_SNAKE_CASE__ : str = {k: replace(A__ , A__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(A__ ) )
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ :str = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Tuple = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Dict = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Union[str, Any] = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a_ :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
35
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
1
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
1
def a ( A__ ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE__ : List[Any] = grid[0] for row_n in range(1 , len(A__ ) ): SCREAMING_SNAKE_CASE__ : List[str] = grid[row_n] SCREAMING_SNAKE_CASE__ : Dict = fill_row(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Tuple = grid[row_n] return grid[-1][-1] def a ( A__ , A__ ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(A__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
35
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
1
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
from __future__ import annotations def a ( A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
1
def a ( ) -> int: '''simple docstring''' return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9 ) for b in range(A__ , 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'''{solution() = }''')
35
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor a_ :List[Any] = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): def __init__( self : List[str] , *_lowercase : Tuple , **_lowercase : Optional[Any] ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
35
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ :Optional[Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys a_ :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
1
def a ( A__ , A__ ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = len(A__ ) SCREAMING_SNAKE_CASE__ : int = [] for i in range(len(A__ ) - pat_len + 1 ): SCREAMING_SNAKE_CASE__ : Any = True for j in range(A__ ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE__ : Any = False break if match_found: position.append(A__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
35
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : List[Any] , **_lowercase : List[str] ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def a ( A__ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array(A__ ) SCREAMING_SNAKE_CASE__ : Dict = npimg.shape return {"hash": hashimage(A__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : Dict = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCamelCase : Union[str, Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowercase__ ( self : List[str] , _lowercase : Any , _lowercase : str , _lowercase : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = MaskGenerationPipeline(model=_lowercase , image_processor=_lowercase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : List[Any] , _lowercase : int , _lowercase : Dict ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def lowercase__ ( self : Tuple ): pass @slow @require_torch def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : str = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) SCREAMING_SNAKE_CASE__ : List[Any] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=2_56 ) # Shortening by hashing SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_lowercase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_80, 6_40)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (4_80, 6_40)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (4_80, 6_40)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (4_80, 6_40)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (4_80, 6_40)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (4_80, 6_40)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Tuple = '''facebook/sam-vit-huge''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''mask-generation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_lowercase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_80, 6_40)}, '''scores''': 1.0053}, ] , )
35
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class lowercase ( _UpperCAmelCase ): lowerCamelCase : Any = CustomTokenizer pass
35
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) lowerCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) lowerCamelCase : str = "text" lowerCamelCase : str = "labels" def lowercase__ ( self : Optional[int] , _lowercase : Dict ): if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _lowercase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) SCREAMING_SNAKE_CASE__ : int = copy.deepcopy(self ) SCREAMING_SNAKE_CASE__ : List[str] = self.label_schema.copy() SCREAMING_SNAKE_CASE__ : List[Any] = features[self.label_column] SCREAMING_SNAKE_CASE__ : str = label_schema return task_template @property def lowercase__ ( self : Optional[int] ): return { self.text_column: "text", self.label_column: "labels", }
35
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
1
import requests from bsa import BeautifulSoup def a ( A__ , A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = BeautifulSoup(requests.get(A__ , params=A__ ).content , '''html.parser''' ) SCREAMING_SNAKE_CASE__ : List[str] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) SCREAMING_SNAKE_CASE__ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": a_ :Optional[int] = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 20_18, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
35
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ :Optional[int] = logging.get_logger(__name__) a_ :Union[str, Any] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Union[str, Any] = '''marian''' lowerCamelCase : Tuple = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[Any] , _lowercase : str=5_81_01 , _lowercase : Union[str, Any]=None , _lowercase : Tuple=10_24 , _lowercase : List[Any]=12 , _lowercase : int=40_96 , _lowercase : int=16 , _lowercase : str=12 , _lowercase : List[str]=40_96 , _lowercase : Tuple=16 , _lowercase : List[Any]=0.0 , _lowercase : Any=0.0 , _lowercase : List[Any]=True , _lowercase : Dict=True , _lowercase : Union[str, Any]="gelu" , _lowercase : int=10_24 , _lowercase : Optional[Any]=0.1 , _lowercase : List[Any]=0.0 , _lowercase : Optional[int]=0.0 , _lowercase : str=0.02 , _lowercase : Tuple=5_81_00 , _lowercase : int=False , _lowercase : Any=5_81_00 , _lowercase : Tuple=0 , _lowercase : Tuple=0 , _lowercase : List[Any]=True , **_lowercase : int , ): SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : int = d_model SCREAMING_SNAKE_CASE__ : Tuple = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : int = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Tuple = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : int = dropout SCREAMING_SNAKE_CASE__ : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE__ : List[str] = activation_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE__ : Tuple = init_std SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE__ : List[str] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple = use_cache SCREAMING_SNAKE_CASE__ : str = encoder_layers SCREAMING_SNAKE_CASE__ : Any = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class lowercase ( _UpperCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowercase__ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ : Any = {0: '''batch'''} SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowercase__ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super().outputs else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = super(_lowercase , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowercase__ ( self : Optional[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : str = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs SCREAMING_SNAKE_CASE__ : str = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE__ : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE__ : Optional[int] = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE__ : str = common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : str = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.num_layers SCREAMING_SNAKE_CASE__ : str = min(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = max(_lowercase , _lowercase ) - min_num_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE__ : List[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def lowercase__ ( self : int , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : Any = seqlen + 2 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_layers SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.num_attention_heads SCREAMING_SNAKE_CASE__ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Any = common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : List[str] = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def lowercase__ ( self : Optional[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : str = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : str = tokenizer.num_special_tokens_to_add(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : List[Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def lowercase__ ( self : List[str] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def lowercase__ ( self : str , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase ) @property def lowercase__ ( self : Dict ): return 1E-4
35
