code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def a ( A__ , A__ ) -> int: '''simple docstring''' while b: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = b, a % b return a def a ( A__ , A__ ) -> int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(A__ , a % b ) def a ( ) -> Optional[int]: '''simple docstring''' print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
35
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ :Tuple = logging.get_logger(__name__) a_ :Dict = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ :Dict = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ :Dict = { 'abeja/gpt-neox-japanese-2.7b': 20_48, } def a ( A__ , A__ ) -> str: '''simple docstring''' with open(A__ , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ : str = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ : str = collections.OrderedDict() SCREAMING_SNAKE_CASE__ : str = collections.OrderedDict() SCREAMING_SNAKE_CASE__ : str = collections.OrderedDict() with open(A__ , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ : int = f.readlines() SCREAMING_SNAKE_CASE__ : str = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = b SCREAMING_SNAKE_CASE__ : str = idx for wd in b: SCREAMING_SNAKE_CASE__ : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self : str , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Union[str, Any]="<|endoftext|>" , _lowercase : Optional[int]="<|endoftext|>" , _lowercase : Optional[Any]="<|startoftext|>" , _lowercase : Any="<|endoftext|>" , _lowercase : Optional[int]=False , **_lowercase : Optional[Any] , ): super().__init__( unk_token=_lowercase , pad_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , do_clean_text=_lowercase , **_lowercase , ) if not os.path.isfile(_lowercase ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_lowercase ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) SCREAMING_SNAKE_CASE__ : str = do_clean_text SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_vocab_and_emoji(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowercase__ ( self : Optional[Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def lowercase__ ( self : Optional[int] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowercase__ ( self : List[Any] , _lowercase : Dict ): return self.subword_tokenizer.tokenize(_lowercase , clean=self.do_clean_text ) def lowercase__ ( self : List[str] , _lowercase : List[Any] ): return self.vocab.get(_lowercase , self.vocab.get(self.unk_token ) ) def lowercase__ ( self : str , _lowercase : int ): return self.subword_tokenizer.convert_id_to_token(_lowercase ) def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : Optional[int] = ''''''.join(_lowercase ).strip() return out_string def lowercase__ ( self : Dict , _lowercase : "Conversation" ): SCREAMING_SNAKE_CASE__ : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowercase , add_special_tokens=_lowercase ) + [self.eos_token_id] ) if len(_lowercase ) > self.model_max_length: SCREAMING_SNAKE_CASE__ : List[str] = input_ids[-self.model_max_length :] return input_ids def lowercase__ ( self : str , _lowercase : str , _lowercase : Optional[str] = None ): SCREAMING_SNAKE_CASE__ : List[Any] = 0 if os.path.isdir(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: SCREAMING_SNAKE_CASE__ : Tuple = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) SCREAMING_SNAKE_CASE__ : List[str] = token_index writer.write(''','''.join(_lowercase ) + '''\n''' ) index += 1 with open(_lowercase , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _lowercase ) return vocab_file, emoji_file class lowercase ( _UpperCAmelCase ): def __init__( self : Optional[int] , _lowercase : Optional[int] , _lowercase : int , _lowercase : Dict ): SCREAMING_SNAKE_CASE__ : Any = vocab # same as swe SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE__ : List[str] = emoji SCREAMING_SNAKE_CASE__ : List[str] = np.max([len(_lowercase ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE__ : List[Any] = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) SCREAMING_SNAKE_CASE__ : str = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) SCREAMING_SNAKE_CASE__ : Tuple = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) SCREAMING_SNAKE_CASE__ : List[Any] = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) SCREAMING_SNAKE_CASE__ : List[str] = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' SCREAMING_SNAKE_CASE__ : Any = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : List[str] ): return len(self.ids_to_tokens ) def lowercase__ ( self : Any , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Dict = self.content_repattera.sub('''<URL>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = self.content_repattera.sub('''<EMAIL>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.content_repattera.sub('''<TEL>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self.content_repattera.sub('''<DATE>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.content_repattera.sub('''<DATE>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.content_repattera.sub('''<PRICE>''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE__ : Any = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def lowercase__ ( self : Optional[int] , _lowercase : Tuple , _lowercase : Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ : List[str] = text.replace(''' ''' , '''<SP>''' ) SCREAMING_SNAKE_CASE__ : int = text.replace(''' ''' , '''<SP>''' ) SCREAMING_SNAKE_CASE__ : int = text.replace('''\r\n''' , '''<BR>''' ) SCREAMING_SNAKE_CASE__ : Dict = text.replace('''\n''' , '''<BR>''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text.replace('''\r''' , '''<BR>''' ) SCREAMING_SNAKE_CASE__ : Any = text.replace('''\t''' , '''<TAB>''' ) SCREAMING_SNAKE_CASE__ : List[str] = text.replace('''—''' , '''ー''' ) SCREAMING_SNAKE_CASE__ : Dict = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE__ : Optional[Any] = text.replace(_lowercase , _lowercase ) if clean: SCREAMING_SNAKE_CASE__ : str = self.clean_text(_lowercase ) def check_simbol(_lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = x.encode() if len(_lowercase ) == 1 and len(_lowercase ) == 2: SCREAMING_SNAKE_CASE__ : Any = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f) or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3) or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f) or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2) ): return True return False def checkuae(_lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[int] = x.encode() if len(_lowercase ) == 1 and len(_lowercase ) == 3: SCREAMING_SNAKE_CASE__ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f: return True return False SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = [] while pos < len(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = min(len(_lowercase ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 SCREAMING_SNAKE_CASE__ : Tuple = [] # (token_id, token, pos) for e in range(_lowercase , _lowercase , -1 ): SCREAMING_SNAKE_CASE__ : List[Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_lowercase ) > 2: SCREAMING_SNAKE_CASE__ : int = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_lowercase ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = sorted(_lowercase , key=lambda _lowercase : x[0] )[0] result.append(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = e else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = pos + 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = text[pos:end] if check_simbol(_lowercase ): result.append('''<KIGOU>''' ) elif checkuae(_lowercase ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = end return result def lowercase__ ( self : List[str] , _lowercase : Dict , _lowercase : int="\n" ): SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : int = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_lowercase ) > 0: words.append(bytearray(_lowercase ).decode('''utf-8''' , errors='''replace''' ) ) SCREAMING_SNAKE_CASE__ : List[str] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_lowercase ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_lowercase ) if len(_lowercase ) > 0: words.append(bytearray(_lowercase ).decode('''utf-8''' , errors='''replace''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] = ''''''.join(_lowercase ) return text
35
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
1
from math import sqrt def a ( A__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(A__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( A__ = 1_0_0_0_1 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = 1 while count != nth and number < 3: number += 1 if is_prime(A__ ): count += 1 while count != nth: number += 2 if is_prime(A__ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
35
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Dict = IFPipeline lowerCamelCase : List[str] = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} lowerCamelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : Dict = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase__ ( self : str ): return self._get_dummy_components() def lowercase__ ( self : str , _lowercase : Union[str, Any] , _lowercase : List[Any]=0 ): if str(_lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) SCREAMING_SNAKE_CASE__ : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : List[str] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowercase__ ( self : List[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase__ ( self : Tuple ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase__ ( self : int ): self._test_save_load_local() def lowercase__ ( self : List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase__ ( self : int ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def lowercase__ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ): # if SCREAMING_SNAKE_CASE__ : int = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=_lowercase , tokenizer=_lowercase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_lowercase , _lowercase , _lowercase , _lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE__ : Optional[Any] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Tuple = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_lowercase , _lowercase , _lowercase , _lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE__ : int = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_lowercase , _lowercase , _lowercase , _lowercase ) def lowercase__ ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : str , _lowercase : List[str] ): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(_lowercase , _lowercase ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : str = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(_lowercase , _lowercase ) def lowercase__ ( self : Any , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Any ): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : str = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(_lowercase , _lowercase ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : int = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(_lowercase , _lowercase ) def lowercase__ ( self : Tuple , _lowercase : str , _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : List[str] ): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : Tuple = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(_lowercase , _lowercase ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( ) -> Optional[int]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
35
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
1
from __future__ import annotations def a ( A__ ) -> None: '''simple docstring''' create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def a ( A__ , A__ , A__ , A__ , ) -> None: '''simple docstring''' if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE__ : str = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE__ : Any = False a_ :list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) a_ :list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
35
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
1
import argparse import os import re import packaging.version a_ :int = 'examples/' a_ :Dict = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } a_ :Union[str, Any] = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } a_ :List[str] = 'README.md' def a ( A__ , A__ , A__ ) -> Dict: '''simple docstring''' with open(A__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : Any = f.read() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE__ : Tuple = replace.replace('''VERSION''' , A__ ) SCREAMING_SNAKE_CASE__ : int = re_pattern.sub(A__ , A__ ) with open(A__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A__ ) def a ( A__ ) -> List[Any]: '''simple docstring''' for folder, directories, fnames in os.walk(A__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A__ , A__ ) , A__ , pattern='''examples''' ) def a ( A__ , A__=False ) -> Union[str, Any]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A__ , A__ , A__ ) if not patch: update_version_in_examples(A__ ) def a ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''1. Want to contribute a new model?''' with open(A__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE__ : str = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE__ : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE__ : Any = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A__ ) def a ( ) -> Dict: '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: SCREAMING_SNAKE_CASE__ : Tuple = f.read() SCREAMING_SNAKE_CASE__ : int = REPLACE_PATTERNS['''init'''][0].search(A__ ).groups()[0] return packaging.version.parse(A__ ) def a ( A__=False ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE__ : Dict = default_version.base_version elif patch: SCREAMING_SNAKE_CASE__ : int = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: SCREAMING_SNAKE_CASE__ : List[str] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE__ : Union[str, Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A__ ) == 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = default_version print(f"""Updating version to {version}.""" ) global_version_update(A__ , patch=A__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def a ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = get_version() SCREAMING_SNAKE_CASE__ : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" SCREAMING_SNAKE_CASE__ : List[Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE__ : Any = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A__ ) == 0: SCREAMING_SNAKE_CASE__ : List[str] = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": a_ :Optional[Any] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') a_ :int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
35
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool a_ :Dict = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class lowercase ( _UpperCAmelCase ): lowerCamelCase : str = '''facebook/nllb-200-distilled-600M''' lowerCamelCase : Optional[int] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowerCamelCase : int = '''translator''' lowerCamelCase : List[Any] = AutoTokenizer lowerCamelCase : Dict = AutoModelForSeqaSeqLM lowerCamelCase : Union[str, Any] = LANGUAGE_CODES lowerCamelCase : Optional[int] = ['''text''', '''text''', '''text'''] lowerCamelCase : Union[str, Any] = ['''text'''] def lowercase__ ( self : Any , _lowercase : Any , _lowercase : List[str] , _lowercase : Optional[Any] ): if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) SCREAMING_SNAKE_CASE__ : int = self.lang_to_code[src_lang] SCREAMING_SNAKE_CASE__ : List[str] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _lowercase , return_tensors='''pt''' , src_lang=_lowercase , tgt_lang=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : List[Any] ): return self.model.generate(**_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_lowercase )
35
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
1
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase ( _UpperCAmelCase ): lowerCamelCase : Tuple = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCamelCase : List[str] = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCamelCase : Optional[Any] = '''document_qa''' lowerCamelCase : List[str] = AutoProcessor lowerCamelCase : int = VisionEncoderDecoderModel lowerCamelCase : str = ['''image''', '''text'''] lowerCamelCase : Optional[Any] = ['''text'''] def __init__( self : List[Any] , *_lowercase : str , **_lowercase : Tuple ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : "Image" , _lowercase : str ): SCREAMING_SNAKE_CASE__ : int = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' SCREAMING_SNAKE_CASE__ : Optional[int] = task_prompt.replace('''{user_input}''' , _lowercase ) SCREAMING_SNAKE_CASE__ : int = self.pre_processor.tokenizer( _lowercase , add_special_tokens=_lowercase , return_tensors='''pt''' ).input_ids SCREAMING_SNAKE_CASE__ : Dict = self.pre_processor(_lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowercase__ ( self : Dict , _lowercase : List[Any] ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_lowercase , ).sequences def lowercase__ ( self : Optional[Any] , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = self.pre_processor.batch_decode(_lowercase )[0] SCREAMING_SNAKE_CASE__ : List[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) SCREAMING_SNAKE_CASE__ : List[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.sub(R'''<.*?>''' , '''''' , _lowercase , count=1 ).strip() # remove first task start token SCREAMING_SNAKE_CASE__ : Optional[Any] = self.pre_processor.tokenajson(_lowercase ) return sequence["answer"]
35
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a_ :Optional[int] = {'UserAgent': UserAgent().random} def a ( A__ ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = script.contents[0] SCREAMING_SNAKE_CASE__ : str = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase : def __init__( self : str , _lowercase : Tuple ): SCREAMING_SNAKE_CASE__ : List[str] = f"""https://www.instagram.com/{username}/""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_json() def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Optional[Any] = requests.get(self.url , headers=_lowercase ).text SCREAMING_SNAKE_CASE__ : List[Any] = BeautifulSoup(_lowercase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Dict ): return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self : List[Any] ): return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def lowercase__ ( self : Any ): return self.user_data["username"] @property def lowercase__ ( self : Optional[Any] ): return self.user_data["full_name"] @property def lowercase__ ( self : int ): return self.user_data["biography"] @property def lowercase__ ( self : Optional[Any] ): return self.user_data["business_email"] @property def lowercase__ ( self : Dict ): return self.user_data["external_url"] @property def lowercase__ ( self : List[Any] ): return self.user_data["edge_followed_by"]["count"] @property def lowercase__ ( self : int ): return self.user_data["edge_follow"]["count"] @property def lowercase__ ( self : Optional[int] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase__ ( self : List[str] ): return self.user_data["profile_pic_url_hd"] @property def lowercase__ ( self : Tuple ): return self.user_data["is_verified"] @property def lowercase__ ( self : List[Any] ): return self.user_data["is_private"] def a ( A__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE__ : Tuple = InstagramUser(A__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , A__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a_ :Optional[Any] = InstagramUser('github') print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
35
def a ( A__ ) -> str: '''simple docstring''' return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def a ( A__ ) -> bytes: '''simple docstring''' if (len(A__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( _UpperCAmelCase ): def __init__( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Any ): super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ : List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self : Any , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) SCREAMING_SNAKE_CASE__ : List[str] = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ : str = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ : int = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ : Optional[Any] = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowercase : def __init__( self : Tuple , _lowercase : Union[str, Any] , _lowercase : Any=13 , _lowercase : int=2 , _lowercase : Optional[int]=24 , _lowercase : Any=16 , _lowercase : Optional[Any]=True , _lowercase : Tuple=True , _lowercase : Optional[Any]=32 , _lowercase : Union[str, Any]=5 , _lowercase : int=4 , _lowercase : int=37 , _lowercase : Optional[Any]="gelu" , _lowercase : str=0.1 , _lowercase : List[str]=0.1 , _lowercase : str=10 , _lowercase : List[str]=0.02 , _lowercase : Dict=None , _lowercase : Union[str, Any]=2 , _lowercase : List[str]=2 , ): SCREAMING_SNAKE_CASE__ : List[str] = parent SCREAMING_SNAKE_CASE__ : str = batch_size SCREAMING_SNAKE_CASE__ : str = patch_size SCREAMING_SNAKE_CASE__ : Optional[Any] = max_length SCREAMING_SNAKE_CASE__ : List[str] = num_mel_bins SCREAMING_SNAKE_CASE__ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE__ : Dict = use_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : str = hidden_act SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = scope SCREAMING_SNAKE_CASE__ : int = frequency_stride SCREAMING_SNAKE_CASE__ : int = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE__ : Optional[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE__ : str = (self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE__ : str = frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE__ : Optional[Any] = num_patches + 2 def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_config() return config, input_values, labels def lowercase__ ( self : Union[str, Any] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowercase__ ( self : Tuple , _lowercase : str , _lowercase : int , _lowercase : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ASTModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : int = config_and_inputs SCREAMING_SNAKE_CASE__ : Dict = {'''input_values''': input_values} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Optional[int] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase : Tuple = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) lowerCamelCase : str = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : int = False lowerCamelCase : List[str] = False def lowercase__ ( self : int , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : int , _lowercase : Dict , _lowercase : int ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : int = ASTModelTester(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def lowercase__ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Tuple = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Optional[int] = ['''input_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) @slow def lowercase__ ( self : Dict ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Tuple = ASTModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def a ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = torchaudio.load(A__ ) return audio, sampling_rate @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): @cached_property def lowercase__ ( self : str ): return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : str = self.default_feature_extractor SCREAMING_SNAKE_CASE__ : Dict = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_feature_extractor SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_audio() SCREAMING_SNAKE_CASE__ : Union[str, Any] = audio.squeeze().numpy() SCREAMING_SNAKE_CASE__ : int = feature_extractor(_lowercase , sampling_rate=_lowercase , return_tensors='''pt''' ).to(_lowercase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(**_lowercase ) # verify the logits SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) )
35
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowercase : lowerCamelCase : List[str] lowerCamelCase : Optional[str] = None # Automatically constructed lowerCamelCase : ClassVar[str] = "dict" lowerCamelCase : ClassVar[Any] = None lowerCamelCase : str = field(default='''Translation''' , init=_UpperCAmelCase , repr=_UpperCAmelCase ) def __call__( self : List[Any] ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase__ ( self : int ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class lowercase : lowerCamelCase : Optional[List] = None lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[str] = None # Automatically constructed lowerCamelCase : ClassVar[str] = "dict" lowerCamelCase : ClassVar[Any] = None lowerCamelCase : str = field(default='''TranslationVariableLanguages''' , init=_UpperCAmelCase , repr=_UpperCAmelCase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : int = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def lowercase__ ( self : Any , _lowercase : Dict ): SCREAMING_SNAKE_CASE__ : Tuple = set(self.languages ) if self.languages and set(_lowercase ) - lang_set: raise ValueError( f"""Some languages in example ({', '.join(sorted(set(_lowercase ) - lang_set ) )}) are not in valid set ({', '.join(_lowercase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE__ : Any = [] for lang, text in translation_dict.items(): if isinstance(_lowercase , _lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = zip(*sorted(_lowercase ) ) return {"language": languages, "translation": translations} def lowercase__ ( self : int ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
35
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
1
from collections import namedtuple import requests from lxml import html # type: ignore a_ :Tuple = namedtuple('covid_data', 'cases deaths recovered') def a ( A__ = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(A__ ).content ).xpath(A__ ) ) a_ :str = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
35
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Optional[int] = AltDiffusionPipeline lowerCamelCase : List[Any] = TEXT_TO_IMAGE_PARAMS lowerCamelCase : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : Any = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ : List[str] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) SCREAMING_SNAKE_CASE__ : Dict = CLIPTextModel(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE__ : List[str] = 77 SCREAMING_SNAKE_CASE__ : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : List[Any]=0 ): if str(_lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : Tuple = torch.manual_seed(_lowercase ) else: SCREAMING_SNAKE_CASE__ : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : Optional[Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : str = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ : Optional[Any] = RobertaSeriesModelWithTransformation(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = text_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] = AltDiffusionPipeline(**_lowercase ) SCREAMING_SNAKE_CASE__ : Any = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = '''A photo of an astronaut''' SCREAMING_SNAKE_CASE__ : Optional[Any] = alt_pipe(**_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Any = PNDMScheduler(skip_prk_steps=_lowercase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ : Optional[int] = RobertaSeriesModelWithTransformation(_lowercase ) SCREAMING_SNAKE_CASE__ : str = text_encoder SCREAMING_SNAKE_CASE__ : Any = AltDiffusionPipeline(**_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(_lowercase ) SCREAMING_SNAKE_CASE__ : int = alt_pipe(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = output.images SCREAMING_SNAKE_CASE__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def lowercase__ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ): # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ : Any = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : str = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = alt_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : int = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Tuple = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_lowercase , safety_checker=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = alt_pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='''numpy''' ) SCREAMING_SNAKE_CASE__ : Any = output.images SCREAMING_SNAKE_CASE__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
35
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ :Optional[int] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
from __future__ import annotations def a ( A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowercase ( unittest.TestCase ): def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : str = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : List[str] = { '''do_resize''': True, '''size''': {'''height''': 2_24, '''width''': 2_24}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], '''do_convert_rgb''': True, } SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowercase , _lowercase ) def lowercase__ ( self : int , **_lowercase : List[Any] ): return BertTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : int , **_lowercase : Union[str, Any] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Dict , **_lowercase : str ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Dict = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : List[Any] = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : List[str] = ChineseCLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Dict = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = ChineseCLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowercase ) self.assertIsInstance(processor_fast.tokenizer , _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowercase ) self.assertIsInstance(processor_fast.image_processor , _lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Dict = image_processor(_lowercase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ : Tuple = processor(images=_lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Dict = ChineseCLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE__ : Optional[int] = processor(text=_lowercase ) SCREAMING_SNAKE_CASE__ : int = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : str = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Any = ChineseCLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ : str = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE__ : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Dict = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] = ChineseCLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ : Any = processor.batch_decode(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = ChineseCLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE__ : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Tuple = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
35
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
1
class lowercase : def __init__( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = '''''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] def lowercase__ ( self : str , _lowercase : int , _lowercase : int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: SCREAMING_SNAKE_CASE__ : Optional[int] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.__min_dist_top_down_dp(_lowercase , n - 1 ) SCREAMING_SNAKE_CASE__ : int = self.__min_dist_top_down_dp(m - 1 , _lowercase ) SCREAMING_SNAKE_CASE__ : Any = self.__min_dist_top_down_dp(m - 1 , n - 1 ) SCREAMING_SNAKE_CASE__ : str = 1 + min(_lowercase , _lowercase , _lowercase ) return self.dp[m][n] def lowercase__ ( self : str , _lowercase : str , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Any = worda SCREAMING_SNAKE_CASE__ : str = worda SCREAMING_SNAKE_CASE__ : List[Any] = [[-1 for _ in range(len(_lowercase ) )] for _ in range(len(_lowercase ) )] return self.__min_dist_top_down_dp(len(_lowercase ) - 1 , len(_lowercase ) - 1 ) def lowercase__ ( self : Any , _lowercase : str , _lowercase : str ): SCREAMING_SNAKE_CASE__ : List[Any] = worda SCREAMING_SNAKE_CASE__ : Tuple = worda SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty SCREAMING_SNAKE_CASE__ : Union[str, Any] = j elif j == 0: # second string is empty SCREAMING_SNAKE_CASE__ : Optional[int] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal SCREAMING_SNAKE_CASE__ : Optional[int] = self.dp[i - 1][j - 1] else: SCREAMING_SNAKE_CASE__ : Optional[int] = self.dp[i][j - 1] SCREAMING_SNAKE_CASE__ : Tuple = self.dp[i - 1][j] SCREAMING_SNAKE_CASE__ : List[Any] = self.dp[i - 1][j - 1] SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 + min(_lowercase , _lowercase , _lowercase ) return self.dp[m][n] if __name__ == "__main__": a_ :Optional[int] = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() a_ :List[Any] = input('Enter the first string: ').strip() a_ :Dict = input('Enter the second string: ').strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
35
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a_ :Tuple = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a_ :List[str] = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def a ( A__ , A__=False ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = create_model( '''HTSAT-tiny''' , '''roberta''' , A__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=A__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def a ( A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : Optional[int] = r'''.*sequential.(\d+).*''' SCREAMING_SNAKE_CASE__ : Any = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE__ : Dict = key.replace(A__ , A__ ) if re.match(A__ , A__ ): # replace sequential layers with list SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.match(A__ , A__ ).group(1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(A__ )//3}.linear.""" ) elif re.match(A__ , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = int(re.match(A__ , A__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE__ : Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE__ : Optional[int] = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE__ : Optional[int] = value SCREAMING_SNAKE_CASE__ : Tuple = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE__ : Optional[int] = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE__ : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE__ : Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE__ : str = query_layer SCREAMING_SNAKE_CASE__ : Dict = key_layer SCREAMING_SNAKE_CASE__ : Union[str, Any] = value_layer else: SCREAMING_SNAKE_CASE__ : List[Any] = value return model_state_dict def a ( A__ , A__ , A__ , A__=False ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = init_clap(A__ , enable_fusion=A__ ) clap_model.eval() SCREAMING_SNAKE_CASE__ : int = clap_model.state_dict() SCREAMING_SNAKE_CASE__ : Optional[Any] = rename_state_dict(A__ ) SCREAMING_SNAKE_CASE__ : str = ClapConfig() SCREAMING_SNAKE_CASE__ : List[Any] = enable_fusion SCREAMING_SNAKE_CASE__ : List[Any] = ClapModel(A__ ) # ignore the spectrogram embedding layer model.load_state_dict(A__ , strict=A__ ) model.save_pretrained(A__ ) transformers_config.save_pretrained(A__ ) if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a_ :Any = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
35
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
1
from math import sqrt def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Tuple = 0 for i in range(1, int(sqrt(snake_case ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case ): total += i + n // i elif i == sqrt(snake_case ): total += i return total - n def __lowercase ( snake_case = 1_0_0_0_0 ): """simple docstring""" __magic_name__ :List[str] = sum( i for i in range(1, snake_case ) if sum_of_divisors(sum_of_divisors(snake_case ) ) == i and sum_of_divisors(snake_case ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __snake_case = logging.getLogger(__name__) __snake_case = 5_0 # max width of layer names __snake_case = 7_0 # max width of quantizer names def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_lowercase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_lowercase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_lowercase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_lowercase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_lowercase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_lowercase , type=_lowercase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_lowercase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _A ( _lowercase ) -> str: """simple docstring""" if args.calibrator == "max": __UpperCamelCase = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) __UpperCamelCase = 'histogram' elif args.calibrator == "mse": __UpperCamelCase = 'histogram' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) __UpperCamelCase = QuantDescriptor(num_bits=args.aprec , calib_method=_lowercase ) __UpperCamelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowercase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowercase ) def _A ( _lowercase , _lowercase , _lowercase=False , _lowercase=False ) -> Tuple: """simple docstring""" logger.info('Configuring Model for Quantization' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowercase , ['embeddings'] , which='weight' , _disabled=_lowercase ) if args.quant_disable: set_quantizer_by_name(_lowercase , [''] , _disabled=_lowercase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowercase , args.quant_disable_keyword , _disabled=_lowercase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowercase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_lowercase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowercase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_lowercase ) if args.recalibrate_weights: recalibrate_weights(_lowercase ) if args.fuse_qkv: fuse_qkv(_lowercase , _lowercase ) if args.clip_gelu: clip_gelu(_lowercase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowercase ) def _A ( _lowercase ) -> Dict: """simple docstring""" logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowercase ) def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" def fusea(_lowercase , _lowercase , _lowercase ): for mod in [qq, qk, qv]: if not hasattr(_lowercase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return __UpperCamelCase = qq._amax.detach().item() __UpperCamelCase = qk._amax.detach().item() __UpperCamelCase = qv._amax.detach().item() __UpperCamelCase = max(_lowercase , _lowercase , _lowercase ) qq._amax.fill_(_lowercase ) qk._amax.fill_(_lowercase ) qv._amax.fill_(_lowercase ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): __UpperCamelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowercase ) __UpperCamelCase = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _A ( _lowercase ) -> Any: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowercase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: __UpperCamelCase = mod.weight.shape[0] __UpperCamelCase = mod._weight_quantizer._amax.detach() __UpperCamelCase = torch.ones(_lowercase , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _A ( _lowercase ) -> str: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowercase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __UpperCamelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __UpperCamelCase = set(range(len(mod.weight.size() ) ) ) - axis_set __UpperCamelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowercase , keepdims=_lowercase ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) __UpperCamelCase = amax def _A ( _lowercase , _lowercase=25 , _lowercase=1_80 , _lowercase=None ) -> Dict: """simple docstring""" if ignore is None: __UpperCamelCase = [] elif not isinstance(_lowercase , _lowercase ): __UpperCamelCase = [ignore] __UpperCamelCase = 0 for name, mod in model.named_modules(): if not hasattr(_lowercase , 'weight' ): continue __UpperCamelCase = max(_lowercase , len(_lowercase ) ) for name, mod in model.named_modules(): __UpperCamelCase = getattr(_lowercase , '_input_quantizer' , _lowercase ) __UpperCamelCase = getattr(_lowercase , '_weight_quantizer' , _lowercase ) if not hasattr(_lowercase , 'weight' ): continue if type(_lowercase ) in ignore: continue if [True for s in ignore if type(_lowercase ) is str and s in name]: continue __UpperCamelCase = f'''Act:{input_q.extra_repr()}''' __UpperCamelCase = f'''Wgt:{weight_q.extra_repr()}''' __UpperCamelCase = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(_lowercase ) <= line_width: logger.info(_lowercase ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{' ':{name_width}} {wgt_str}''' ) def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = 0 for name, mod in model.named_modules(): if isinstance(_lowercase , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = getattr(_lowercase , _lowercase , _lowercase ) if quantizer_mod is not None: assert hasattr(_lowercase , _lowercase ) setattr(_lowercase , _lowercase , _lowercase ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _A ( _lowercase , _lowercase , _lowercase="both" , **_lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_lowercase , _lowercase , '_input_quantizer' , _lowercase , _lowercase ) if which in ["weight", "both"]: set_quantizer(_lowercase , _lowercase , '_weight_quantizer' , _lowercase , _lowercase ) logger.info(_lowercase ) def _A ( _lowercase , _lowercase , **_lowercase ) -> str: """simple docstring""" for name, mod in model.named_modules(): if hasattr(_lowercase , '_input_quantizer' ) or hasattr(_lowercase , '_weight_quantizer' ): for n in names: if re.search(_lowercase , _lowercase ): set_quantizers(_lowercase , _lowercase , **_lowercase ) elif name.endswith('_quantizer' ): for n in names: if re.search(_lowercase , _lowercase ): __UpperCamelCase = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(_lowercase , _lowercase , _lowercase ) logger.info(_lowercase )