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a ( A__ ) -> int: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) a_ :Optional[int] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_lowercase , required=_lowercase , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=_lowercase , required=_lowercase , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=_lowercase , required=_lowercase , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=_lowercase , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=_lowercase , default=_lowercase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_lowercase ) def __init__( self : Any , _lowercase : str , _lowercase : str , _lowercase : str , _lowercase : str , _lowercase : str , *_lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f"""Loading model {model_type}""" ) SCREAMING_SNAKE_CASE__ : Dict = model_type SCREAMING_SNAKE_CASE__ : Any = tf_checkpoint SCREAMING_SNAKE_CASE__ : List[Any] = pytorch_dump_output SCREAMING_SNAKE_CASE__ : Union[str, Any] = config SCREAMING_SNAKE_CASE__ : int = finetuning_task_name def lowercase__ ( self : Any ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) if "ckpt" in self._tf_checkpoint.lower(): SCREAMING_SNAKE_CASE__ : int = self._tf_checkpoint SCREAMING_SNAKE_CASE__ : Optional[int] = '''''' else: SCREAMING_SNAKE_CASE__ : int = self._tf_checkpoint SCREAMING_SNAKE_CASE__ : List[Any] = '''''' convert_transfo_xl_checkpoint_to_pytorch( _lowercase , self._config , self._pytorch_dump_output , _lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
35
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger a_ :Any = '<<<<<<< This should probably be modified because it mentions: ' a_ :int = '=======\n>>>>>>>\n' a_ :Dict = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] a_ :int = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def a ( A__ ) -> List[Any]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_lowercase , required=_lowercase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_lowercase , required=_lowercase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowercase ) def __init__( self : str , _lowercase : str , _lowercase : str , *_lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = get_logger('''datasets-cli/converting''' ) SCREAMING_SNAKE_CASE__ : Tuple = tfds_path SCREAMING_SNAKE_CASE__ : List[Any] = datasets_directory def lowercase__ ( self : Union[str, Any] ): if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE__ : Any = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): SCREAMING_SNAKE_CASE__ : int = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : str = {} if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE__ : Optional[Any] = os.listdir(_lowercase ) else: SCREAMING_SNAKE_CASE__ : int = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) SCREAMING_SNAKE_CASE__ : int = os.path.join(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : int = os.path.join(_lowercase , _lowercase ) if not os.path.isfile(_lowercase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowercase , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = f.readlines() SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for line in lines: SCREAMING_SNAKE_CASE__ : Optional[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here SCREAMING_SNAKE_CASE__ : Any = '''''' continue elif "from absl import logging" in out_line: SCREAMING_SNAKE_CASE__ : Dict = '''from datasets import logging\n''' elif "getLogger" in out_line: SCREAMING_SNAKE_CASE__ : Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(filter(lambda _lowercase : e in out_line , _lowercase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowercase ) + '''\n''' ) out_lines.append(_lowercase ) out_lines.append(_lowercase ) continue else: for pattern, replacement in TO_CONVERT: SCREAMING_SNAKE_CASE__ : Optional[Any] = re.sub(_lowercase , _lowercase , _lowercase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: SCREAMING_SNAKE_CASE__ : str = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _lowercase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: SCREAMING_SNAKE_CASE__ : List[Any] = True out_lines.append(_lowercase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset SCREAMING_SNAKE_CASE__ : List[Any] = f_name.replace('''.py''' , '''''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(_lowercase , _lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowercase ) if needs_manual_update: with_manual_update.append(_lowercase ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_lowercase ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: SCREAMING_SNAKE_CASE__ : Any = os.path.basename(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_lowercase , _lowercase ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
35
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
1
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a_ :Optional[Any] = logging.get_logger(__name__) a_ :Optional[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } a_ :Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } a_ :Tuple = { 'facebook/blenderbot_small-90M': 5_12, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = BlenderbotSmallTokenizer def __init__( self : List[Any] , _lowercase : Optional[int]=None , _lowercase : Union[str, Any]=None , _lowercase : List[Any]="<|endoftext|>" , _lowercase : List[Any]="<|endoftext|>" , _lowercase : Any="<|endoftext|>" , _lowercase : int=False , _lowercase : Optional[int]=True , **_lowercase : List[Any] , ): super().__init__( ByteLevelBPETokenizer( vocab=_lowercase , merges=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase , ) , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : List[str] = add_prefix_space def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[int]=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
35
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a_ :Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _UpperCAmelCase ): def __init__( self : Dict , _lowercase : AutoencoderKL , _lowercase : CLIPTextModel , _lowercase : CLIPTokenizer , _lowercase : UNetaDConditionModel , _lowercase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowercase : StableDiffusionSafetyChecker , _lowercase : CLIPImageProcessor , ): super().__init__() self.register_modules( vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE__ : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowercase ) def lowercase__ ( self : List[Any] ): self.enable_attention_slicing(_lowercase ) @torch.no_grad() def __call__( self : Any , _lowercase : Union[str, List[str]] , _lowercase : int = 5_12 , _lowercase : int = 5_12 , _lowercase : int = 50 , _lowercase : float = 7.5 , _lowercase : Optional[Union[str, List[str]]] = None , _lowercase : Optional[int] = 1 , _lowercase : float = 0.0 , _lowercase : Optional[torch.Generator] = None , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , _lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowercase : int = 1 , _lowercase : Optional[torch.FloatTensor] = None , **_lowercase : Dict , ): if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : str = 1 elif isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_lowercase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_lowercase )}.""" ) # get prompt text embeddings SCREAMING_SNAKE_CASE__ : Any = self.tokenizer( _lowercase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) SCREAMING_SNAKE_CASE__ : int = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = text_embeddings.shape SCREAMING_SNAKE_CASE__ : Any = text_embeddings.repeat(1 , _lowercase , 1 ) SCREAMING_SNAKE_CASE__ : Tuple = text_embeddings.view(bs_embed * num_images_per_prompt , _lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. SCREAMING_SNAKE_CASE__ : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ : List[str] if negative_prompt is None: SCREAMING_SNAKE_CASE__ : Any = [''''''] elif type(_lowercase ) is not type(_lowercase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_lowercase )} !=""" f""" {type(_lowercase )}.""" ) elif isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : List[str] = [negative_prompt] elif batch_size != len(_lowercase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_lowercase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: SCREAMING_SNAKE_CASE__ : Any = negative_prompt SCREAMING_SNAKE_CASE__ : Tuple = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer( _lowercase , padding='''max_length''' , max_length=_lowercase , truncation=_lowercase , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE__ : int = uncond_embeddings.shape[1] SCREAMING_SNAKE_CASE__ : List[Any] = uncond_embeddings.repeat(_lowercase , _lowercase , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE__ : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. SCREAMING_SNAKE_CASE__ : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) SCREAMING_SNAKE_CASE__ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) SCREAMING_SNAKE_CASE__ : Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps SCREAMING_SNAKE_CASE__ : str = torch.randn( _lowercase , generator=_lowercase , device='''cpu''' , dtype=_lowercase ).to(self.device ) SCREAMING_SNAKE_CASE__ : List[str] = torch.randn(_lowercase , generator=_lowercase , device='''cpu''' , dtype=_lowercase ).to( self.device ) else: SCREAMING_SNAKE_CASE__ : str = torch.randn( _lowercase , generator=_lowercase , device=self.device , dtype=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.randn(_lowercase , generator=_lowercase , device=self.device , dtype=_lowercase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = latents_reference.to(self.device ) SCREAMING_SNAKE_CASE__ : List[str] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images SCREAMING_SNAKE_CASE__ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 SCREAMING_SNAKE_CASE__ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx SCREAMING_SNAKE_CASE__ : Optional[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy SCREAMING_SNAKE_CASE__ : str = 0 if dx < 0 else dx SCREAMING_SNAKE_CASE__ : int = 0 if dy < 0 else dy SCREAMING_SNAKE_CASE__ : Any = max(-dx , 0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = max(-dy , 0 ) # import pdb # pdb.set_trace() SCREAMING_SNAKE_CASE__ : List[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE__ : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE__ : Optional[int] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE__ : Any = {} if accepts_eta: SCREAMING_SNAKE_CASE__ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE__ : str = self.scheduler.scale_model_input(_lowercase , _lowercase ) # predict the noise residual SCREAMING_SNAKE_CASE__ : Optional[Any] = self.unet(_lowercase , _lowercase , encoder_hidden_states=_lowercase ).sample # perform guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE__ : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = 1 / 0.18215 * latents SCREAMING_SNAKE_CASE__ : Dict = self.vae.decode(_lowercase ).sample SCREAMING_SNAKE_CASE__ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: SCREAMING_SNAKE_CASE__ : Any = self.feature_extractor(self.numpy_to_pil(_lowercase ) , return_tensors='''pt''' ).to( self.device ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.safety_checker( images=_lowercase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = None if output_type == "pil": SCREAMING_SNAKE_CASE__ : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_lowercase , nsfw_content_detected=_lowercase )