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
0
import datasets UpperCAmelCase_ = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ UpperCAmelCase_ = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ UpperCAmelCase_ = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def SCREAMING_SNAKE_CASE_ ( _snake_case :int , _snake_case :List[Any] ) -> List[str]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): """simple docstring""" def snake_case_ ( self : Union[str, Any] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def snake_case_ ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> Optional[int]: return {"accuracy": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )}
2
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): return int((input_a, input_a).count(1 ) != 0 ) def _SCREAMING_SNAKE_CASE (): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
4
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
0
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
0
from pathlib import Path import fire def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE__ = [x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE__ = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open("""w""" ).write("""\n""".join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
6
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Tuple ): _A = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase_ ( self : Tuple ): with self.assertRaises(_UpperCAmelCase ): _A = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def lowerCAmelCase_ ( self : str ): with self.assertRaises(_UpperCAmelCase ): _A = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def lowerCAmelCase_ ( self : str ): _A = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase_ ( self : Union[str, Any] ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _A = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def lowerCAmelCase_ ( self : int ): _A = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase_ ( self : List[str] ): _A = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def lowerCAmelCase_ ( self : Optional[int] ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _A = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def lowerCAmelCase_ ( self : Dict ): _A = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def lowerCAmelCase_ ( self : Union[str, Any] ): import PIL.Image _A = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=_UpperCAmelCase ) as mock_cast_to_python_objects: _A = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] , type=Image() ) ) _A , _A = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , _UpperCAmelCase ) self.assertFalse(kwargs['optimize_list_casting'] ) def _snake_case ( _snake_case : Any , _snake_case : int ) -> List[str]: '''simple docstring''' _A = pa.BufferReader(_snake_case ) if isinstance(_snake_case , pa.Buffer ) else pa.memory_map(_snake_case ) _A = pa.ipc.open_stream(_snake_case ) _A = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : Dict ) -> Optional[int]: '''simple docstring''' _A = pa.BufferOutputStream() _A = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case ( ) -> Dict: '''simple docstring''' _A = pa.BufferOutputStream() _A = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=_snake_case , features=_snake_case ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _A = pa.BufferReader(output.getvalue() ) _A = pa.ipc.open_stream(_snake_case ) _A = f.read_all() _A = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_snake_case ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def _snake_case ( _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _A = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case , writer_batch_size=_snake_case , hash_salt='split_name' , check_duplicates=_snake_case , ) as writer: with pytest.raises(_snake_case ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) _A , _A = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _snake_case ( _snake_case : str ) -> Dict: '''simple docstring''' _A = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case , writer_batch_size=_snake_case , hash_salt='split_name' , check_duplicates=_snake_case , ) as writer: with pytest.raises(_snake_case ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) _A , _A = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def _snake_case ( _snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' _A = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case , writer_batch_size=_snake_case , hash_salt='split_name' , check_duplicates=_snake_case , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( _snake_case : int , _snake_case : Tuple ) -> List[Any]: '''simple docstring''' _A = pa.BufferOutputStream() _A = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ) -> Dict: '''simple docstring''' _A = pa.BufferOutputStream() _A = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _A = pa.BufferOutputStream() _A = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _snake_case ( ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = {'col_1': pa.string(), 'col_2': pa.intaa()} _A = os.path.join(_snake_case , 'test.arrow' ) with ArrowWriter(path=_snake_case , schema=pa.schema(_snake_case ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata ) _check_output(_snake_case , 1 ) def _snake_case ( _snake_case : Optional[int] ) -> Tuple: '''simple docstring''' if pa.types.is_list(_snake_case ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _snake_case ( _snake_case : Any , _snake_case : List[Any] ) -> Any: '''simple docstring''' if isinstance(lst[0] , _snake_case ): change_first_primitive_element_in_list(lst[0] , _snake_case ) else: _A = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Optional[int] ) -> Any: '''simple docstring''' _A = pa.array(TypedSequence(_snake_case , optimized_int_type=_snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : Optional[Any] ) -> Optional[int]: '''simple docstring''' _A = pa.array(OptimizedTypedSequence(_snake_case , col=_snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _A = copy.deepcopy(_snake_case ) _A = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_snake_case , _snake_case ) _A = pa.array(OptimizedTypedSequence(_snake_case , col=_snake_case ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] ) -> str: '''simple docstring''' _A = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=_snake_case ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _snake_case ( _snake_case : int ) -> Any: '''simple docstring''' _A = 'mock://dataset-train.arrow' with ArrowWriter(path=_snake_case , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_snake_case ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_snake_case ) def _snake_case ( ) -> Dict: '''simple docstring''' _A = pa.BufferOutputStream() with ParquetWriter(stream=_snake_case ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) _A , _A = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _A = pa.BufferReader(output.getvalue() ) _A = pq.read_table(_snake_case ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def _snake_case ( _snake_case : str , _snake_case : List[str] ) -> Dict: '''simple docstring''' import PIL.Image _A = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_snake_case , format='png' ) _A = pa.BufferOutputStream() with ParquetWriter( stream=_snake_case , features=Features({'image': Image()} ) , embed_local_files=_snake_case ) as writer: writer.write({'image': image_path} ) writer.finalize() _A = pa.BufferReader(output.getvalue() ) _A = pq.read_table(_snake_case ) _A = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , _snake_case ) with open(_snake_case , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _snake_case ( ) -> int: '''simple docstring''' _A = pa.schema([pa.field('col_1' , pa.string() , nullable=_snake_case )] ) _A = pa.BufferOutputStream() with ArrowWriter(stream=_snake_case ) as writer: writer._build_writer(inferred_schema=_snake_case ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
7
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Any ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=_snake_case , ) assert hasattr(self , 'env' ) def _a ( self : Optional[int] , _snake_case : int ): """simple docstring""" A__ = { 'enabled': True, 'processes_per_host': 8, } A__ = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } A__ = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} A__ = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=_snake_case , instance_type=self.instance_type , debugger_hook_config=_snake_case , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=_snake_case , py_version='py36' , ) def _a ( self : List[str] , _snake_case : Optional[Any] ): """simple docstring""" TrainingJobAnalytics(_snake_case ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def _a ( self : Dict , _snake_case : Optional[int] ): """simple docstring""" A__ = self.create_estimator(_snake_case ) # run training estimator.fit() # result dataframe A__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) A__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _snake_case )
9
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "instructblip_vision_model" def __init__( self : str , _A : Dict=1408 , _A : Union[str, Any]=6144 , _A : Union[str, Any]=39 , _A : int=16 , _A : Dict=224 , _A : Dict=14 , _A : Any="gelu" , _A : Dict=1e-6 , _A : List[str]=0.0 , _A : List[str]=1e-10 , _A : List[str]=True , **_A : Dict , ): super().__init__(**_A ) _UpperCamelCase = hidden_size _UpperCamelCase = intermediate_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = patch_size _UpperCamelCase = image_size _UpperCamelCase = initializer_range _UpperCamelCase = attention_dropout _UpperCamelCase = layer_norm_eps _UpperCamelCase = hidden_act _UpperCamelCase = qkv_bias @classmethod def UpperCamelCase_ ( cls : Dict , _A : Union[str, os.PathLike] , **_A : Union[str, Any] ): cls._set_token_in_kwargs(_A ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": _UpperCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "instructblip_qformer" def __init__( self : List[str] , _A : int=3_0522 , _A : Tuple=768 , _A : List[str]=12 , _A : List[Any]=12 , _A : Any=3072 , _A : int="gelu" , _A : Union[str, Any]=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Any=0.02 , _A : Optional[int]=1e-12 , _A : Tuple=0 , _A : Any="absolute" , _A : Dict=2 , _A : Dict=1408 , **_A : Optional[Any] , ): super().__init__(pad_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = cross_attention_frequency _UpperCamelCase = encoder_hidden_size @classmethod def UpperCamelCase_ ( cls : List[str] , _A : Union[str, os.PathLike] , **_A : Tuple ): cls._set_token_in_kwargs(_A ) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(_A , **_A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": _UpperCamelCase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "instructblip" UpperCAmelCase = True def __init__( self : Tuple , _A : List[str]=None , _A : str=None , _A : Optional[int]=None , _A : Any=32 , **_A : Dict ): super().__init__(**_A ) if vision_config is None: _UpperCamelCase = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: _UpperCamelCase = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: _UpperCamelCase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) _UpperCamelCase = InstructBlipVisionConfig(**_A ) _UpperCamelCase = InstructBlipQFormerConfig(**_A ) _UpperCamelCase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' _UpperCamelCase = CONFIG_MAPPING[text_model_type](**_A ) _UpperCamelCase = self.text_config.tie_word_embeddings _UpperCamelCase = self.text_config.is_encoder_decoder _UpperCamelCase = num_query_tokens _UpperCamelCase = self.vision_config.hidden_size _UpperCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCamelCase = 1.0 _UpperCamelCase = 0.02 @classmethod def UpperCamelCase_ ( cls : str , _A : InstructBlipVisionConfig , _A : InstructBlipQFormerConfig , _A : PretrainedConfig , **_A : Tuple , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.vision_config.to_dict() _UpperCamelCase = self.qformer_config.to_dict() _UpperCamelCase = self.text_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
10
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def lowerCAmelCase (__A , __A): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase (__A): """simple docstring""" _a = [] _a = 11 _a = int('''1''' + '''0''' * digit_len) for num in range(__A , __A): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__A , __A): solutions.append(F'''{num}/{den}''') den += 1 num += 1 _a = 10 return solutions def lowerCAmelCase (__A = 2): """simple docstring""" _a = 1.0 for fraction in fraction_list(__A): _a = Fraction(__A) result *= frac.denominator / frac.numerator return int(__A) if __name__ == "__main__": print(solution())
11
def a ( A__ ) -> str: '''simple docstring''' return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def a ( A__ ) -> bytes: '''simple docstring''' if (len(A__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCamelCase ( lowercase_ ) -> List[str]: '''simple docstring''' lowercase__ : Union[str, Any] = filter(lambda lowercase_ : p.requires_grad , model.parameters() ) lowercase__ : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase__ : Dict = logging.getLogger(__name__) def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' if metric == "rouge2": lowercase__ : Union[str, Any] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": lowercase__ : Tuple = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": lowercase__ : Tuple = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": lowercase__ : Any = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' """ function.""" ) lowercase__ : Dict = ModelCheckpoint( dirpath=lowercase_ , filename=lowercase_ , monitor=F'val_{metric}' , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCamelCase ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' return EarlyStopping( monitor=F'val_{metric}' , mode="""min""" if """loss""" in metric else """max""" , patience=lowercase_ , verbose=lowercase_ , ) class _snake_case ( pl.Callback ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = {f'lr_group_{i}': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_) @rank_zero_only def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True): '''simple docstring''' logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****') lowercase__ : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]}) # Log results lowercase__ : Union[str, Any] = Path(pl_module.hparams.output_dir) if type_path == "test": lowercase__ : List[Any] = od / """test_results.txt""" lowercase__ : List[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowercase__ : Tuple = od / f'{type_path}_results/{trainer.global_step:05d}.txt' lowercase__ : Any = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_) with open(SCREAMING_SNAKE_CASE_ , """a+""") as writer: for key in sorted(SCREAMING_SNAKE_CASE_): if key in ["log", "progress_bar", "preds"]: continue lowercase__ : Dict = metrics[key] if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor): lowercase__ : Any = val.item() lowercase__ : Optional[int] = f'{key}: {val:.6f}\n' writer.write(SCREAMING_SNAKE_CASE_) if not save_generations: return if "preds" in metrics: lowercase__ : Dict = """\n""".join(metrics["""preds"""]) generations_file.open("""w+""").write(SCREAMING_SNAKE_CASE_) @rank_zero_only def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' try: lowercase__ : Tuple = pl_module.model.model.num_parameters() except AttributeError: lowercase__ : Optional[Any] = pl_module.model.num_parameters() lowercase__ : List[Any] = count_trainable_parameters(SCREAMING_SNAKE_CASE_) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6}) @rank_zero_only def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """test""") @rank_zero_only def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
12
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A__ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A__ : list[int] = [ord(letter) for letter in string.ascii_lowercase] A__ : set[int] = {ord(char) for char in VALID_CHARS} A__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : tuple[int, ...] ) -> str | None: __lowerCamelCase : str = "" __lowerCamelCase : int __lowerCamelCase : int __lowerCamelCase : int for keychar, cipherchar in zip(cycle(UpperCAmelCase_ ) , UpperCAmelCase_ ): __lowerCamelCase : Union[str, Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCAmelCase_ ) return decoded def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[str]: __lowerCamelCase : list[str] = [] for key in product(UpperCAmelCase_ , repeat=3 ): __lowerCamelCase : int = try_key(UpperCAmelCase_ , UpperCAmelCase_ ) if encoded is not None: possibles.append(UpperCAmelCase_ ) return possibles def UpperCAmelCase__ ( UpperCAmelCase_ : list[str] , UpperCAmelCase_ : str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p059_cipher.txt" ) -> int: __lowerCamelCase : list[int] __lowerCamelCase : list[str] __lowerCamelCase : str __lowerCamelCase : str __lowerCamelCase : str = Path(UpperCAmelCase_ ).parent.joinpath(UpperCAmelCase_ ).read_text(encoding='utf-8' ) __lowerCamelCase : Tuple = [int(UpperCAmelCase_ ) for number in data.strip().split(',' )] __lowerCamelCase : Union[str, Any] = filter_valid_chars(UpperCAmelCase_ ) for common_word in COMMON_WORDS: __lowerCamelCase : Any = filter_common_word(UpperCAmelCase_ , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 1: break __lowerCamelCase : int = possibles[0] return sum(ord(UpperCAmelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
13
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowercase ( self ) -> Optional[Any]: _a : str = 1 _a : Union[str, Any] = 3 _a : Optional[int] = (3_2, 3_2) _a : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=_a , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def __lowercase ( self ) -> Any: torch.manual_seed(0 ) _a : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) return CLIPTextModel(_a ) def __lowercase ( self ) -> str: _a : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : List[str] = self.dummy_cond_unet_upscale _a : int = DDPMScheduler() _a : int = DDIMScheduler(prediction_type='''v_prediction''' ) _a : List[Any] = self.dummy_vae _a : Tuple = self.dummy_text_encoder _a : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : int = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _a : int = StableDiffusionUpscalePipeline( unet=_a , low_res_scheduler=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , max_noise_level=3_5_0 , ) _a : str = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = '''A painting of a squirrel eating a burger''' _a : Any = torch.Generator(device=_a ).manual_seed(0 ) _a : Dict = sd_pipe( [prompt] , image=_a , generator=_a , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , ) _a : Optional[int] = output.images _a : Optional[int] = torch.Generator(device=_a ).manual_seed(0 ) _a : Tuple = sd_pipe( [prompt] , image=_a , generator=_a , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : List[Any] = image_from_tuple[0, -3:, -3:, -1] _a : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _a : Optional[int] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self ) -> List[Any]: _a : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : Any = self.dummy_cond_unet_upscale _a : Dict = DDPMScheduler() _a : Any = DDIMScheduler(prediction_type='''v_prediction''' ) _a : Optional[int] = self.dummy_vae _a : Tuple = self.dummy_text_encoder _a : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : List[Any] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _a : Any = StableDiffusionUpscalePipeline( unet=_a , low_res_scheduler=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , max_noise_level=3_5_0 , ) _a : Tuple = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _a : Dict = '''A painting of a squirrel eating a burger''' _a : List[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , ) _a : Dict = output.images assert image.shape[0] == 2 _a : Dict = torch.Generator(device=_a ).manual_seed(0 ) _a : int = sd_pipe( [prompt] , image=_a , generator=_a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='''np''' , ) _a : Optional[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __lowercase ( self ) -> Union[str, Any]: _a : Union[str, Any] = self.dummy_cond_unet_upscale _a : List[Any] = DDPMScheduler() _a : Dict = DDIMScheduler(prediction_type='''v_prediction''' ) _a : Dict = self.dummy_vae _a : int = self.dummy_text_encoder _a : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a : Any = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 _a : Dict = unet.half() _a : Tuple = text_encoder.half() # make sure here that pndm scheduler skips prk _a : List[Any] = StableDiffusionUpscalePipeline( unet=_a , low_res_scheduler=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , max_noise_level=3_5_0 , ) _a : Union[str, Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _a : Tuple = '''A painting of a squirrel eating a burger''' _a : str = torch.manual_seed(0 ) _a : List[str] = sd_pipe( [prompt] , image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ).images _a : int = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> int: _a : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) _a : List[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' _a : Dict = StableDiffusionUpscalePipeline.from_pretrained(_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _a : Optional[Any] = '''a cat sitting on a park bench''' _a : Dict = torch.manual_seed(0 ) _a : Tuple = pipe( prompt=_a , image=_a , generator=_a , output_type='''np''' , ) _a : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def __lowercase ( self ) -> List[str]: _a : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _a : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) _a : Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' _a : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( _a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _a : Optional[int] = '''a cat sitting on a park bench''' _a : Optional[Any] = torch.manual_seed(0 ) _a : str = pipe( prompt=_a , image=_a , generator=_a , output_type='''np''' , ) _a : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __lowercase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _a : Dict = '''stabilityai/stable-diffusion-x4-upscaler''' _a : str = StableDiffusionUpscalePipeline.from_pretrained( _a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _a : str = '''a cat sitting on a park bench''' _a : Optional[int] = torch.manual_seed(0 ) _a : Optional[Any] = pipe( prompt=_a , image=_a , generator=_a , num_inference_steps=5 , output_type='''np''' , ) _a : str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
14
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
0
import math class A : '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=0 ) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 """simple docstring""" lowercase__ = n lowercase__ = [ [math.inf for j in range(0 , _UpperCAmelCase )] for i in range(0 , _UpperCAmelCase ) ] # adjacency matrix for weight lowercase__ = [ [math.inf for j in range(0 , _UpperCAmelCase )] for i in range(0 , _UpperCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def lowerCamelCase__ (self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" lowercase__ = w def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase__ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> str: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": A : Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
15
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __A : Optional[Any] = get_logger(__name__) def __a ( A__ : Union[str, Any] , A__ : str , A__ : Union[str, Any] , A__ : Optional[Any] , A__ : Optional[int]=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(A__ , A__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Saving model to {output_model_file}" ) torch.save(A__ , A__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{MODEL_NAME}_{model_index}" ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F"Saving model to {ckpt_dir}" ) SCREAMING_SNAKE_CASE = {"model": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def __a ( A__ : Any , A__ : Tuple , A__ : Union[str, Any] , A__ : Any , A__ : List[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE = torch.load(A__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE = torch.load(A__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE = ( os.path.join(A__ , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) SCREAMING_SNAKE_CASE = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) SCREAMING_SNAKE_CASE = state_dict["model"] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(A__ ) def __a ( A__ : List[Any] , A__ : List[str] , A__ : Tuple , A__ : List[str] , A__ : List[Any] , A__ : int=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(A__ , A__ ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __a ( A__ : str , A__ : List[str] , A__ : List[Any] , A__ : List[str] , A__ : str , A__ : Dict=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) SCREAMING_SNAKE_CASE = torch.load(A__ ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: SCREAMING_SNAKE_CASE = ( os.path.join(A__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) SCREAMING_SNAKE_CASE = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) SCREAMING_SNAKE_CASE = optim_state["optimizer"] logger.info(F"Optimizer loaded from {ckpt_dir}" ) SCREAMING_SNAKE_CASE = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
16
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ) -> int: monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""" ,set() ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ) -> List[Any]: class lowerCamelCase_ : def __init__( self : Any , __A : Dict ): __A : int = metric_id class lowerCamelCase_ : _lowercase : int = [MetricMock(_lowercase ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def lowerCAmelCase_ ( self : str ): return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""" ,HfhMock() ) @pytest.mark.parametrize( """func, args""" ,[(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : List[str] ,a__ : str ,a__ : Optional[Any] ,a__ : List[Any] ) -> Optional[Any]: if "tmp_path" in args: __A : List[str] = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(a__ ,match="""https://huggingface.co/docs/evaluate""" ): func(*a__ )
17
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
from __future__ import annotations def a ( A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _snake_case : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A ( _a ): def __init__( self : Any , lowerCAmelCase_ : int = 1_01 ) -> Dict: """simple docstring""" _a = length def __len__( self : Optional[Any] ) -> Any: """simple docstring""" return self.length def __getitem__( self : Tuple , lowerCAmelCase_ : List[Any] ) -> int: """simple docstring""" return i class A : def __call__( self : List[str] , lowerCAmelCase_ : Any ) -> str: """simple docstring""" return {"input_ids": torch.tensor(lowerCAmelCase_ ), "labels": torch.tensor(lowerCAmelCase_ )} class A ( nn.Module ): def __init__( self : Any ) -> Tuple: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. _a = nn.Linear(1_20 , 80 ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=None ) -> int: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class A ( _a ): @require_torch_neuroncore def __lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _a = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _a = self.get_auto_remove_tmp_dir() _a = F'--output_dir {output_dir}'.split() _a = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A ( _a ): @require_torch_multi_gpu def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" _a = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _a = self.get_auto_remove_tmp_dir() _a = F'--output_dir {output_dir}'.split() _a = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _snake_case : List[str] = HfArgumentParser((TrainingArguments,)) _snake_case : Optional[Any] = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: _snake_case : Any = DummyDataset(dataset_length) def snake_case_ (UpperCamelCase : EvalPrediction ): '''simple docstring''' _a = list(range(len(UpperCamelCase ) ) ) _a = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} _snake_case : Optional[Any] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _snake_case : str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case : int = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case : Any = 2 _snake_case : Optional[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case : Optional[int] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case : Optional[Any] = None
22
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = AltDiffusionPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS def _UpperCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) UpperCamelCase_ = 77 UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> Optional[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _UpperCAmelCase ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_UpperCAmelCase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_UpperCAmelCase ) UpperCamelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCamelCase_ = 'A photo of an astronaut' UpperCamelCase_ = alt_pipe(**_UpperCAmelCase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_UpperCAmelCase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_UpperCAmelCase ) UpperCamelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCamelCase_ = alt_pipe(**_UpperCAmelCase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> List[Any]: # make sure here that pndm scheduler skips prk UpperCamelCase_ = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=_UpperCAmelCase ) UpperCamelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = 'A painting of a squirrel eating a burger' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) UpperCamelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = 'A painting of a squirrel eating a burger' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='numpy' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
23
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase (_lowerCamelCase : list[float] , _lowerCamelCase : Dict )-> List[Any]: '''simple docstring''' print(f'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(_lowerCamelCase ): print(f'''{i}\t\t{d}''' ) def _UpperCamelCase (_lowerCamelCase : list[dict[str, int]] , _lowerCamelCase : list[float] , _lowerCamelCase : int )-> Any: '''simple docstring''' for j in range(_lowerCamelCase ): __snake_case , __snake_case , __snake_case = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _UpperCamelCase (_lowerCamelCase : list[dict[str, int]] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int )-> list[float]: '''simple docstring''' __snake_case = [float('''inf''' )] * vertex_count __snake_case = 0.0 for _ in range(vertex_count - 1 ): for j in range(_lowerCamelCase ): __snake_case , __snake_case , __snake_case = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __snake_case = distance[u] + w __snake_case = check_negative_cycle(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Dict = int(input('''Enter number of vertices: ''').strip()) UpperCAmelCase_ : List[str] = int(input('''Enter number of edges: ''').strip()) UpperCAmelCase_ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) UpperCAmelCase_ : Optional[Any] = {'''src''': src, '''dst''': dest, '''weight''': weight} UpperCAmelCase_ : Optional[Any] = int(input('''\nEnter shortest path source:''').strip()) UpperCAmelCase_ : int = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
24
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 a_ = get_tests_dir('fixtures/dummy-config.json') class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0 def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(a , a ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(a ) self.assertIsInstance(a , a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(a ) self.assertIsInstance(a , a ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = AutoConfig.for_model("roberta" ) self.assertIsInstance(a , a ) def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE : List[str] = os.path.join(a , "fake-roberta" ) os.makedirs(a , exist_ok=a ) with open(os.path.join(a , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(a ) self.assertEqual(type(a ) , a ) def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" try: AutoConfig.register("custom" , a ) # Wrong model type will raise an error with self.assertRaises(a ): AutoConfig.register("model" , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoConfig.register("bert" , a ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : Union[str, Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" with self.assertRaisesRegex( a , "bert-base is not a local folder and is not a valid model identifier" ): SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained("bert-base" ) def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" with self.assertRaisesRegex( a , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(a , revision="aaaaaa" ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( a , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def __UpperCamelCase ( self : str ) -> int: """simple docstring""" with self.assertRaises(a ): SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=a ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=a ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(a , trust_remote_code=a ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='new-model' try: AutoConfig.register("new-model" , a ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=a ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=a ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
25
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , ) -> List[str]: """simple docstring""" __snake_case : str = {} if train_file is not None: __snake_case : Any = [train_file] if eval_file is not None: __snake_case : Optional[Any] = [eval_file] if test_file is not None: __snake_case : Optional[int] = [test_file] __snake_case : Union[str, Any] = datasets.load_dataset("""csv""" , data_files=_lowerCamelCase ) __snake_case : Tuple = list(ds[list(files.keys() )[0]].features.keys() ) __snake_case : List[Any] = features_name.pop(_lowerCamelCase ) __snake_case : str = list(set(ds[list(files.keys() )[0]][label_name] ) ) __snake_case : Optional[int] = {label: i for i, label in enumerate(_lowerCamelCase )} __snake_case : Tuple = tokenizer.model_input_names __snake_case : List[Any] = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __snake_case : List[str] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __snake_case : Optional[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __snake_case : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} __snake_case : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __snake_case : Dict = {k: v for k, v in ex.items() if k in input_names} __snake_case : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __snake_case : List[str] = {k: v for k, v in ex.items() if k in input_names} __snake_case : Tuple = labelaid[ex[label_name]] yield (d, label) __snake_case : int = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __snake_case : List[str] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __snake_case : List[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __snake_case : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __snake_case : Optional[int] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __snake_case : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __UpperCamelCase = logging.getLogger(__name__) @dataclass class _A : lowercase__: int = field(metadata={'''help''': '''Which column contains the label'''} ) lowercase__: str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) lowercase__: Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) lowercase__: Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) lowercase__: int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase__: bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _A : lowercase__: str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase__: Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase__: Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase__: bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase__: Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _a ( ) -> List[str]: """simple docstring""" __snake_case : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __snake_case , __snake_case , __snake_case : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case , __snake_case , __snake_case , __snake_case : List[str] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __snake_case : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __snake_case : int = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase ) -> Dict: __snake_case : List[str] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __snake_case : Tuple = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __snake_case : List[str] = trainer.evaluate() __snake_case : Tuple = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(_lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
26
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
0
from math import pi, sqrt, tan def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) _A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) _A = (sidea + sidea + sidea) / 2 _A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
27
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase_ = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging A_ = logging.get_logger(__name__) class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase=None , **UpperCAmelCase ): warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , UpperCAmelCase , ) super().__init__(args=UpperCAmelCase , **UpperCAmelCase )
29
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
from __future__ import annotations __a = tuple[int, int, int] __a = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- __a = 'EGZWVONAHDCLFQMSIPJBYUKXTR' __a = 'FOBHMDKEXQNRAULPGSJVTYICZW' __a = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- __a = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- __a = 'RMDJXFUWGISLHVTCQNKYPBEZOA' __a = 'SGLCPQWZHKXAREONTFBVIYJUDM' __a = 'HVSICLTYKQUBXDWAJZOMFGPREN' __a = 'RZWQHFMVDBKICJLNTUXAGYPSOE' __a = 'LFKIJODBEGAMQPXVUHYSTCZRWN' __a = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if (unique_rotsel := len(set(_lowercase ) )) < 3: UpperCAmelCase_ : List[str] = f'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_lowercase ) # Checks if rotor positions are valid UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = rotpos if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase_ : Dict = f'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase_ : int = f'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase_ : List[Any] = f'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) # Validates string and returns dict UpperCAmelCase_ : int = _plugboard(_lowercase ) return rotpos, rotsel, pbdict def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Union[str, Any] = f'''Plugboard setting isn\'t type string ({type(_lowercase )})''' raise TypeError(_lowercase ) elif len(_lowercase ) % 2 != 0: UpperCAmelCase_ : Optional[int] = f'''Odd number of symbols ({len(_lowercase )})''' raise Exception(_lowercase ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique UpperCAmelCase_ : List[Any] = set() for i in pbstring: if i not in abc: UpperCAmelCase_ : Optional[int] = f'''\'{i}\' not in list of symbols''' raise Exception(_lowercase ) elif i in tmppbl: UpperCAmelCase_ : Optional[Any] = f'''Duplicate symbol ({i})''' raise Exception(_lowercase ) else: tmppbl.add(_lowercase ) del tmppbl # Created the dictionary UpperCAmelCase_ : List[Any] = {} for j in range(0 , len(_lowercase ) - 1 , 2 ): UpperCAmelCase_ : Any = pbstring[j + 1] UpperCAmelCase_ : int = pbstring[j] return pb def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = (rotora, rotora, rotora) , _lowercase = "" , ): '''simple docstring''' UpperCAmelCase_ : Dict = text.upper() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Tuple = _validator( _lowercase , _lowercase , plugb.upper() ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : int = rotor_position UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 UpperCAmelCase_ : Tuple = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: UpperCAmelCase_ : Dict = plugboard[symbol] # rotor ra -------------------------- UpperCAmelCase_ : Tuple = abc.index(_lowercase ) + rotorposa UpperCAmelCase_ : Union[str, Any] = rotora[index % len(_lowercase )] # rotor rb -------------------------- UpperCAmelCase_ : Optional[int] = abc.index(_lowercase ) + rotorposa UpperCAmelCase_ : Optional[Any] = rotora[index % len(_lowercase )] # rotor rc -------------------------- UpperCAmelCase_ : int = abc.index(_lowercase ) + rotorposa UpperCAmelCase_ : int = rotora[index % len(_lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher UpperCAmelCase_ : Optional[Any] = reflector[symbol] # 2nd rotors UpperCAmelCase_ : int = abc[rotora.index(_lowercase ) - rotorposa] UpperCAmelCase_ : Union[str, Any] = abc[rotora.index(_lowercase ) - rotorposa] UpperCAmelCase_ : List[str] = abc[rotora.index(_lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: UpperCAmelCase_ : Dict = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase_ : Dict = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase_ : List[Any] = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase_ : List[str] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": __a = 'This is my Python script that emulates the Enigma machine from WWII.' __a = (1, 1, 1) __a = 'pictures' __a = (rotora, rotora, rotora) __a = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
30
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
0