35
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
import sys def a ( A__ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = len(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = [[0 for x in range(A__ )] for x in range(A__ )] SCREAMING_SNAKE_CASE__ : str = [[0 for x in range(A__ )] for x in range(A__ )] for chain_length in range(2 , A__ ): for a in range(1 , n - chain_length + 1 ): SCREAMING_SNAKE_CASE__ : List[str] = a + chain_length - 1 SCREAMING_SNAKE_CASE__ : Any = sys.maxsize for c in range(A__ , A__ ): SCREAMING_SNAKE_CASE__ : Dict = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: SCREAMING_SNAKE_CASE__ : Optional[int] = cost SCREAMING_SNAKE_CASE__ : int = c return matrix, sol def a ( A__ , A__ , A__ ) -> List[str]: '''simple docstring''' if i == j: print('''A''' + str(A__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(A__ , A__ , optimal_solution[i][j] ) print_optiomal_solution(A__ , optimal_solution[i][j] + 1 , A__ ) print(''')''' , end=''' ''' ) def a ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] SCREAMING_SNAKE_CASE__ : List[str] = len(A__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = matrix_chain_order(A__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(A__ , 1 , n - 1 ) if __name__ == "__main__": main()
35
def a ( A__ ) -> str: '''simple docstring''' return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def a ( A__ ) -> bytes: '''simple docstring''' if (len(A__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ :Any = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = ['''input_features'''] def __init__( self : List[Any] , _lowercase : Tuple=80 , _lowercase : Optional[Any]=1_60_00 , _lowercase : int=1_60 , _lowercase : Dict=30 , _lowercase : str=4_00 , _lowercase : Tuple=0.0 , _lowercase : Dict=False , **_lowercase : Tuple , ): super().__init__( feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_fft SCREAMING_SNAKE_CASE__ : Optional[int] = hop_length SCREAMING_SNAKE_CASE__ : Optional[Any] = chunk_length SCREAMING_SNAKE_CASE__ : Union[str, Any] = chunk_length * sampling_rate SCREAMING_SNAKE_CASE__ : List[Any] = self.n_samples // hop_length SCREAMING_SNAKE_CASE__ : int = sampling_rate SCREAMING_SNAKE_CASE__ : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_lowercase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_lowercase , norm='''slaney''' , mel_scale='''slaney''' , ) def lowercase__ ( self : int , _lowercase : np.array ): SCREAMING_SNAKE_CASE__ : Tuple = spectrogram( _lowercase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) SCREAMING_SNAKE_CASE__ : Optional[int] = log_spec[:, :-1] SCREAMING_SNAKE_CASE__ : Any = np.maximum(_lowercase , log_spec.max() - 8.0 ) SCREAMING_SNAKE_CASE__ : List[Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase__ ( _lowercase : List[np.ndarray] , _lowercase : List[np.ndarray] , _lowercase : float = 0.0 ): if attention_mask is not None: SCREAMING_SNAKE_CASE__ : Any = np.array(_lowercase , np.intaa ) SCREAMING_SNAKE_CASE__ : Tuple = [] for vector, length in zip(_lowercase , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE__ : Tuple = padding_value normed_input_values.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowercase : bool = True , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "max_length" , _lowercase : Optional[int] = None , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , **_lowercase : Union[str, Any] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE__ : Any = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE__ : List[Any] = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): SCREAMING_SNAKE_CASE__ : str = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ : List[Any] = [np.asarray([raw_speech] ).T] SCREAMING_SNAKE_CASE__ : Any = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding SCREAMING_SNAKE_CASE__ : Any = self.pad( _lowercase , padding=_lowercase , max_length=max_length if max_length else self.n_samples , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: SCREAMING_SNAKE_CASE__ : Dict = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) SCREAMING_SNAKE_CASE__ : Dict = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format SCREAMING_SNAKE_CASE__ : int = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) SCREAMING_SNAKE_CASE__ : int = [self._np_extract_fbank_features(_lowercase ) for waveform in input_features[0]] if isinstance(input_features[0] , _lowercase ): SCREAMING_SNAKE_CASE__ : int = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features] else: SCREAMING_SNAKE_CASE__ : Any = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) SCREAMING_SNAKE_CASE__ : Optional[int] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Dict = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
35
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowercase ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : List[str] = 10 def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Any = [1, 2, 3, 4] SCREAMING_SNAKE_CASE__ : Any = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_lowercase , self.block_size , 0 ) , _lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] SCREAMING_SNAKE_CASE__ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowercase , self.block_size , 0 ) , _lowercase ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] SCREAMING_SNAKE_CASE__ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowercase , self.block_size , 0 ) , _lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Optional[int] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = process_story(_lowercase ) self.assertEqual(_lowercase , [] ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Tuple = '''''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = process_story(_lowercase ) self.assertEqual(_lowercase , [] ) self.assertEqual(_lowercase , [] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = process_story(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = ['''It was the best of times.'''] self.assertEqual(_lowercase , _lowercase ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Any = torch.tensor([1, 2, 3, 4] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_lowercase , 0 ).numpy() , expected.numpy() ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowercase , 23 ).numpy() , expected.numpy() ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) SCREAMING_SNAKE_CASE__ : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowercase , 1 ).numpy() , expected.numpy() ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = 1_01 SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) SCREAMING_SNAKE_CASE__ : int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) SCREAMING_SNAKE_CASE__ : Optional[int] = compute_token_type_ids(_lowercase , _lowercase ) np.testing.assert_array_equal(_lowercase , _lowercase )
35
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a_ :Dict = logging.get_logger(__name__) a_ :str = 'T5Config' def a ( A__ , A__ , A__ ) -> jnp.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.zeros_like(A__ ) SCREAMING_SNAKE_CASE__ : List[Any] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = shifted_input_ids.at[:, 0].set(A__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.where(shifted_input_ids == -1_0_0 , A__ , A__ ) return shifted_input_ids class lowercase ( _UpperCAmelCase ): lowerCamelCase : Any = '''mt5''' lowerCamelCase : List[str] = MTaConfig class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = '''mt5''' lowerCamelCase : Dict = MTaConfig class lowercase ( _UpperCAmelCase ): lowerCamelCase : Tuple = '''mt5''' lowerCamelCase : Optional[int] = MTaConfig
35
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
1
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging a_ :List[str] = logging.get_logger(__name__) class lowercase : lowerCamelCase : Optional[Any] = None @experimental def a ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( A__ , A__ , A__ , A__ , A__ , A__ , A__ ) return _map_with_joblib(A__ , A__ , A__ , A__ , A__ , A__ , A__ ) def a ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = num_proc if num_proc <= len(A__ ) else len(A__ ) SCREAMING_SNAKE_CASE__ : List[str] = [] # We organize the splits ourselve (contiguous splits) for index in range(A__ ): SCREAMING_SNAKE_CASE__ : Dict = len(A__ ) // num_proc SCREAMING_SNAKE_CASE__ : Dict = len(A__ ) % num_proc SCREAMING_SNAKE_CASE__ : Any = div * index + min(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(A__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(A__ )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(A__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = None, None if not disable_tqdm: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = (RLock(),), tqdm.set_lock with Pool(A__ , initargs=A__ , initializer=A__ ) as pool: SCREAMING_SNAKE_CASE__ : List[Any] = pool.map(A__ , A__ ) logger.info(f"""Finished {num_proc} processes""" ) SCREAMING_SNAKE_CASE__ : Any = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(A__ )} objects""" ) return mapped def a ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=A__ ): return joblib.Parallel()( joblib.delayed(A__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a ( A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