from math import isqrt def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCAmelCase ) + 1 ) ) def UpperCAmelCase_ ( __UpperCAmelCase : int = 10**6 ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
31
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) _UpperCAmelCase = torch.permute(SCREAMING_SNAKE_CASE_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE_ ): # linear layer _UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) _UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]: """simple docstring""" if "metadata" in layer: _UpperCAmelCase = layer.split('''metadata''' ) _UpperCAmelCase = ''''''.join(split_layer[0] )[:-1] _UpperCAmelCase = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: _UpperCAmelCase = layer.split('''kvstore''' ) _UpperCAmelCase = ''''''.join(split_layer[0] )[:-1] _UpperCAmelCase = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: _UpperCAmelCase = layer.split('''/''' ) _UpperCAmelCase = '''/'''.join(split_layer[:-1] ) _UpperCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: _UpperCAmelCase = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _UpperCAmelCase = '''file''' else: _UpperCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase = rename_keys(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = {} for k, v in current_block.items(): _UpperCAmelCase = v _UpperCAmelCase = new_current_block torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str = WEIGHTS_NAME ) -> Tuple: """simple docstring""" _UpperCAmelCase = convert_file_size_to_int(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: _UpperCAmelCase = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] _UpperCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ , sep='''/''' ) _UpperCAmelCase = {} for layer in checkpoint_info.keys(): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = get_key_and_tensorstore_dict( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if curr_real_layer_name in all_layers: _UpperCAmelCase = content else: _UpperCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _UpperCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _UpperCAmelCase = torch.tensor(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _UpperCAmelCase , _UpperCAmelCase = rename_base_flax_keys(tuple(key.split('''/''' ) ) , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = '''/'''.join(SCREAMING_SNAKE_CASE_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _UpperCAmelCase = os.path.join( SCREAMING_SNAKE_CASE_ , weights_name.replace('''.bin''' , F'''-{len(SCREAMING_SNAKE_CASE_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) sharded_state_dicts.append(current_block.keys() ) del current_block _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = raw_weights.to(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , weights_name.replace('''.bin''' , F'''-{len(SCREAMING_SNAKE_CASE_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(SCREAMING_SNAKE_CASE_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _UpperCAmelCase = {} _UpperCAmelCase = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = weights_name.replace( '''.bin''' , F'''-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = shard for key in shard: _UpperCAmelCase = shard_file # Add the metadata _UpperCAmelCase = {'''total_size''': total_size} _UpperCAmelCase = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , '''w''' , encoding='''utf-8''' ) as f: _UpperCAmelCase = json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ ) + '''\n''' f.write(SCREAMING_SNAKE_CASE_ ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase_ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A__ ( ) -> Dict: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _UpperCAmelCase = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) _UpperCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) _UpperCAmelCase = TaTokenizer.from_pretrained('''t5-small''' ) _UpperCAmelCase = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' _UpperCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).input_ids _UpperCAmelCase = model.generate(SCREAMING_SNAKE_CASE_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
32
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : str = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
def a ( A__ ) -> str: '''simple docstring''' return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def a ( A__ ) -> bytes: '''simple docstring''' if (len(A__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
"""simple docstring""" import random class snake_case_ : """simple docstring""" @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> tuple[list[int], list[int]]: UpperCamelCase = [ord(lowerCamelCase_) for i in text] UpperCamelCase = [] UpperCamelCase = [] for i in plain: UpperCamelCase = random.randint(1 , 3_0_0) UpperCamelCase = (i + k) * k cipher.append(lowerCamelCase_) key.append(lowerCamelCase_) return cipher, key @staticmethod def UpperCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = [] for i in range(len(lowerCamelCase_)): UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(lowerCamelCase_)) return "".join(lowerCamelCase_) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
34
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = ['''DeiTFeatureExtractor'''] __lowercase : Tuple = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __lowercase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
class A__ : """simple docstring""" def __init__( self : Optional[int] ): a__ : Dict = "" a__ : Optional[Any] = "" a__ : Any = [] def _UpperCamelCase( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: a__ : List[str] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: a__ : Any = self.__min_dist_top_down_dp(lowerCamelCase__ , n - 1 ) a__ : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , lowerCamelCase__ ) a__ : Optional[int] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) a__ : str = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return self.dp[m][n] def _UpperCamelCase( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : str ): a__ : int = worda a__ : List[str] = worda a__ : Tuple = [[-1 for _ in range(len(lowerCamelCase__ ) )] for _ in range(len(lowerCamelCase__ ) )] return self.__min_dist_top_down_dp(len(lowerCamelCase__ ) - 1 , len(lowerCamelCase__ ) - 1 ) def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : str ): a__ : List[Any] = worda a__ : int = worda a__ : int = len(lowerCamelCase__ ) a__ : Optional[Any] = len(lowerCamelCase__ ) a__ : Optional[int] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty a__ : Dict = j elif j == 0: # second string is empty a__ : Tuple = i elif worda[i - 1] == worda[j - 1]: # last characters are equal a__ : Tuple = self.dp[i - 1][j - 1] else: a__ : Tuple = self.dp[i][j - 1] a__ : Optional[Any] = self.dp[i - 1][j] a__ : int = self.dp[i - 1][j - 1] a__ : Optional[int] = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": UpperCamelCase : Optional[Any] = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() UpperCamelCase : int = input("""Enter the first string: """).strip() UpperCamelCase : Dict = input("""Enter the second string: """).strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
37
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Optional[int] = logging.get_logger() # the current default level is logging.WARNING snake_case__ : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = logging.get_verbosity() snake_case__ : Optional[int] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) snake_case__ : str = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(__SCREAMING_SNAKE_CASE ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def __UpperCamelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var snake_case__ : List[Any] = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) snake_case__ : Any = os.getenv("""TRANSFORMERS_VERBOSITY""" , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = logging.log_levels[env_level_str] snake_case__ : str = logging.get_verbosity() self.assertEqual( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level snake_case__ : Union[str, Any] = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def __UpperCamelCase ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() snake_case__ : Tuple = logging.logging.getLogger() with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def __UpperCamelCase ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() snake_case__ : str = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) snake_case__ : Dict = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning_advice(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning_advice(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , msg + """\n""" ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
38
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 1 @register_to_config def __init__( self : Union[str, Any] , _UpperCamelCase : Tuple=2_0_0_0 , _UpperCamelCase : str=0.1 , _UpperCamelCase : Any=2_0 , _UpperCamelCase : Optional[int]=1e-3 ) ->List[Any]: snake_case_ = None snake_case_ = None snake_case_ = None def snake_case__( self : str , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, torch.device] = None ) ->List[Any]: snake_case_ = torch.linspace(1 , self.config.sampling_eps , _UpperCamelCase , device=_UpperCamelCase ) def snake_case__( self : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : int=None ) ->Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case_ = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case_ = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case_ = std.flatten() while len(std.shape ) < len(score.shape ): snake_case_ = std.unsqueeze(-1 ) snake_case_ = -score / std # compute snake_case_ = -1.0 / len(self.timesteps ) snake_case_ = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case_ = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case_ = beta_t.unsqueeze(-1 ) snake_case_ = -0.5 * beta_t * x snake_case_ = torch.sqrt(_UpperCamelCase ) snake_case_ = drift - diffusion**2 * score snake_case_ = x + drift * dt # add noise snake_case_ = randn_tensor(x.shape , layout=x.layout , generator=_UpperCamelCase , device=x.device , dtype=x.dtype ) snake_case_ = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : int ) ->Union[str, Any]: return self.config.num_train_timesteps
39
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
0
__UpperCAmelCase = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
40
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCAmelCase__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' lowerCAmelCase__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' lowerCAmelCase__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _A ( A__ , A__ ): """simple docstring""" return float((preds == labels).mean() ) def _A ( A__ , A__ , A__="binary" ): """simple docstring""" __lowercase = simple_accuracy(A__ , A__ ) __lowercase = float(fa_score(y_true=A__ , y_pred=A__ , average=A__ ) ) return { "accuracy": acc, "f1": fa, } def _A ( A__ , A__ ): """simple docstring""" __lowercase = {} for id_pred, label in zip(A__ , A__ ): __lowercase = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" __lowercase = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __lowercase = [(pred, label)] __lowercase , __lowercase = [], [] for question, preds_labels in question_map.items(): __lowercase , __lowercase = zip(*A__ ) __lowercase = fa_score(y_true=A__ , y_pred=A__ , average='''macro''' ) fas.append(A__ ) __lowercase = int(sum(pred == label for pred, label in preds_labels ) == len(A__ ) ) ems.append(A__ ) __lowercase = float(sum(A__ ) / len(A__ ) ) __lowercase = sum(A__ ) / len(A__ ) __lowercase = float(fa_score(y_true=A__ , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None ,) def SCREAMING_SNAKE_CASE ( self : Tuple ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : Tuple ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowercase__ ,lowercase__ )} elif self.config_name == "cb": return acc_and_fa(lowercase__ ,lowercase__ ,fa_avg='''macro''' ) elif self.config_name == "record": __lowercase = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] __lowercase = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(lowercase__ ,lowercase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowercase__ ,lowercase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowercase__ ,lowercase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
41
from __future__ import annotations def a ( A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: # Construct model if openai_config_file == "": lowerCamelCase_ = OpenAIGPTConfig() else: lowerCamelCase_ = OpenAIGPTConfig.from_json_file(__UpperCamelCase ) lowerCamelCase_ = OpenAIGPTModel(__UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Save pytorch-model lowerCamelCase_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCamelCase_ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() ,__UpperCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) A_ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
42
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''informer''' _lowercase : int = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self: Dict , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "student_t" , UpperCamelCase_: str = "nll" , UpperCamelCase_: int = 1 , UpperCamelCase_: List[int] = None , UpperCamelCase_: Optional[Union[str, bool]] = "mean" , UpperCamelCase_: int = 0 , UpperCamelCase_: int = 0 , UpperCamelCase_: int = 0 , UpperCamelCase_: int = 0 , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: int = 64 , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , UpperCamelCase_: bool = True , UpperCamelCase_: str = "gelu" , UpperCamelCase_: float = 0.05 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: int = 100 , UpperCamelCase_: float = 0.02 , UpperCamelCase_: Tuple=True , UpperCamelCase_: str = "prob" , UpperCamelCase_: int = 5 , UpperCamelCase_: bool = True , **UpperCamelCase_: Optional[int] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = cardinality else: lowercase__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = embedding_dimension else: lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(self.lags_sequence ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache # Informer lowercase__ = attention_type lowercase__ = sampling_factor lowercase__ = distil super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
43
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase__ : @staticmethod def lowerCamelCase_ ( *__A : Optional[Any],**__A : int ): pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.array(_lowerCAmelCase ) _lowerCamelCase : str = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase_ ( self : int,__A : Any,__A : Optional[int],__A : Optional[int] ): _lowerCamelCase : Tuple = MaskGenerationPipeline(model=__A,image_processor=__A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : Union[str, Any] ): pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase_ ( self : str ): pass @slow @require_torch def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = pipeline("mask-generation",model="facebook/sam-vit-huge" ) _lowerCamelCase : Tuple = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg",points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8871} ],) # fmt: on @require_torch @slow def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = "facebook/sam-vit-huge" _lowerCamelCase : Tuple = pipeline("mask-generation",model=__A ) _lowerCamelCase : Union[str, Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg",pred_iou_thresh=1,points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : List[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, ],)
44
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
0
def A ( lowercase__ : int , lowercase__ : int ) -> float: return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") UpperCamelCase = int(input("Enter the base: ").strip()) UpperCamelCase = int(input("Enter the exponent: ").strip()) UpperCamelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents UpperCamelCase = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
45
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A_ ( unittest.TestCase ): def __init__( self: Any ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Union[str, Any]=7 ,__lowerCAmelCase: Tuple=3 ,__lowerCAmelCase: List[Any]=30 ,__lowerCAmelCase: Any=400 ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: Any=0.9 ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: Tuple=[0.5, 0.5, 0.5] ,__lowerCAmelCase: Union[str, Any]=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCamelCase : List[str] = size if size is not None else {"shortest_edge": 30} _lowerCamelCase : List[Any] = crop_size if crop_size is not None else {"height": 30, "width": 30} _lowerCamelCase : List[str] = parent _lowerCamelCase : int = batch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : Optional[int] = min_resolution _lowerCamelCase : Dict = max_resolution _lowerCamelCase : Dict = do_resize_and_center_crop _lowerCamelCase : int = size _lowerCamelCase : List[str] = crop_pct _lowerCamelCase : Tuple = crop_size _lowerCamelCase : List[str] = do_normalize _lowerCamelCase : str = image_mean _lowerCamelCase : Optional[Any] = image_std def _lowercase ( self: List[str] ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = PoolFormerImageProcessor if is_vision_available() else None def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : str = PoolFormerImageProcessingTester(self ) @property def _lowercase ( self: Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"size" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"crop_pct" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_normalize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_mean" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_std" ) ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) _lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,Image.Image ) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched _lowerCamelCase : List[Any] = image_processing(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCAmelCase ,numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,np.ndarray ) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched _lowerCamelCase : Tuple = image_processing(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCAmelCase ,torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,torch.Tensor ) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched _lowerCamelCase : Optional[Any] = image_processing(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
46
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
0
from collections.abc import Generator def UpperCAmelCase__ ( ): __a , __a : Tuple = 0, 1 while True: __a , __a : Dict = b, a + b yield b def UpperCAmelCase__ ( lowerCamelCase_ : int = 1_0_0_0 ): __a : str = 1 __a : Dict = fibonacci_generator() while len(str(next(lowerCamelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
0
'''simple docstring''' # Imports import numpy as np class A : def __init__( self : Optional[int] , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , __magic_name__ : Any=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[Any]=None ): """simple docstring""" self.set_matricies(red=__magic_name__ , green=__magic_name__ , blue=__magic_name__ , red_edge=__magic_name__ , nir=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Dict=None , __magic_name__ : Dict=None ): """simple docstring""" if red is not None: lowerCAmelCase__ = red if green is not None: lowerCAmelCase__ = green if blue is not None: lowerCAmelCase__ = blue if red_edge is not None: lowerCAmelCase__ = red_edge if nir is not None: lowerCAmelCase__ = nir return True def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[Any]="" , __magic_name__ : Any=None , __magic_name__ : List[Any]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None ): """simple docstring""" self.set_matricies(red=__magic_name__ , green=__magic_name__ , blue=__magic_name__ , red_edge=__magic_name__ , nir=__magic_name__ ) lowerCAmelCase__ = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return self.nir * (self.red / (self.green**2)) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : int=0.08 , __magic_name__ : Optional[Any]=1.22 , __magic_name__ : Union[str, Any]=0.03 ): """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return (self.nir / self.green) - 1 def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return (self.nir / self.redEdge) - 1 def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return (self.red - self.blue) / self.red def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.nir - self.green def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Any=0.16 ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Any=0.5 ): """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple=None , __magic_name__ : Union[str, Any]=None ): """simple docstring""" return (self.nir - b) / (a * self.red) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return self.nir / self.red def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return self.green / (self.nir + self.red + self.green) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return self.nir / (self.nir + self.red + self.green) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return self.red / (self.nir + self.red + self.green) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return (self.green - self.red) / (self.green + self.red) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return (self.red - self.green) / (self.red + self.green) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase__ = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return self.nir / self.red def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
48
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : List[Any] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a__ : Union[str, Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowerCamelCase ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowerCamelCase ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __snake_case ( self : Dict ): UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) UpperCAmelCase = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) UpperCAmelCase = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(a__ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) UpperCAmelCase = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=a__ ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=a__ ) self.assertEqual( nested_simplify(a__ ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=a__ ) self.assertEqual( nested_simplify(a__ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=a__ ) self.assertEqual( nested_simplify(a__ ) , [ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] , ) @require_torch def __snake_case ( self : Union[str, Any] ): import torch UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def __snake_case ( self : str ): UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def __snake_case ( self : Any ): UpperCAmelCase = pipeline('''text-classification''' ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) UpperCAmelCase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) UpperCAmelCase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def __snake_case ( self : str ): UpperCAmelCase = pipeline('''text-classification''' , framework='''tf''' ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) UpperCAmelCase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) UpperCAmelCase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def __snake_case ( self : Optional[Any] , a__ : Tuple , a__ : List[Any] , a__ : Any ): UpperCAmelCase = TextClassificationPipeline(model=a__ , tokenizer=a__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __snake_case ( self : Any , a__ : int , a__ : Tuple ): UpperCAmelCase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 UpperCAmelCase = '''HuggingFace is in''' UpperCAmelCase = text_classifier(a__ ) self.assertEqual(nested_simplify(a__ ) , [{'''label''': ANY(a__ ), '''score''': ANY(a__ )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) UpperCAmelCase = ['''HuggingFace is in ''', '''Paris is in France'''] UpperCAmelCase = text_classifier(a__ ) self.assertEqual( nested_simplify(a__ ) , [{'''label''': ANY(a__ ), '''score''': ANY(a__ )}, {'''label''': ANY(a__ ), '''score''': ANY(a__ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format UpperCAmelCase = text_classifier(a__ , top_k=a__ ) UpperCAmelCase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(a__ ) , [[{'''label''': ANY(a__ ), '''score''': ANY(a__ )}] * N, [{'''label''': ANY(a__ ), '''score''': ANY(a__ )}] * N] , ) UpperCAmelCase = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} UpperCAmelCase = text_classifier(a__ ) self.assertEqual( nested_simplify(a__ ) , {'''label''': ANY(a__ ), '''score''': ANY(a__ )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. UpperCAmelCase = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(a__ ): text_classifier(a__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility UpperCAmelCase = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(a__ ) , [{'''label''': ANY(a__ ), '''score''': ANY(a__ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
51
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
0
"""simple docstring""" from __future__ import annotations import time A = list[tuple[int, int]] A = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = pos_x __a : str = pos_y __a : Any = (pos_y, pos_x) __a : Tuple = goal_x __a : Optional[int] = goal_y __a : Union[str, Any] = parent class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , _UpperCAmelCase ) __a : Optional[int] = Node(goal[1] , goal[0] , goal[1] , goal[0] , _UpperCAmelCase ) __a : Tuple = [self.start] __a : Optional[Any] = False def _lowerCamelCase ( self ): while self.node_queue: __a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __a : Any = True return self.retrace_path(_UpperCAmelCase ) __a : Tuple = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def _lowerCamelCase ( self , _UpperCAmelCase ): __a : str = [] for action in delta: __a : Optional[Any] = parent.pos_x + action[1] __a : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , _UpperCAmelCase ) ) return successors def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Optional[Any] = node __a : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a : int = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) __a : str = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) __a : Optional[int] = False def _lowerCamelCase ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __a : Optional[int] = self.fwd_bfs.node_queue.pop(0 ) __a : Dict = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __a : Optional[int] = True return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) __a : Optional[int] = current_bwd_node __a : Optional[Any] = current_fwd_node __a : Any = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = self.fwd_bfs.retrace_path(_UpperCAmelCase ) __a : List[str] = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() __a : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A = (0, 0) A = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A = time.time() A = BreadthFirstSearch(init, goal) A = bfs.search() A = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) A = time.time() A = BidirectionalBreadthFirstSearch(init, goal) A = bd_bfs.search() A = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
52
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _snake_case : Optional[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : Any , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any] ) -> None: warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
53
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowercase : Optional[Any] =logging.get_logger(__name__) __lowercase : str ={ """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class A ( __lowercase ): def __init__( self: Dict , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: str=None , *_lowerCAmelCase: Any , **_lowerCAmelCase: Optional[int] ) -> Tuple: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) if config is None: assert isinstance(self.model , _lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) UpperCAmelCase_ =self.model.config else: UpperCAmelCase_ =config UpperCAmelCase_ =data_args UpperCAmelCase_ =self.config.tgt_vocab_size if isinstance(self.config , _lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' " padding.." ) if self.args.label_smoothing == 0: UpperCAmelCase_ =torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCAmelCase_ =label_smoothed_nll_loss def lowerCAmelCase__ ( self: str , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' if self.optimizer is None: UpperCAmelCase_ =["bias", "LayerNorm.weight"] UpperCAmelCase_ =[ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] UpperCAmelCase_ =Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCAmelCase_ =Adafactor UpperCAmelCase_ ={"scale_parameter": False, "relative_step": False} else: UpperCAmelCase_ =AdamW UpperCAmelCase_ ={ "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } UpperCAmelCase_ =self.args.learning_rate if self.sharded_ddp: UpperCAmelCase_ =OSS( params=_lowerCAmelCase , optim=_lowerCAmelCase , **_lowerCAmelCase , ) else: UpperCAmelCase_ =optimizer_cls(_lowerCAmelCase , **_lowerCAmelCase ) if self.lr_scheduler is None: UpperCAmelCase_ =self._get_lr_scheduler(_lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: int ) -> Any: '''simple docstring''' UpperCAmelCase_ =arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCAmelCase_ =schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCAmelCase_ =schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: UpperCAmelCase_ =schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_lowerCAmelCase ) return scheduler def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[torch.utils.data.Sampler]: '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[int] ) -> str: '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCAmelCase_ =model(**_lowerCAmelCase , use_cache=_lowerCAmelCase )[0] UpperCAmelCase_ =self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models UpperCAmelCase_ , UpperCAmelCase_ =model(**_lowerCAmelCase , labels=_lowerCAmelCase , use_cache=_lowerCAmelCase )[:2] else: # compute label smoothed loss UpperCAmelCase_ =model(**_lowerCAmelCase , use_cache=_lowerCAmelCase )[0] UpperCAmelCase_ =torch.nn.functional.log_softmax(_lowerCAmelCase , dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ =self.loss_fn(_lowerCAmelCase , _lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =inputs.pop("labels" ) UpperCAmelCase_ , UpperCAmelCase_ =self._compute_loss(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return loss def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: nn.Module , _lowerCAmelCase: Dict[str, Union[torch.Tensor, Any]] , _lowerCAmelCase: bool , _lowerCAmelCase: Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: '''simple docstring''' UpperCAmelCase_ =self._prepare_inputs(_lowerCAmelCase ) UpperCAmelCase_ ={ "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCAmelCase_ =self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **_lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ =self._pad_tensors_to_max_len(_lowerCAmelCase , gen_kwargs["max_length"] ) UpperCAmelCase_ =inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data UpperCAmelCase_ , UpperCAmelCase_ =self._compute_loss(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCAmelCase_ =generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ =self._pad_tensors_to_max_len(_lowerCAmelCase , gen_kwargs["max_length"] ) return (loss, logits, labels) def lowerCAmelCase__ ( self: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" F' padded to `max_length`={max_length}' ) UpperCAmelCase_ =pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) UpperCAmelCase_ =tensor return padded_tensor
54
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE :Tuple = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _a (lowercase__ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: """simple docstring""" __snake_case = [] if isinstance(lowercase__ , lowercase__ ): for v in tree.values(): shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def _a (lowercase__ : int , lowercase__ : Tuple[int, ...] ) -> Tuple[int, ...]: """simple docstring""" __snake_case = [] for d in reversed(lowercase__ ): idx.append(flat_idx % d ) __snake_case = flat_idx // d return tuple(reversed(lowercase__ ) ) @torch.jit.ignore def _a (lowercase__ : Sequence[int] , lowercase__ : Sequence[int] , lowercase__ : Sequence[int] , lowercase__ : Optional[Sequence[bool]] = None , lowercase__ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: """simple docstring""" # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowercase__ : List[bool] ) -> None: __snake_case = True for i in range(len(lowercase__ ) ): __snake_case = -1 * (i + 1) l[reversed_idx] &= tally __snake_case = l[reversed_idx] if start_edges is None: __snake_case = [s == 0 for s in start] reduce_edge_list(lowercase__ ) if end_edges is None: __snake_case = [e == (d - 1) for e, d in zip(lowercase__ , lowercase__ )] reduce_edge_list(lowercase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowercase__ ) == 0: return [()] elif len(lowercase__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __snake_case = [] __snake_case = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowercase__ , lowercase__ ): if s == e: path_list.append(slice(lowercase__ , s + 1 ) ) else: break __snake_case = tuple(lowercase__ ) __snake_case = len(lowercase__ ) # start == end, and we're done if divergence_idx == len(lowercase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = start[divergence_idx] return tuple( path + (slice(lowercase__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = end[divergence_idx] return tuple( path + (slice(lowercase__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __snake_case = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _a (lowercase__ : torch.Tensor , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> torch.Tensor: """simple docstring""" __snake_case = t.shape[:no_batch_dims] __snake_case = list(_flat_idx_to_idx(lowercase__ , lowercase__ ) ) # _get_minimal_slice_set is inclusive __snake_case = list(_flat_idx_to_idx(flat_end - 1 , lowercase__ ) ) # Get an ordered list of slices to perform __snake_case = _get_minimal_slice_set( lowercase__ , lowercase__ , lowercase__ , ) __snake_case = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _a (lowercase__ : Callable , lowercase__ : Dict[str, Any] , lowercase__ : int , lowercase__ : int , lowercase__ : bool = False , lowercase__ : Any = None , lowercase__ : bool = False , ) -> Any: """simple docstring""" if not (len(lowercase__ ) > 0): raise ValueError('Must provide at least one input' ) __snake_case = [shape[:no_batch_dims] for shape in _fetch_dims(lowercase__ )] __snake_case = tuple([max(lowercase__ ) for s in zip(*lowercase__ )] ) def _prep_inputs(lowercase__ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __snake_case = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __snake_case = tensor_tree_map(_prep_inputs , lowercase__ ) __snake_case = None if _out is not None: __snake_case = tensor_tree_map(lambda lowercase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __snake_case = 1 for d in orig_batch_dims: flat_batch_dim *= d __snake_case = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase__ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __snake_case = 0 __snake_case = prepped_outputs for _ in range(lowercase__ ): # Chunk the input if not low_mem: __snake_case = _select_chunk else: __snake_case = partial( _chunk_slice , flat_start=lowercase__ , flat_end=min(lowercase__ , i + chunk_size ) , no_batch_dims=len(lowercase__ ) , ) __snake_case = tensor_tree_map(lowercase__ , lowercase__ ) # Run the layer on the chunk __snake_case = layer(**lowercase__ ) # Allocate space for the output if out is None: __snake_case = tensor_tree_map(lambda lowercase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowercase__ ) # Put the chunk in its pre-allocated space if isinstance(lowercase__ , lowercase__ ): def assign(lowercase__ : dict , lowercase__ : dict ) -> None: for k, v in da.items(): if isinstance(lowercase__ , lowercase__ ): assign(lowercase__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __snake_case = da[k] assign(lowercase__ , lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): for xa, xa in zip(lowercase__ , lowercase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __snake_case = xa elif isinstance(lowercase__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __snake_case = output_chunk else: raise ValueError('Not supported' ) i += chunk_size __snake_case = tensor_tree_map(lambda lowercase__ : t.view(orig_batch_dims + t.shape[1:] ) , lowercase__ ) return out class _lowercase : def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 512 , ) -> Union[str, Any]: __snake_case = max_chunk_size __snake_case = None __snake_case = None def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : int ) -> int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __snake_case = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __snake_case = [c for c in candidates if c > min_chunk_size] __snake_case = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(SCREAMING_SNAKE_CASE_ : int ) -> bool: try: with torch.no_grad(): fn(*SCREAMING_SNAKE_CASE_ , chunk_size=SCREAMING_SNAKE_CASE_ ) return True except RuntimeError: return False __snake_case = 0 __snake_case = len(SCREAMING_SNAKE_CASE_ ) - 1 while i > min_viable_chunk_size_index: __snake_case = test_chunk_size(candidates[i] ) if not viable: __snake_case = (min_viable_chunk_size_index + i) // 2 else: __snake_case = i __snake_case = (i + len(SCREAMING_SNAKE_CASE_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def a ( self : Any , SCREAMING_SNAKE_CASE_ : Iterable , SCREAMING_SNAKE_CASE_ : Iterable ) -> bool: __snake_case = True for aa, aa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert type(SCREAMING_SNAKE_CASE_ ) == type(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] __snake_case = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: consistent &= aa == aa return consistent def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : int , ) -> int: __snake_case = True __snake_case = tree_map(lambda SCREAMING_SNAKE_CASE_ : a.shape if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) else a , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(SCREAMING_SNAKE_CASE_ ) __snake_case = self._compare_arg_caches(self.cached_arg_data , SCREAMING_SNAKE_CASE_ ) else: # Otherwise, we can reuse the precomputed value __snake_case = False if not consistent: __snake_case = self._determine_favorable_chunk_size( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
56
def a ( A__ ) -> str: '''simple docstring''' return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def a ( A__ ) -> bytes: '''simple docstring''' if (len(A__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin A_ : List[str] = random.Random() if is_torch_available(): import torch def snake_case (UpperCAmelCase__ , UpperCAmelCase__=1.0 , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any: if rng is None: UpperCamelCase_: str = global_rng UpperCamelCase_: Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=4_0_0 , _lowerCamelCase=2_0_0_0 , _lowerCamelCase=1 , _lowerCamelCase=0.0 , _lowerCamelCase=1_6_0_0_0 , _lowerCamelCase=True , _lowerCamelCase=True , ): UpperCamelCase_: Tuple = parent UpperCamelCase_: int = batch_size UpperCamelCase_: int = min_seq_length UpperCamelCase_: int = max_seq_length UpperCamelCase_: List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_: Dict = feature_size UpperCamelCase_: Optional[Any] = padding_value UpperCamelCase_: List[Any] = sampling_rate UpperCamelCase_: Optional[int] = return_attention_mask UpperCamelCase_: Optional[Any] = do_normalize def _a ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , _lowerCamelCase=False , _lowerCamelCase=False ): def _flatten(_lowerCamelCase ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: UpperCamelCase_: List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase_: str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_: Optional[int] = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =ASTFeatureExtractor def _a ( self ): UpperCamelCase_: List[Any] = ASTFeatureExtractionTester(self ) def _a ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_: Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase_: Optional[Any] = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase_: int = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values UpperCamelCase_: str = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test batched UpperCamelCase_: str = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='np' ).input_values UpperCamelCase_: List[str] = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_: List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCamelCase_: int = np.asarray(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = feat_extract(_lowerCamelCase , return_tensors='np' ).input_values UpperCamelCase_: List[Any] = feat_extract(_lowerCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) @require_torch def _a ( self ): import torch UpperCamelCase_: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_: List[str] = np.random.rand(1_0_0 ).astype(np.floataa ) UpperCamelCase_: int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_: Tuple = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase_: List[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _a ( self , _lowerCamelCase ): from datasets import load_dataset UpperCamelCase_: Optional[Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech UpperCamelCase_: Tuple = ds.sort('id' ).select(range(_lowerCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def _a ( self ): # fmt: off UpperCamelCase_: Optional[int] = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCamelCase_: Any = self._load_datasamples(1 ) UpperCamelCase_: List[Any] = ASTFeatureExtractor() UpperCamelCase_: Optional[int] = feature_extractor(_lowerCamelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _lowerCamelCase , atol=1e-4 ) )