35
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
35
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict=7 , _lowercase : List[Any]=3 , _lowercase : str=18 , _lowercase : Optional[int]=30 , _lowercase : List[Any]=4_00 , _lowercase : Any=True , _lowercase : Optional[int]=None , _lowercase : int=True , _lowercase : List[str]=None , _lowercase : int=True , _lowercase : List[str]=[0.5, 0.5, 0.5] , _lowercase : Dict=[0.5, 0.5, 0.5] , _lowercase : Union[str, Any]=False , ): SCREAMING_SNAKE_CASE__ : Optional[int] = size if size is not None else {'''height''': 20, '''width''': 20} SCREAMING_SNAKE_CASE__ : Optional[int] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__ : str = parent SCREAMING_SNAKE_CASE__ : Dict = batch_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = image_size SCREAMING_SNAKE_CASE__ : List[str] = min_resolution SCREAMING_SNAKE_CASE__ : Dict = max_resolution SCREAMING_SNAKE_CASE__ : int = do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE__ : Tuple = crop_size SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : str = image_mean SCREAMING_SNAKE_CASE__ : int = image_std SCREAMING_SNAKE_CASE__ : Optional[int] = do_reduce_labels def lowercase__ ( self : Tuple ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def a ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : str = Image.open(dataset[0]['''file'''] ) SCREAMING_SNAKE_CASE__ : Dict = Image.open(dataset[1]['''file'''] ) return image, map def a ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Any = Image.open(ds[0]['''file'''] ) SCREAMING_SNAKE_CASE__ : Dict = Image.open(ds[1]['''file'''] ) SCREAMING_SNAKE_CASE__ : List[str] = Image.open(ds[2]['''file'''] ) SCREAMING_SNAKE_CASE__ : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = BeitImageProcessor if is_vision_available() else None def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = BeitImageProcessingTester(self ) @property def lowercase__ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowercase , '''size''' ) ) self.assertTrue(hasattr(_lowercase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowercase , '''center_crop''' ) ) self.assertTrue(hasattr(_lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowercase , '''image_std''' ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowercase ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowercase ) def lowercase__ ( self : str ): pass def lowercase__ ( self : int ): # Initialize image_processing SCREAMING_SNAKE_CASE__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : int = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Any = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase__ ( self : Optional[int] ): # Initialize image_processing SCREAMING_SNAKE_CASE__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = [] for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched SCREAMING_SNAKE_CASE__ : str = image_processing(_lowercase , _lowercase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE__ : int = image_processing(_lowercase , _lowercase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = prepare_semantic_batch_inputs() SCREAMING_SNAKE_CASE__ : Any = image_processing(_lowercase , _lowercase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def lowercase__ ( self : int ): # Initialize image_processing SCREAMING_SNAKE_CASE__ : str = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE__ : List[str] = image_processing(_lowercase , _lowercase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(_lowercase , _lowercase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
35
from __future__ import annotations def a ( A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ :Optional[Any] = 'src/diffusers' a_ :str = '.' # This is to make sure the diffusers module imported is the one in the repo. a_ :List[Any] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) a_ :List[str] = spec.loader.load_module() def a ( A__ , A__ ) -> Union[str, Any]: '''simple docstring''' return line.startswith(A__ ) or len(A__ ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , A__ ) is not None def a ( A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = object_name.split('''.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 # First let's find the module where our object lives. SCREAMING_SNAKE_CASE__ : Tuple = parts[i] while i < len(A__ ) and not os.path.isfile(os.path.join(A__ , f"""{module}.py""" ) ): i += 1 if i < len(A__ ): SCREAMING_SNAKE_CASE__ : int = os.path.join(A__ , parts[i] ) if i >= len(A__ ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(A__ , f"""{module}.py""" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : Any = f.readlines() # Now let's find the class / func in the code! SCREAMING_SNAKE_CASE__ : Any = '''''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(A__ ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(A__ ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). SCREAMING_SNAKE_CASE__ : int = line_index while line_index < len(A__ ) and _should_continue(lines[line_index] , A__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE__ : List[str] = lines[start_index:line_index] return "".join(A__ ) a_ :Tuple = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') a_ :Dict = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') a_ :Optional[int] = re.compile(r'<FILL\s+[^>]*>') def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = code.split('''\n''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while idx < len(A__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(A__ ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def a ( A__ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = len(get_indent(A__ ) ) > 0 if has_indent: SCREAMING_SNAKE_CASE__ : Optional[int] = f"""class Bla:\n{code}""" SCREAMING_SNAKE_CASE__ : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = black.format_str(A__ , mode=A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = style_docstrings_in_code(A__ ) return result[len('''class Bla:\n''' ) :] if has_indent else result def a ( A__ , A__=False ) -> Optional[Any]: '''simple docstring''' with open(A__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f.readlines() SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(A__ ): SCREAMING_SNAKE_CASE__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = search.groups() SCREAMING_SNAKE_CASE__ : Any = find_code_in_diffusers(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_indent(A__ ) SCREAMING_SNAKE_CASE__ : Any = line_index + 1 if indent == theoretical_indent else line_index + 2 SCREAMING_SNAKE_CASE__ : Any = theoretical_indent SCREAMING_SNAKE_CASE__ : Any = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. SCREAMING_SNAKE_CASE__ : int = True while line_index < len(A__ ) and should_continue: line_index += 1 if line_index >= len(A__ ): break SCREAMING_SNAKE_CASE__ : List[str] = lines[line_index] SCREAMING_SNAKE_CASE__ : List[str] = _should_continue(A__ , A__ ) and re.search(f"""^{indent}# End copy""" , A__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE__ : Any = lines[start_index:line_index] SCREAMING_SNAKE_CASE__ : Optional[int] = ''''''.join(A__ ) # Remove any nested `Copied from` comments to avoid circular copies SCREAMING_SNAKE_CASE__ : int = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(A__ ) is None] SCREAMING_SNAKE_CASE__ : List[Any] = '''\n'''.join(A__ ) # Before comparing, use the `replace_pattern` on the original code. if len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : int = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) SCREAMING_SNAKE_CASE__ : List[str] = [_re_replace_pattern.search(A__ ) for p in patterns] for pattern in patterns: if pattern is None: continue SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = pattern.groups() SCREAMING_SNAKE_CASE__ : str = re.sub(A__ , A__ , A__ ) if option.strip() == "all-casing": SCREAMING_SNAKE_CASE__ : str = re.sub(obja.lower() , obja.lower() , A__ ) SCREAMING_SNAKE_CASE__ : Tuple = re.sub(obja.upper() , obja.upper() , A__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line SCREAMING_SNAKE_CASE__ : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) SCREAMING_SNAKE_CASE__ : Tuple = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: SCREAMING_SNAKE_CASE__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] SCREAMING_SNAKE_CASE__ : List[str] = start_index + 1 if overwrite and len(A__ ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(A__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A__ ) return diffs def a ( A__ = False ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = glob.glob(os.path.join(A__ , '''**/*.py''' ) , recursive=A__ ) SCREAMING_SNAKE_CASE__ : Tuple = [] for filename in all_files: SCREAMING_SNAKE_CASE__ : Optional[Any] = is_copy_consistent(A__ , A__ ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : Dict = '''\n'''.join(A__ ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": a_ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a_ :List[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
35
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup a_ :Optional[int] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def a ( A__ ) -> Union[str, Any]: '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') a_ :Dict = parser.parse_args() if args.check_lib: a_ :List[Any] = importlib.import_module('transformers') a_ :List[str] = Path(transformers_module.__file__).parent else: a_ :Union[str, Any] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
35
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters a_ :Dict = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__=None , A__=None ) -> Dict: '''simple docstring''' if "." in tensor_name: SCREAMING_SNAKE_CASE__ : str = tensor_name.split('''.''' ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = getattr(A__ , A__ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) SCREAMING_SNAKE_CASE__ : List[str] = new_module SCREAMING_SNAKE_CASE__ : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) SCREAMING_SNAKE_CASE__ : Dict = tensor_name in module._buffers SCREAMING_SNAKE_CASE__ : Dict = getattr(A__ , A__ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : List[str] = False if is_buffer or not is_bitsandbytes_available(): SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : List[Any] = False else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) SCREAMING_SNAKE_CASE__ : Any = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: SCREAMING_SNAKE_CASE__ : str = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: SCREAMING_SNAKE_CASE__ : Dict = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): SCREAMING_SNAKE_CASE__ : int = value.to('''cpu''' ) if value.dtype == torch.inta: SCREAMING_SNAKE_CASE__ : Optional[int] = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(A__ , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , A__ ) and fpaa_statistics is None: SCREAMING_SNAKE_CASE__ : Optional[int] = new_value.T SCREAMING_SNAKE_CASE__ : int = old_value.__dict__ if is_abit: SCREAMING_SNAKE_CASE__ : int = bnb.nn.IntaParams(A__ , requires_grad=A__ , **A__ ).to(A__ ) elif is_abit: SCREAMING_SNAKE_CASE__ : Optional[int] = bnb.nn.Paramsabit(A__ , requires_grad=A__ , **A__ ).to(A__ ) SCREAMING_SNAKE_CASE__ : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(A__ ) ) else: if value is None: SCREAMING_SNAKE_CASE__ : Tuple = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): SCREAMING_SNAKE_CASE__ : Tuple = value.to(A__ ) else: SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor(A__ , device=A__ ) if is_buffer: SCREAMING_SNAKE_CASE__ : Dict = new_value else: SCREAMING_SNAKE_CASE__ : int = nn.Parameter(A__ , requires_grad=old_value.requires_grad ) SCREAMING_SNAKE_CASE__ : List[Any] = new_value def a ( A__ , A__=None , A__=None , A__=None , A__=False ) -> Tuple: '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Any = [] current_key_name.append(A__ ) if (isinstance(A__ , nn.Linear ) or isinstance(A__ , A__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(A__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(A__ , A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = module.weight.shape else: SCREAMING_SNAKE_CASE__ : Dict = module.in_features SCREAMING_SNAKE_CASE__ : Union[str, Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": SCREAMING_SNAKE_CASE__ : str = bnb.nn.LinearabitLt( A__ , A__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) SCREAMING_SNAKE_CASE__ : Dict = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: SCREAMING_SNAKE_CASE__ : str = bnb.nn.Linearabit( A__ , A__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) SCREAMING_SNAKE_CASE__ : Optional[int] = True # Store the module class in case we need to transpose the weight later SCREAMING_SNAKE_CASE__ : Optional[Any] = type(A__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(A__ ) if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = _replace_with_bnb_linear( A__ , A__ , A__ , A__ , has_been_replaced=A__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a ( A__ , A__=None , A__=None , A__=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = _replace_with_bnb_linear( A__ , A__ , A__ , A__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def a ( *A__ , **A__ ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , A__ , ) return replace_with_bnb_linear(*A__ , **A__ ) def a ( *A__ , **A__ ) -> Union[str, Any]: '''simple docstring''' warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , A__ , ) return set_module_quantized_tensor_to_device(*A__ , **A__ ) def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = deepcopy(A__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() SCREAMING_SNAKE_CASE__ : Union[str, Any] = find_tied_parameters(A__ ) # For compatibility with Accelerate < 0.18 if isinstance(A__ , A__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : str = sum(A__ , [] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(A__ ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Union[str, Any] = not hasattr(A__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : Tuple = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : int = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : str = set(A__ ) - set(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = list(set(A__ ) ) + list(A__ ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Tuple = ['''.weight''', '''.bias'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace(A__ , '''''' ) filtered_module_names.append(A__ ) return filtered_module_names
35
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def a ( A__ , A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] for part_id in partition_order: SCREAMING_SNAKE_CASE__ : Tuple = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(A__ ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : str = spark.range(1_0_0 ).repartition(1 ) SCREAMING_SNAKE_CASE__ : str = Spark(A__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : str = spark.range(1_0 ).repartition(2 ) SCREAMING_SNAKE_CASE__ : str = [1, 0] SCREAMING_SNAKE_CASE__ : Optional[Any] = _generate_iterable_examples(A__ , A__ ) # Reverse the partitions. SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , A__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : Dict = spark.range(1_0 ).repartition(1 ) SCREAMING_SNAKE_CASE__ : Tuple = SparkExamplesIterable(A__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(A__ ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : Optional[Any] = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: SCREAMING_SNAKE_CASE__ : int = lambda A__ : x.reverse() SCREAMING_SNAKE_CASE__ : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [2, 1, 0] ) SCREAMING_SNAKE_CASE__ : Dict = SparkExamplesIterable(A__ ).shuffle_data_sources(A__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : List[str] = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 SCREAMING_SNAKE_CASE__ : Optional[int] = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE__ : int = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def a ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() SCREAMING_SNAKE_CASE__ : Optional[int] = spark.range(1_0_0 ).repartition(1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = Spark(A__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
35
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowercase ( unittest.TestCase ): def __init__( self : Dict , _lowercase : Optional[int] , _lowercase : List[str]=13 , _lowercase : Dict=7 , _lowercase : Any=True , _lowercase : Union[str, Any]=True , _lowercase : int=True , _lowercase : Union[str, Any]=True , _lowercase : List[str]=99 , _lowercase : Optional[Any]=32 , _lowercase : Optional[Any]=5 , _lowercase : Optional[int]=4 , _lowercase : Optional[int]=37 , _lowercase : Tuple="gelu" , _lowercase : Optional[Any]=0.1 , _lowercase : List[str]=0.1 , _lowercase : Tuple=5_12 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=2 , _lowercase : int=0.02 , _lowercase : Union[str, Any]=4 , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = parent SCREAMING_SNAKE_CASE__ : Dict = batch_size SCREAMING_SNAKE_CASE__ : Tuple = seq_length SCREAMING_SNAKE_CASE__ : str = is_training SCREAMING_SNAKE_CASE__ : Optional[Any] = use_attention_mask SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : str = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Optional[int] = num_choices def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = config_and_inputs SCREAMING_SNAKE_CASE__ : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Any = FlaxAlbertModelTester(self ) @slow def lowercase__ ( self : List[str] ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class_name.from_pretrained('''albert-base-v2''' ) SCREAMING_SNAKE_CASE__ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class lowercase ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) SCREAMING_SNAKE_CASE__ : List[str] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , attention_mask=_lowercase )[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = (1, 11, 7_68) self.assertEqual(output.shape , _lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
35
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = LxmertConfig.from_json_file(A__ ) print(f"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE__ : str = LxmertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A__ , A__ , A__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
35
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a ( ) -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def a ( ) -> str: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def a ( ) -> List[str]: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('''https://huggingface.co''' )
35