57
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __lowerCAmelCase ( __UpperCamelCase : str = "" ): '''simple docstring''' snake_case_ : Optional[int] = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" snake_case_ : Dict = BeautifulSoup(requests.get(__UpperCamelCase ).text , """html.parser""" ) snake_case_ : str = soup.find_all("""td""" , attrs="""titleColumn""" ) snake_case_ : Union[str, Any] = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__UpperCamelCase , __UpperCamelCase ) } def __lowerCAmelCase ( __UpperCamelCase : str = "IMDb_Top_250_Movies.csv" ): '''simple docstring''' snake_case_ : int = get_imdb_top_aaa_movies() with open(__UpperCamelCase , """w""" , newline="""""" ) as out_file: snake_case_ : str = csv.writer(__UpperCamelCase ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
58
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __A = get_tests_dir("fixtures") class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: str =mock.Mock() lowerCamelCase__: Union[str, Any] =500 lowerCamelCase__: Optional[Any] ={} lowerCamelCase__: Any =HTTPError lowerCamelCase__: Union[str, Any] ={} # Download this model to make sure it's in the cache. lowerCamelCase__: str =ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_) as mock_head: lowerCamelCase__: Dict =ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json") def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' with self.assertRaises(UpperCAmelCase_): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__: int =AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") lowerCamelCase__: Any =AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor") self.assertIsNotNone(UpperCAmelCase_) @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =TOKEN HfFolder.save_token(UpperCAmelCase_) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any]) ->Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-image-processor") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor") except HTTPError: pass def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =ViTImageProcessor.from_pretrained(UpperCAmelCase_) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token) lowerCamelCase__: str =ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase_ , repo_id="test-image-processor" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) lowerCamelCase__: int =ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =ViTImageProcessor.from_pretrained(UpperCAmelCase_) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token) lowerCamelCase__: int =ViTImageProcessor.from_pretrained("valid_org/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-image-processor-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) lowerCamelCase__: Tuple =ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' CustomImageProcessor.register_for_auto_class() lowerCamelCase__: Any =CustomImageProcessor.from_pretrained(UpperCAmelCase_) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) lowerCamelCase__: str =AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=UpperCAmelCase_) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor")
59
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
0
from ....utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): def __init__(self , __magic_name__ , __magic_name__=None , __magic_name__=2048 ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = config.__dict__ snake_case_ : Dict = modal_hidden_size if num_labels: snake_case_ : Optional[Any] = num_labels
60
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str=0.2 , _lowercase : str=0.2 ): SCREAMING_SNAKE_CASE__ : List[Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE__ : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE__ : str = conva_get[2] SCREAMING_SNAKE_CASE__ : Any = size_pa SCREAMING_SNAKE_CASE__ : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE__ : Tuple = rate_t SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE__ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE__ : str = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self : Union[str, Any] , _lowercase : Any ): # save model dict with pickle SCREAMING_SNAKE_CASE__ : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowercase , '''wb''' ) as f: pickle.dump(_lowercase , _lowercase ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls : Dict , _lowercase : int ): # read saved model with open(_lowercase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = pickle.load(_lowercase ) # noqa: S301 SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE__ : Dict = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE__ : Dict = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter SCREAMING_SNAKE_CASE__ : List[str] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE__ : str = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE__ : Any = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE__ : List[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ ( self : str , _lowercase : Optional[int] ): return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ): return round(_lowercase , 3 ) def lowercase__ ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] ): # convolution process SCREAMING_SNAKE_CASE__ : Tuple = convs[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = convs[1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE__ : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(_lowercase ) return focus_list, data_featuremap def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="average_pool" ): # pooling process SCREAMING_SNAKE_CASE__ : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE__ : List[str] = [] for i_map in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE__ : int = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def lowercase__ ( self : Optional[Any] , _lowercase : Optional[Any] ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE__ : Dict = [] for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE__ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_lowercase ) return data_expanded def lowercase__ ( self : Tuple , _lowercase : Optional[int] ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : str = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = 0 for i_map in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Any = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE__ : Dict = i_pool + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def lowercase__ ( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : int=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowercase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowercase )) ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE__ : Any = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : int = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.shape(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Any = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE__ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(_lowercase , self.vji ) SCREAMING_SNAKE_CASE__ : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE__ : List[str] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE__ : Dict = self.rate_weight * np.dot(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE__ : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE__ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE__ : Optional[Any] = rp + 1 SCREAMING_SNAKE_CASE__ : List[str] = error_count / patterns all_mse.append(_lowercase ) def draw_error(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '''+-''' ) plt.plot(_lowercase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self : Union[str, Any] , _lowercase : int ): # model predict SCREAMING_SNAKE_CASE__ : Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Any = self.pooling(_lowercase , self.size_poolinga ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._expand(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = data_bp_input SCREAMING_SNAKE_CASE__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Tuple = self.sig(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE__ : Optional[Any] = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE__ : str = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : Tuple ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE__ : str = np.asmatrix(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
35
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase__ = F'{src_lang}-{tgt_lang}' lowerCAmelCase__ = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , "README.md" ) print(F'Generating {path}' ) with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(lowerCAmelCase_ ) # make sure we are under the root of the project UpperCamelCase = Path(__file__).resolve().parent.parent.parent UpperCamelCase = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase , UpperCamelCase , UpperCamelCase = model_name.split('-') UpperCamelCase = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
61
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=13 , _lowercase : Tuple=16 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : str=False , _lowercase : Union[str, Any]=True , _lowercase : Tuple=2 , _lowercase : Any=32 , _lowercase : int=4 , _lowercase : Dict=4 , _lowercase : Dict=30 , _lowercase : Union[str, Any]=0 , _lowercase : List[str]=1 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=None , ): SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : str = pad_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : int = decoder_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 1 def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : Dict , _lowercase : Any , _lowercase : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) SCREAMING_SNAKE_CASE__ : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and SCREAMING_SNAKE_CASE__ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : List[Any] = model(_lowercase , past_key_values=_lowercase )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase : Dict = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase : Any = True lowerCamelCase : int = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): pass def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def lowercase__ ( self : Optional[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Tuple ): pass
35
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = '''xlm-roberta''' def __init__( self : List[Any] , UpperCAmelCase_ : List[str]=3_0522 , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : int=3072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-12 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[str]="absolute" , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : List[Any] , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : str = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = classifier_dropout class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @property def _A ( self : Tuple ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
62
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a : int = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any]=None ): require_version(deps[pkg] , __lowerCamelCase )
63
from __future__ import annotations def a ( A__ , A__ , A__ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def A__ ( snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Any ): SCREAMING_SNAKE_CASE__: Optional[int]= multiprocessing.Manager() SCREAMING_SNAKE_CASE__: List[str]= manager.list() SCREAMING_SNAKE_CASE__: List[str]= multiprocessing.Process(target=snake_case_ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def A__ ( snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil SCREAMING_SNAKE_CASE__: List[str]= shutil.rmtree SCREAMING_SNAKE_CASE__: Union[str, Any]= os.rmdir SCREAMING_SNAKE_CASE__: List[Any]= os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: SCREAMING_SNAKE_CASE__: Tuple= {} with swallow_io(): with time_limit(snake_case_ ): exec(snake_case_ , snake_case_ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. SCREAMING_SNAKE_CASE__: int= rmtree SCREAMING_SNAKE_CASE__: List[Any]= rmdir SCREAMING_SNAKE_CASE__: Any= chdir @contextlib.contextmanager def A__ ( snake_case_ : int ): def signal_handler(snake_case_ : List[str] , snake_case_ : Union[str, Any] ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , snake_case_ ) signal.signal(signal.SIGALRM , snake_case_ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def A__ ( ): SCREAMING_SNAKE_CASE__: List[str]= WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case_ ): with contextlib.redirect_stderr(snake_case_ ): with redirect_stdin(snake_case_ ): yield @contextlib.contextmanager def A__ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case_ ): yield dirname class _lowerCamelCase ( UpperCamelCase_ ): pass class _lowerCamelCase ( io.StringIO ): def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> str: raise OSError def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[int]: raise OSError def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> str: raise OSError def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[int]: return False class _lowerCamelCase ( contextlib._RedirectStream ): # type: ignore __a = "stdin" @contextlib.contextmanager def A__ ( snake_case_ : Dict ): if root == ".": yield return SCREAMING_SNAKE_CASE__: Tuple= os.getcwd() os.chdir(snake_case_ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case_ ) def A__ ( snake_case_ : Union[str, Any]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: Tuple= None import os SCREAMING_SNAKE_CASE__: Any= '''1''' SCREAMING_SNAKE_CASE__: List[Any]= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: Tuple= None SCREAMING_SNAKE_CASE__: Optional[Any]= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: Optional[Any]= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: int= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: int= None SCREAMING_SNAKE_CASE__: Tuple= None SCREAMING_SNAKE_CASE__: Optional[int]= None SCREAMING_SNAKE_CASE__: List[Any]= None SCREAMING_SNAKE_CASE__: List[Any]= None SCREAMING_SNAKE_CASE__: Optional[int]= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: List[Any]= None SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: Union[str, Any]= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: Optional[int]= None SCREAMING_SNAKE_CASE__: List[Any]= None import shutil SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: int= None SCREAMING_SNAKE_CASE__: Tuple= None import subprocess SCREAMING_SNAKE_CASE__: int= None # type: ignore SCREAMING_SNAKE_CASE__: Optional[int]= None import sys SCREAMING_SNAKE_CASE__: Optional[Any]= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: int= None SCREAMING_SNAKE_CASE__: Union[str, Any]= None SCREAMING_SNAKE_CASE__: Union[str, Any]= None
64
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
0
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __lowercase ( unittest.TestCase ): def __init__( self : str ,A : str ,A : int=7 ,A : Tuple=3 ,A : Dict=18 ,A : Dict=30 ,A : Optional[int]=400 ,A : Dict=None ,A : str=True ,A : Any=True ,A : str=None ,): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {"""height""": 20, """width""": 20} UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : List[str] = image_size UpperCAmelCase__ : Tuple = min_resolution UpperCAmelCase__ : Any = max_resolution UpperCAmelCase__ : Any = size UpperCAmelCase__ : int = do_normalize UpperCAmelCase__ : Any = do_convert_rgb UpperCAmelCase__ : Optional[int] = [512, 1_024, 2_048, 4_096] UpperCAmelCase__ : List[str] = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" UpperCAmelCase__ : List[str] = Image.open(requests.get(A ,stream=A ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = PixaStructImageProcessor if is_vision_available() else None def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = PixaStructImageProcessingTester(self ) @property def __lowercase ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"""do_normalize""" ) ) self.assertTrue(hasattr(A ,"""do_convert_rgb""" ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Tuple = 2_048 UpperCAmelCase__ : Union[str, Any] = image_processor(A ,return_tensors="""pt""" ,max_patches=A ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() ,torch.tensor(0.0_6_0_6 ) ,atol=1e-3 ,rtol=1e-3 ) ) def __lowercase ( self : Tuple ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input UpperCAmelCase__ : Optional[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Union[str, Any] = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched UpperCAmelCase__ : Any = image_processor( A ,return_tensors="""pt""" ,max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def __lowercase ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input UpperCAmelCase__ : Tuple = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(A ): UpperCAmelCase__ : Any = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=A ).flattened_patches UpperCAmelCase__ : List[str] = """Hello""" UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=A ,header_text=A ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched UpperCAmelCase__ : Optional[int] = image_processor( A ,return_tensors="""pt""" ,max_patches=A ,header_text=A ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def __lowercase ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) UpperCAmelCase__ : Any = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched UpperCAmelCase__ : Union[str, Any] = image_processor( A ,return_tensors="""pt""" ,max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def __lowercase ( self : Tuple ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input UpperCAmelCase__ : Tuple = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched UpperCAmelCase__ : Union[str, Any] = image_processor( A ,return_tensors="""pt""" ,max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = PixaStructImageProcessor if is_vision_available() else None def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = PixaStructImageProcessingTester(self ,num_channels=4 ) UpperCAmelCase__ : List[Any] = 3 @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"""do_normalize""" ) ) self.assertTrue(hasattr(A ,"""do_convert_rgb""" ) ) def __lowercase ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[str] = image_processor( image_inputs[0] ,return_tensors="""pt""" ,max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched UpperCAmelCase__ : Optional[Any] = image_processor( A ,return_tensors="""pt""" ,max_patches=A ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,)
65
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
0
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowercase : str = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" _lowercase : int = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" _lowercase : List[Any] = max(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE ) , b_binary.zfill(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
66
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) snake_case = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: _lowercase = argparse.ArgumentParser() parser.add_argument('-f' ) _lowercase = parser.parse_args() return args.f class A_ ( UpperCAmelCase ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ) -> None: _lowercase = logging.StreamHandler(sys.stdout ) logger.addHandler(__A ) def __UpperCAmelCase ( self : List[Any] ,__A : Any ) -> Union[str, Any]: _lowercase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'run_glue_deebert.py' ) with patch.object(__A ,'argv' ,__A ): _lowercase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__A ,0.666 ) @slow @require_torch_non_multi_gpu def __UpperCAmelCase ( self : int ) -> int: _lowercase = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(__A ) _lowercase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(__A ) _lowercase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(__A )
67
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
0
from __future__ import annotations import math def lowercase__ ( A_: float , A_: int ) -> float: """simple docstring""" __UpperCAmelCase =u for i in range(1 , A_ ): __UpperCAmelCase =temp * (u - i) return temp def lowercase__ ( ) -> None: """simple docstring""" __UpperCAmelCase =int(input("""enter the numbers of values: """ ) ) __UpperCAmelCase =[] for _ in range(A_ ): y.append([] ) for i in range(A_ ): for j in range(A_ ): y[i].append(A_ ) __UpperCAmelCase =0 print("""enter the values of parameters in a list: """ ) __UpperCAmelCase =list(map(A_ , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(A_ ): __UpperCAmelCase =float(input() ) __UpperCAmelCase =int(input("""enter the value to interpolate: """ ) ) __UpperCAmelCase =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , A_ ): for j in range(n - i ): __UpperCAmelCase =y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase =y[0][0] for i in range(1 , A_ ): summ += (ucal(A_ , A_ ) * y[0][i]) / math.factorial(A_ ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
68
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = RemBertConfig.from_json_file(A__ ) print('''Building PyTorch model from configuration: {}'''.format(str(A__ ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
35
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : List[Any] , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : bool = True , a_ : Union[int, float] = 1 / 255 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = True , **a_ : Optional[Any] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = size if size is not None else {"height": 384, "width": 384} __snake_case = get_size_dict(a_ , default_to_square=a_ ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case = do_convert_rgb def A ( self : List[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : str , ): """simple docstring""" __snake_case = get_size_dict(a_ , default_to_square=a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) __snake_case = (size["height"], size["width"]) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def A ( self : List[str] , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : int , ): """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def A ( self : Any , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Optional[Any] , ): """simple docstring""" return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def A ( self : Any , a_ : ImageInput , a_ : Optional[bool] = None , a_ : Optional[Dict[str, int]] = None , a_ : PILImageResampling = None , a_ : Optional[bool] = None , a_ : Optional[float] = None , a_ : Optional[bool] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : bool = None , a_ : ChannelDimension = ChannelDimension.FIRST , **a_ : List[str] , ): """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = resample if resample is not None else self.resample __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case = size if size is not None else self.size __snake_case = get_size_dict(a_ , default_to_square=a_ ) __snake_case = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. __snake_case = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __snake_case = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case = BatchFeature(data={"pixel_values": images} , tensor_type=a_ ) return encoded_outputs
69
from sklearn.metrics import recall_score import datasets a_ :int = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' a_ :Union[str, Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' a_ :Optional[Any] = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int]=None , _lowercase : Tuple=1 , _lowercase : List[Any]="binary" , _lowercase : Any=None , _lowercase : Optional[int]="warn" , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
35
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = (KDPMaDiscreteScheduler,) UpperCamelCase = 10 def a__ ( self : List[str] , **A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = { 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**A_ ) return config def a__ ( self : int ) -> Any: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def a__ ( self : int ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCamelCase_ = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_ = model(A_ , A_ ) lowerCamelCase_ = scheduler.step(A_ , A_ , A_ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(A_ ) ) lowerCamelCase_ = torch.mean(torch.abs(A_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" if torch_device == "mps": return lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_ = model(A_ , A_ ) lowerCamelCase_ = scheduler.step(A_ , A_ , A_ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(A_ ) ) lowerCamelCase_ = torch.mean(torch.abs(A_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" if torch_device == "mps": return lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase_ = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_ = model(A_ , A_ ) lowerCamelCase_ = scheduler.step(A_ , A_ , A_ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(A_ ) ) lowerCamelCase_ = torch.mean(torch.abs(A_ ) ) if str(A_ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
70
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
0
'''simple docstring''' from typing import Any class _snake_case : def __init__( self ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = data UpperCAmelCase_ : List[str] = None class _snake_case : def __init__( self ): UpperCAmelCase_ : str = None def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = self.head while temp is not None: print(temp.data ,end=" " ) UpperCAmelCase_ : Optional[Any] = temp.next print() def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[str] = Node(_snake_case ) UpperCAmelCase_ : Optional[Any] = self.head UpperCAmelCase_ : List[str] = new_node def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): if node_data_a == node_data_a: return else: UpperCAmelCase_ : Any = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase_ : List[Any] = node_a.next UpperCAmelCase_ : str = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase_ : List[Any] = node_a.next if node_a is None or node_a is None: return UpperCAmelCase_ , UpperCAmelCase_ : Any = node_a.data, node_a.data if __name__ == "__main__": _lowerCamelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
71
import os def a ( A__ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as in_file: SCREAMING_SNAKE_CASE__ : Optional[Any] = in_file.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[int(A__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE__ : Dict = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE__ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0 for i in range(A__ )] for j in range(A__ )] SCREAMING_SNAKE_CASE__ : Tuple = grid[0][0] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[0][i] + dp[0][i - 1] for i in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : List[str] = grid[i][0] + dp[i - 1][0] for i in range(1 , A__ ): for j in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
35
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = DanceDiffusionPipeline UpperCamelCase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS UpperCamelCase__ = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } UpperCamelCase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS UpperCamelCase__ = False UpperCamelCase__ = False def _A( self ): torch.manual_seed(0 ) lowercase =UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=snake_case_ , use_timestep_embedding=snake_case_ , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) lowercase =IPNDMScheduler() lowercase ={ '''unet''': unet, '''scheduler''': scheduler, } return components def _A( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith('''mps''' ): lowercase =torch.manual_seed(snake_case_ ) else: lowercase =torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) lowercase ={ '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def _A( self ): lowercase ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase =self.get_dummy_components() lowercase =DanceDiffusionPipeline(**snake_case_ ) lowercase =pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase =self.get_dummy_inputs(snake_case_ ) lowercase =pipe(**snake_case_ ) lowercase =output.audios lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowercase =np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _A( self ): return super().test_save_load_local() @skip_mps def _A( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _A( self ): return super().test_save_load_optional_components() @skip_mps def _A( self ): return super().test_attention_slicing_forward_pass() def _A( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _A( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A( self ): lowercase =torch_device lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) lowercase =pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase =torch.manual_seed(0 ) lowercase =pipe(generator=snake_case_ , num_inference_steps=1_00 , audio_length_in_s=4.0_96 ) lowercase =output.audios lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase =np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _A( self ): lowercase =torch_device lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) lowercase =pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase =torch.manual_seed(0 ) lowercase =pipe(generator=snake_case_ , num_inference_steps=1_00 , audio_length_in_s=4.0_96 ) lowercase =output.audios lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase =np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
72
from math import factorial def a ( A__ = 2_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE__ : Dict = n // 2 return int(factorial(A__ ) / (factorial(A__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :str = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
0
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ (_UpperCAmelCase): # getting number of pixels in the image SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCAmelCase): for j in range(_UpperCAmelCase): SCREAMING_SNAKE_CASE = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image a_ : int = imread('image_data/lena.jpg', 1) # convert to its negative a_ : List[Any] = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
73
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCAmelCase__ ( self : Any , _A : str , _A : Tuple=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : int = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def UpperCAmelCase__ ( self : str ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self._test_save_load_local() def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
74
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCamelCase__ = logging.getLogger(__name__) @dataclass class lowerCamelCase_ ( __a ): lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) lowerCAmelCase__ = field(default=__a , metadata={'help': 'Whether to SortishSamler or not.'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCAmelCase__ = field(default=__a , metadata={'help': 'whether to use adafactor'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) lowerCAmelCase__ = field(default=__a , metadata={'help': 'Dropout probability. Goes into model.config.'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) lowerCAmelCase__ = field( default='linear' , metadata={'help': F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
75
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ :str = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__ ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): SCREAMING_SNAKE_CASE__ : Optional[int] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Any = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Any = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : Union[str, Any] = (output_size, output_size) if isinstance(A__ , A__ ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = get_image_size(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : List[str] = output_height / input_height SCREAMING_SNAKE_CASE__ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) SCREAMING_SNAKE_CASE__ : int = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = ['''pixel_values'''] def __init__( self : List[Any] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[Any] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else {'''height''': 3_84, '''width''': 3_84} SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Optional[Any] = ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[str] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_resize_output_image_size( _lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Tuple = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Any = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Tuple = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Any = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def lowercase__ ( self : Tuple , _lowercase : Optional[Any] , _lowercase : List[Tuple] = None ): SCREAMING_SNAKE_CASE__ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE__ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
35
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } a_ = { 'Salesforce/codegen-350M-mono': 2_0_4_8, } class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =["input_ids", "attention_mask"] UpperCamelCase =CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ) -> str: super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop('''add_bos_token''' , UpperCamelCase_ ): __lowercase : Optional[int] = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) __lowercase : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: __lowercase : Optional[int] = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) ) __lowercase : Tuple = add_prefix_space __lowercase : Optional[Any] = pre_tok_class(**UpperCamelCase_ ) __lowercase : Optional[Any] = add_prefix_space def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> BatchEncoding: __lowercase : int = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> BatchEncoding: __lowercase : Union[str, Any] = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: __lowercase : Dict = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> str: __lowercase : Dict = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __lowercase : Optional[int] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __lowercase : Optional[int] = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __lowercase : Tuple = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __lowercase : Optional[int] = list(re.finditer('''^print''' , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __lowercase : Optional[int] = completion[: prints[1].start()] __lowercase : Any = list(re.finditer('''^def''' , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __lowercase : int = completion[: defs[1].start()] __lowercase : Any = 0 __lowercase : List[Any] = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
76
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
0
"""simple docstring""" import os from collections.abc import Iterator def _UpperCamelCase ( UpperCamelCase = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(UpperCamelCase ): __UpperCAmelCase : Any = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(UpperCamelCase , UpperCamelCase ).lstrip("./" ) def _UpperCamelCase ( UpperCamelCase ) -> Optional[int]: """simple docstring""" return f"{i * ' '}*" if i else "\n##" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Optional[int] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCamelCase ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(UpperCamelCase )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def _UpperCamelCase ( UpperCamelCase = "." ) -> None: """simple docstring""" __UpperCAmelCase : str = "" for filepath in sorted(good_file_paths(UpperCamelCase ) ): __UpperCAmelCase , __UpperCAmelCase : List[str] = os.path.split(UpperCamelCase ) if filepath != old_path: __UpperCAmelCase : Tuple = print_path(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = (filepath.count(os.sep ) + 1) if filepath else 0 __UpperCAmelCase : Any = f"{filepath}/{filename}".replace(" " , "%20" ) __UpperCAmelCase : int = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f"{md_prefix(UpperCamelCase )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(""".""")
77
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ :Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_: Optional[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: str ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class __A ( UpperCamelCase__ ): a__ : Tuple = """detr""" a__ : Dict = ["""past_key_values"""] a__ : Dict = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__(self : Dict , __a : List[Any]=True , __a : List[Any]=None , __a : Optional[int]=3 , __a : Tuple=100 , __a : Optional[int]=6 , __a : Optional[Any]=2048 , __a : Tuple=8 , __a : Optional[Any]=6 , __a : Optional[int]=2048 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Dict=0.0 , __a : str=True , __a : Optional[Any]="relu" , __a : Optional[Any]=256 , __a : Union[str, Any]=0.1 , __a : List[Any]=0.0 , __a : Any=0.0 , __a : str=0.02 , __a : Union[str, Any]=1.0 , __a : Any=False , __a : Optional[Any]="sine" , __a : int="resnet50" , __a : int=True , __a : List[str]=False , __a : str=1 , __a : Optional[Any]=5 , __a : List[Any]=2 , __a : List[str]=1 , __a : Tuple=1 , __a : Optional[Any]=5 , __a : Union[str, Any]=2 , __a : Any=0.1 , **__a : str , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__a , __a ): UpperCAmelCase_ = backbone_config.get("model_type" ) UpperCAmelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ = config_class.from_dict(__a ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None, None, None UpperCAmelCase_ = use_timm_backbone UpperCAmelCase_ = backbone_config UpperCAmelCase_ = num_channels UpperCAmelCase_ = num_queries UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = init_xavier_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = auxiliary_loss UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = backbone UpperCAmelCase_ = use_pretrained_backbone UpperCAmelCase_ = dilation # Hungarian matcher UpperCAmelCase_ = class_cost UpperCAmelCase_ = bbox_cost UpperCAmelCase_ = giou_cost # Loss coefficients UpperCAmelCase_ = mask_loss_coefficient UpperCAmelCase_ = dice_loss_coefficient UpperCAmelCase_ = bbox_loss_coefficient UpperCAmelCase_ = giou_loss_coefficient UpperCAmelCase_ = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a ) @property def _lowercase (self : Optional[int] ): return self.encoder_attention_heads @property def _lowercase (self : Any ): return self.d_model @classmethod def _lowercase (cls : str , __a : PretrainedConfig , **__a : List[Any] ): return cls(backbone_config=__a , **__a ) def _lowercase (self : Dict ): UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ = self.backbone_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class __A ( UpperCamelCase__ ): a__ : str = version.parse("""1.11""" ) @property def _lowercase (self : int ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowercase (self : List[str] ): return 1E-5 @property def _lowercase (self : Union[str, Any] ): return 12
78
def a ( A__ ) -> str: '''simple docstring''' return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def a ( A__ ) -> bytes: '''simple docstring''' if (len(A__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
import string def _lowerCamelCase ( __lowerCamelCase ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase__ : Union[str, Any] = """""" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase__ : int = string.ascii_uppercase.find(__lowerCamelCase ) UpperCAmelCase__ : Optional[int] = num - key if num < 0: UpperCAmelCase__ : Optional[int] = num + len(string.ascii_uppercase ) UpperCAmelCase__ : Optional[Any] = translated + string.ascii_uppercase[num] else: UpperCAmelCase__ : List[Any] = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def _lowerCamelCase ( ) -> None: '''simple docstring''' UpperCAmelCase__ : List[Any] = input("""Encrypted message: """ ) UpperCAmelCase__ : Dict = message.upper() decrypt(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
79
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCamelCase : Union[str, Any] = False class __UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Any ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe.dual_guided( prompt="""first prompt""" , image=_lowerCAmelCase , text_to_image_strength=0.75 , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = VersatileDiffusionPipeline.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = generator.manual_seed(0 ) __lowercase = pipe.dual_guided( prompt="""first prompt""" , image=_lowerCAmelCase , text_to_image_strength=0.75 , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _a ( self : Any ) -> Dict: """simple docstring""" __lowercase = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """cyberpunk 2077""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe.dual_guided( prompt=_lowerCAmelCase , image=_lowerCAmelCase , text_to_image_strength=0.75 , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images __lowercase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowercase = """A painting of a squirrel eating a burger """ __lowercase = torch.manual_seed(0 ) __lowercase = pipe.text_to_image( prompt=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images __lowercase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowercase = pipe.image_variation(_lowerCAmelCase , generator=_lowerCAmelCase , output_type="""numpy""" ).images __lowercase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
80
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0