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ :Tuple = logging.get_logger(__name__) a_ :int = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = '''yolos''' def __init__( self : Union[str, Any] , _lowercase : List[Any]=7_68 , _lowercase : Dict=12 , _lowercase : Tuple=12 , _lowercase : Tuple=30_72 , _lowercase : Any="gelu" , _lowercase : Optional[int]=0.0 , _lowercase : Tuple=0.0 , _lowercase : str=0.02 , _lowercase : Tuple=1E-12 , _lowercase : str=[5_12, 8_64] , _lowercase : Tuple=16 , _lowercase : Optional[Any]=3 , _lowercase : List[str]=True , _lowercase : Optional[int]=1_00 , _lowercase : Optional[int]=True , _lowercase : Union[str, Any]=False , _lowercase : Optional[int]=1 , _lowercase : Any=5 , _lowercase : Tuple=2 , _lowercase : Optional[int]=5 , _lowercase : List[str]=2 , _lowercase : str=0.1 , **_lowercase : List[str] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = image_size SCREAMING_SNAKE_CASE__ : str = patch_size SCREAMING_SNAKE_CASE__ : str = num_channels SCREAMING_SNAKE_CASE__ : Dict = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[Any] = num_detection_tokens SCREAMING_SNAKE_CASE__ : Tuple = use_mid_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[int] = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[int] = class_cost SCREAMING_SNAKE_CASE__ : Optional[int] = bbox_cost SCREAMING_SNAKE_CASE__ : Union[str, Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[Any] = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : Dict = eos_coefficient class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = version.parse('''1.11''' ) @property def lowercase__ ( self : Union[str, Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Any ): return 1E-4 @property def lowercase__ ( self : Tuple ): return 12
35
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
1
from PIL import Image def a ( A__ , A__ ) -> Image: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(A__ ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 a_ :Tuple = change_contrast(img, 1_70) cont_img.save('image_data/lena_high_contrast.png', format='png')
35
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ :Optional[int] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Dict = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a_ :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def a ( A__ ) -> float: '''simple docstring''' return np.dot(A__ , A__ ) class lowercase : def __init__( self : List[Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): SCREAMING_SNAKE_CASE__ : List[Any] = regularization SCREAMING_SNAKE_CASE__ : int = gamma if kernel == "linear": SCREAMING_SNAKE_CASE__ : Dict = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) SCREAMING_SNAKE_CASE__ : Any = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: SCREAMING_SNAKE_CASE__ : List[str] = f"""Unknown kernel: {kernel}""" raise ValueError(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def lowercase__ ( self : Any , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowercase__ ( self : Any , _lowercase : list[ndarray] , _lowercase : ndarray ): SCREAMING_SNAKE_CASE__ : List[str] = observations SCREAMING_SNAKE_CASE__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((SCREAMING_SNAKE_CASE__) , ) : int = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 ((SCREAMING_SNAKE_CASE__) , ) : int = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = LinearConstraint(_lowercase , 0 , 0 ) SCREAMING_SNAKE_CASE__ : int = Bounds(0 , self.regularization ) SCREAMING_SNAKE_CASE__ : Dict = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x SCREAMING_SNAKE_CASE__ : Dict = l_star # calculating mean offset of separation plane to points SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) SCREAMING_SNAKE_CASE__ : Tuple = s / n def lowercase__ ( self : Tuple , _lowercase : ndarray ): SCREAMING_SNAKE_CASE__ : List[str] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
35
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
35
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class lowercase ( unittest.TestCase ): def lowercase__ ( self : Any ): if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_lowercase , ) assert hasattr(self , '''env''' ) def lowercase__ ( self : Any , _lowercase : List[str] ): # configuration for running training on smdistributed Model Parallel SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''enabled''': True, '''processes_per_host''': 8, } SCREAMING_SNAKE_CASE__ : List[str] = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } SCREAMING_SNAKE_CASE__ : int = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} SCREAMING_SNAKE_CASE__ : Optional[int] = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=_lowercase , instance_type=self.instance_type , debugger_hook_config=_lowercase , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=_lowercase , py_version='''py36''' , ) def lowercase__ ( self : Optional[int] , _lowercase : Union[str, Any] ): TrainingJobAnalytics(_lowercase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self : str , _lowercase : Optional[Any] ): # create estimator SCREAMING_SNAKE_CASE__ : Tuple = self.create_estimator(_lowercase ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE__ : Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE__ : str = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowercase )
35
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
def a ( A__ ) -> str: '''simple docstring''' return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def a ( A__ ) -> bytes: '''simple docstring''' if (len(A__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
from datetime import datetime import matplotlib.pyplot as plt import torch def a ( A__ ) -> List[Any]: '''simple docstring''' for param in module.parameters(): SCREAMING_SNAKE_CASE__ : Optional[int] = False def a ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): SCREAMING_SNAKE_CASE__ : List[str] = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = plt.imshow(A__ ) fig.axes.get_xaxis().set_visible(A__ ) fig.axes.get_yaxis().set_visible(A__ ) plt.show() def a ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = datetime.now() SCREAMING_SNAKE_CASE__ : Optional[int] = current_time.strftime('''%H:%M:%S''' ) return timestamp
35
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ :int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Optional[int] = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ :Optional[int] = logging.get_logger(__name__) a_ :List[Any] = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def a ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE__ : List[Any] = getattr(A__ , A__ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ : str = getattr(A__ , A__ ).shape else: SCREAMING_SNAKE_CASE__ : Dict = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ : Dict = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ : Union[str, Any] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ : Union[str, Any] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ : Dict = value else: SCREAMING_SNAKE_CASE__ : Any = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a ( A__ , A__ , A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : int = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ : List[Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ : Tuple = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE__ : List[str] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE__ : int = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.split(A__ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE__ : Any = mapped_key.replace('''*''' , A__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE__ : int = '''weight_v''' elif "weight" in name: SCREAMING_SNAKE_CASE__ : Any = '''weight''' elif "bias" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''bias''' else: SCREAMING_SNAKE_CASE__ : Dict = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a ( A__ , A__ , A__ , A__ , A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE__ : int = name.split('''.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(items[0] ) SCREAMING_SNAKE_CASE__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A__ ) def a ( A__ , A__ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = SEWConfig() if is_finetuned: SCREAMING_SNAKE_CASE__ : Any = model.wav_encoder.wav_model.cfg else: SCREAMING_SNAKE_CASE__ : Any = model.cfg SCREAMING_SNAKE_CASE__ : str = fs_config.conv_bias SCREAMING_SNAKE_CASE__ : str = eval(fs_config.conv_feature_layers ) SCREAMING_SNAKE_CASE__ : Optional[int] = [x[0] for x in conv_layers] SCREAMING_SNAKE_CASE__ : int = [x[1] for x in conv_layers] SCREAMING_SNAKE_CASE__ : Tuple = [x[2] for x in conv_layers] SCREAMING_SNAKE_CASE__ : int = '''gelu''' SCREAMING_SNAKE_CASE__ : Any = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.0 SCREAMING_SNAKE_CASE__ : List[Any] = fs_config.activation_fn.name SCREAMING_SNAKE_CASE__ : Any = fs_config.encoder_embed_dim SCREAMING_SNAKE_CASE__ : str = 0.0_2 SCREAMING_SNAKE_CASE__ : Any = fs_config.encoder_ffn_embed_dim SCREAMING_SNAKE_CASE__ : Optional[int] = 1e-5 SCREAMING_SNAKE_CASE__ : str = fs_config.encoder_layerdrop SCREAMING_SNAKE_CASE__ : Union[str, Any] = fs_config.encoder_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = fs_config.conv_pos_groups SCREAMING_SNAKE_CASE__ : List[str] = fs_config.conv_pos SCREAMING_SNAKE_CASE__ : Optional[int] = len(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = fs_config.encoder_layers SCREAMING_SNAKE_CASE__ : str = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: SCREAMING_SNAKE_CASE__ : List[str] = model.cfg SCREAMING_SNAKE_CASE__ : Union[str, Any] = fs_config.final_dropout SCREAMING_SNAKE_CASE__ : str = fs_config.layerdrop SCREAMING_SNAKE_CASE__ : str = fs_config.activation_dropout SCREAMING_SNAKE_CASE__ : List[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 SCREAMING_SNAKE_CASE__ : Optional[int] = fs_config.attention_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] = fs_config.dropout_input SCREAMING_SNAKE_CASE__ : List[str] = fs_config.dropout SCREAMING_SNAKE_CASE__ : Optional[int] = fs_config.mask_channel_length SCREAMING_SNAKE_CASE__ : Tuple = fs_config.mask_channel_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = fs_config.mask_length SCREAMING_SNAKE_CASE__ : List[str] = fs_config.mask_prob SCREAMING_SNAKE_CASE__ : List[Any] = '''Wav2Vec2FeatureExtractor''' SCREAMING_SNAKE_CASE__ : List[Any] = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def a ( A__ , A__ , A__=None , A__=None , A__=True ) -> Dict: '''simple docstring''' if is_finetuned: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = SEWConfig.from_pretrained(A__ ) else: SCREAMING_SNAKE_CASE__ : List[str] = convert_config(model[0] , A__ ) SCREAMING_SNAKE_CASE__ : List[Any] = model[0].eval() SCREAMING_SNAKE_CASE__ : Dict = True if config.feat_extract_norm == '''layer''' else False SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ : List[Any] = Dictionary.load(A__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ : Any = target_dict.pad_index SCREAMING_SNAKE_CASE__ : int = target_dict.bos_index SCREAMING_SNAKE_CASE__ : Optional[int] = target_dict.pad_index SCREAMING_SNAKE_CASE__ : Optional[Any] = target_dict.bos_index SCREAMING_SNAKE_CASE__ : str = target_dict.eos_index SCREAMING_SNAKE_CASE__ : Optional[Any] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ : str = os.path.join(A__ , '''vocab.json''' ) if not os.path.isdir(A__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A__ ) ) return os.makedirs(A__ , exist_ok=A__ ) with open(A__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , A__ ) SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaCTCTokenizer( A__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A__ , ) SCREAMING_SNAKE_CASE__ : int = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) processor.save_pretrained(A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SEWForCTC(A__ ) else: SCREAMING_SNAKE_CASE__ : List[Any] = SEWModel(A__ ) feature_extractor.save_pretrained(A__ ) recursively_load_weights(A__ , A__ , A__ ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": a_ :Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) a_ :Union[str, Any] = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
35
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
1
from math import isclose, sqrt def a ( A__ , A__ , A__ ) -> tuple[float, float, float]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = point_y / 4 / point_x SCREAMING_SNAKE_CASE__ : Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) SCREAMING_SNAKE_CASE__ : List[str] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) SCREAMING_SNAKE_CASE__ : int = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = outgoing_gradient**2 + 4 SCREAMING_SNAKE_CASE__ : Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) SCREAMING_SNAKE_CASE__ : Dict = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 SCREAMING_SNAKE_CASE__ : Optional[int] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) SCREAMING_SNAKE_CASE__ : List[str] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point SCREAMING_SNAKE_CASE__ : List[Any] = x_minus if isclose(A__ , A__ ) else x_plus SCREAMING_SNAKE_CASE__ : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a ( A__ = 1.4 , A__ = -9.6 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : float = first_x_coord SCREAMING_SNAKE_CASE__ : float = first_y_coord SCREAMING_SNAKE_CASE__ : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = next_point(A__ , A__ , A__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
35
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
35
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ :Optional[Any] = logging.get_logger(__name__) a_ :str = torch.device('cpu') def a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ) return im def a ( A__ ) -> List[str]: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def a ( A__ , A__ , A__ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = dct.pop(A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = val def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = [] for k in state_dict.keys(): SCREAMING_SNAKE_CASE__ : str = k if ".pwconv" in k: SCREAMING_SNAKE_CASE__ : str = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: SCREAMING_SNAKE_CASE__ : Optional[int] = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: SCREAMING_SNAKE_CASE__ : Tuple = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: SCREAMING_SNAKE_CASE__ : int = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: SCREAMING_SNAKE_CASE__ : Dict = k_new.split('''.''' ) if ls[2].isdigit(): SCREAMING_SNAKE_CASE__ : Optional[int] = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: SCREAMING_SNAKE_CASE__ : str = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def a ( A__ , A__ , A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE__ : Tuple = 1_0_0_0 SCREAMING_SNAKE_CASE__ : Optional[Any] = '''huggingface/label-files''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE__ : Any = json.load(open(hf_hub_download(A__ , A__ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : List[str] = idalabel SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": SCREAMING_SNAKE_CASE__ : Union[str, Any] = [3, 3, 6, 4] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": SCREAMING_SNAKE_CASE__ : Tuple = [3, 3, 9, 6] SCREAMING_SNAKE_CASE__ : List[str] = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": SCREAMING_SNAKE_CASE__ : Any = [4, 3, 1_0, 5] SCREAMING_SNAKE_CASE__ : int = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": SCREAMING_SNAKE_CASE__ : Optional[Any] = [4, 4, 1_2, 6] SCREAMING_SNAKE_CASE__ : Dict = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): SCREAMING_SNAKE_CASE__ : List[Any] = torch.hub.load_state_dict_from_url(A__ , map_location='''cpu''' , check_hash=A__ ) else: SCREAMING_SNAKE_CASE__ : Tuple = torch.load(A__ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = checkpoint SCREAMING_SNAKE_CASE__ : Dict = create_rename_keys(A__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A__ , A__ , A__ ) # load HuggingFace model SCREAMING_SNAKE_CASE__ : str = SwiftFormerForImageClassification(A__ ).eval() hf_model.load_state_dict(A__ ) # prepare test inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) SCREAMING_SNAKE_CASE__ : str = processor(images=A__ , return_tensors='''pt''' ) # compare outputs from both models SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_expected_output(A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , A__ , atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') a_ :int = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
35
from __future__ import annotations def a ( A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self : int , _lowercase : Any , _lowercase : Union[str, Any]=13 , _lowercase : int=7 , _lowercase : Union[str, Any]=True , _lowercase : Any=True , _lowercase : Optional[Any]=False , _lowercase : Any=True , _lowercase : Optional[int]=99 , _lowercase : Dict=32 , _lowercase : Optional[Any]=5 , _lowercase : List[Any]=4 , _lowercase : List[str]=37 , _lowercase : List[Any]="gelu" , _lowercase : Optional[Any]=0.1 , _lowercase : Optional[Any]=0.1 , _lowercase : Dict=5_12 , _lowercase : Optional[Any]=16 , _lowercase : str=2 , _lowercase : List[str]=0.02 , _lowercase : Optional[int]=3 , _lowercase : str=4 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE__ : Optional[int] = seq_length SCREAMING_SNAKE_CASE__ : Any = is_training SCREAMING_SNAKE_CASE__ : Any = use_input_mask SCREAMING_SNAKE_CASE__ : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : Optional[int] = use_labels SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : str = hidden_act SCREAMING_SNAKE_CASE__ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : str = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = type_vocab_size SCREAMING_SNAKE_CASE__ : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = num_labels SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_choices SCREAMING_SNAKE_CASE__ : Optional[int] = scope def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Tuple ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : str , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Tuple = BioGptModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(_lowercase , attention_mask=_lowercase ) SCREAMING_SNAKE_CASE__ : str = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , _lowercase : int , _lowercase : str , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : int , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Tuple = BioGptForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : str , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : int , *_lowercase : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = BioGptModel(config=_lowercase ) model.to(_lowercase ) model.eval() # create attention mask SCREAMING_SNAKE_CASE__ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self.seq_length // 2 SCREAMING_SNAKE_CASE__ : List[Any] = 0 # first forward pass SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase , attention_mask=_lowercase ).to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor((1,) , _lowercase ).item() + 1 SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = random_other_next_tokens # append to next input_ids and attn_mask SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_lowercase )] , dim=1 , ) # get two different outputs SCREAMING_SNAKE_CASE__ : int = model(_lowercase , attention_mask=_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : Any = model(_lowercase , past_key_values=_lowercase , attention_mask=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def lowercase__ ( self : Optional[Any] , _lowercase : str , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Union[str, Any] , *_lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : List[str] = BioGptModel(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : str = torch.ones(input_ids.shape , dtype=torch.long , device=_lowercase ) # first forward pass SCREAMING_SNAKE_CASE__ : int = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , attention_mask=_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , attention_mask=_lowercase , past_key_values=_lowercase )[ '''last_hidden_state''' ] # select random slice SCREAMING_SNAKE_CASE__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Tuple , *_lowercase : Optional[Any] , _lowercase : Tuple=False ): SCREAMING_SNAKE_CASE__ : Dict = BioGptForCausalLM(_lowercase ) model.to(_lowercase ) if gradient_checkpointing: model.gradient_checkpointing_enable() SCREAMING_SNAKE_CASE__ : Dict = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowercase__ ( self : int , _lowercase : Optional[Any] , *_lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = BioGptModel(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def lowercase__ ( self : int , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : Optional[int] , *_lowercase : Any ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE__ : Optional[int] = BioGptForTokenClassification(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : str = config_and_inputs SCREAMING_SNAKE_CASE__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = (BioGptForCausalLM,) if is_torch_available() else () lowerCamelCase : List[Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : List[Any] = False def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : List[Any] = BioGptModelTester(self ) SCREAMING_SNAKE_CASE__ : List[str] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def lowercase__ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ : int = type self.model_tester.create_and_check_model(*_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_lowercase ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_lowercase , gradient_checkpointing=_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_lowercase ) @slow def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE__ : Any = '''left''' # Define PAD Token = EOS Token = 50256 SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : Optional[int] = model.config.eos_token_id # use different length sentences to test batching SCREAMING_SNAKE_CASE__ : List[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer(_lowercase , return_tensors='''pt''' , padding=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = inputs['''input_ids'''].to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate( input_ids=_lowercase , attention_mask=inputs['''attention_mask'''].to(_lowercase ) , ) SCREAMING_SNAKE_CASE__ : int = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(input_ids=_lowercase ) SCREAMING_SNAKE_CASE__ : str = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = model.generate(input_ids=_lowercase , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ : int = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , [non_padded_sentence, padded_sentence] ) @slow def lowercase__ ( self : int ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[Any] = BioGptModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Dict = 3 SCREAMING_SNAKE_CASE__ : List[Any] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(1 ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Any = BioGptForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[Any] = 3 SCREAMING_SNAKE_CASE__ : Dict = '''multi_label_classification''' SCREAMING_SNAKE_CASE__ : Dict = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(1 ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE__ : Optional[int] = BioGptForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowercase ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE__ : str = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = 4_23_84 SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _lowercase ) SCREAMING_SNAKE_CASE__ : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE__ : List[str] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_lowercase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = model.generate( **_lowercase , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=_lowercase , ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ : str = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_lowercase , _lowercase )
35
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def a ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = input_paths_and_base_extractors[compression_format] if input_path is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A__ ) assert base_extractor.is_extractable(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(A__ , A__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE__ : List[str] = file_path.read_text(encoding='''utf-8''' ) else: SCREAMING_SNAKE_CASE__ : Tuple = output_path.read_text(encoding='''utf-8''' ) SCREAMING_SNAKE_CASE__ : List[str] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def a ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } SCREAMING_SNAKE_CASE__ : int = input_paths[compression_format] if input_path is None: SCREAMING_SNAKE_CASE__ : int = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A__ ) SCREAMING_SNAKE_CASE__ : Any = Extractor.infer_extractor_format(A__ ) assert extractor_format is not None SCREAMING_SNAKE_CASE__ : Any = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(A__ , A__ , A__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE__ : List[Any] = file_path.read_text(encoding='''utf-8''' ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = output_path.read_text(encoding='''utf-8''' ) SCREAMING_SNAKE_CASE__ : List[Any] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def a ( A__ , A__ ) -> str: '''simple docstring''' import tarfile SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_path / '''data_dot_dot''' directory.mkdir() SCREAMING_SNAKE_CASE__ : str = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(A__ , '''w''' ) as f: f.add(A__ , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def a ( A__ ) -> Union[str, Any]: '''simple docstring''' import tarfile SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_path / '''data_sym_link''' directory.mkdir() SCREAMING_SNAKE_CASE__ : Tuple = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=A__ ) with tarfile.TarFile(A__ , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def a ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } SCREAMING_SNAKE_CASE__ : Tuple = insecure_tar_files[insecure_tar_file] SCREAMING_SNAKE_CASE__ : List[Any] = tmp_path / '''extracted''' TarExtractor.extract(A__ , A__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 SCREAMING_SNAKE_CASE__ : Tuple = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(A__ ) assert zipfile.is_zipfile(str(A__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(A__ ) # but we're right
35
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
1
def a ( A__ , A__ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) SCREAMING_SNAKE_CASE__ : Tuple = str(bin(A__ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ : str = str(bin(A__ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ : List[str] = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: a_ :Tuple = None a_ :Optional[Any] = logging.get_logger(__name__) a_ :int = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} a_ :List[Any] = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } a_ :Tuple = { 'camembert-base': 5_12, } a_ :Dict = '▁' class lowercase ( _UpperCAmelCase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any = ['''input_ids''', '''attention_mask'''] lowerCamelCase : Tuple = CamembertTokenizer def __init__( self : int , _lowercase : int=None , _lowercase : List[str]=None , _lowercase : Optional[int]="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Tuple="</s>" , _lowercase : str="<s>" , _lowercase : Tuple="<unk>" , _lowercase : str="<pad>" , _lowercase : Dict="<mask>" , _lowercase : List[str]=["<s>NOTUSED", "</s>NOTUSED"] , **_lowercase : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( _lowercase , tokenizer_file=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_file SCREAMING_SNAKE_CASE__ : Optional[Any] = False if not self.vocab_file else True def lowercase__ ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : Any , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
35
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params a_ :Tuple = getLogger(__name__) a_ :Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def a ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(A__ ).open('''w''' , encoding='''utf-8''' ) SCREAMING_SNAKE_CASE__ : List[Any] = str(A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: SCREAMING_SNAKE_CASE__ : Any = model.half() SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained(A__ ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. SCREAMING_SNAKE_CASE__ : Optional[int] = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = [prefix + text for text in examples_chunk] SCREAMING_SNAKE_CASE__ : Any = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) SCREAMING_SNAKE_CASE__ : str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() SCREAMING_SNAKE_CASE__ : List[Any] = int(time.time() - start_time ) # seconds SCREAMING_SNAKE_CASE__ : Any = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def a ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def a ( A__=True ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_known_args() SCREAMING_SNAKE_CASE__ : List[Any] = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: SCREAMING_SNAKE_CASE__ : str = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) SCREAMING_SNAKE_CASE__ : List[Any] = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores SCREAMING_SNAKE_CASE__ : Optional[Any] = calculate_bleu if '''translation''' in args.task else calculate_rouge SCREAMING_SNAKE_CASE__ : List[str] = [x.rstrip() for x in open(args.save_path ).readlines()] SCREAMING_SNAKE_CASE__ : List[str] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] SCREAMING_SNAKE_CASE__ : dict = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: SCREAMING_SNAKE_CASE__ : Tuple = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
35
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
1