code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def __lowercase ( snake_case, snake_case = None, snake_case = None ): """simple docstring""" if start is None: __magic_name__ :int = 0 if end is None: __magic_name__ :Optional[Any] = len(snake_case ) - 1 if start >= end: return __magic_name__ :Tuple = (start + end) // 2 slowsort(snake_case, snake_case, snake_case ) slowsort(snake_case, mid + 1, snake_case ) if sequence[end] < sequence[mid]: __magic_name__ , __magic_name__ :List[Any] = sequence[mid], sequence[end] slowsort(snake_case, snake_case, end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
0
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = VideoToVideoSDPipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} _lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowercase = False # No `output_type`. _lowercase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case_ ( self: List[str] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = VideoToVideoSDPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = 'np' __UpperCamelCase = sd_pipe(**A_ ).frames __UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: str ): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case_ ( self: int ): '''simple docstring''' pass def snake_case_ ( self: Any ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ ) __UpperCamelCase = video.to('cuda' ) __UpperCamelCase = 'Spiderman is surfing' __UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames __UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
1
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
0
import os def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> List[Any]: _A = len(grid[0] ) _A = len(_snake_case ) _A = 0 _A = 0 _A = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_snake_case ): for j in range(n_rows - 3 ): _A = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _A = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _A = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _A = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _A = max( _snake_case , _snake_case , _snake_case , _snake_case ) if max_product > largest: _A = max_product return largest def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _A = [] with open(os.path.dirname(_snake_case ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) _A = [[int(_snake_case ) for i in grid[j]] for j in range(len(_snake_case ) )] return largest_product(_snake_case ) if __name__ == "__main__": print(solution())
2
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def A_( A : float , A : float , A : float): if (resistance, reactance, impedance).count(0) != 1: raise ValueError('One and only one argument must be 0') if resistance == 0: return {"resistance": sqrt(pow(A , 2) - pow(A , 2))} elif reactance == 0: return {"reactance": sqrt(pow(A , 2) - pow(A , 2))} elif impedance == 0: return {"impedance": sqrt(pow(A , 2) + pow(A , 2))} else: raise ValueError('Exactly one argument must be 0') if __name__ == "__main__": import doctest doctest.testmod()
3
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class a ( a__ ): snake_case__ = '''unispeech-sat''' def __init__( self , _snake_case=32 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.02 , _snake_case=1E-5 , _snake_case="group" , _snake_case="gelu" , _snake_case=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _snake_case=(5, 2, 2, 2, 2, 2, 2) , _snake_case=(10, 3, 3, 3, 3, 2, 2) , _snake_case=False , _snake_case=1_28 , _snake_case=16 , _snake_case=False , _snake_case=True , _snake_case=0.05 , _snake_case=10 , _snake_case=2 , _snake_case=0.0 , _snake_case=10 , _snake_case=0 , _snake_case=3_20 , _snake_case=2 , _snake_case=0.1 , _snake_case=1_00 , _snake_case=2_56 , _snake_case=2_56 , _snake_case=0.1 , _snake_case="mean" , _snake_case=False , _snake_case=False , _snake_case=2_56 , _snake_case=(5_12, 5_12, 5_12, 5_12, 15_00) , _snake_case=(5, 3, 3, 1, 1) , _snake_case=(1, 2, 3, 1, 1) , _snake_case=5_12 , _snake_case=0 , _snake_case=1 , _snake_case=2 , _snake_case=5_04 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case ) lowerCAmelCase = hidden_size lowerCAmelCase = feat_extract_norm lowerCAmelCase = feat_extract_activation lowerCAmelCase = list(_snake_case ) lowerCAmelCase = list(_snake_case ) lowerCAmelCase = list(_snake_case ) lowerCAmelCase = conv_bias lowerCAmelCase = num_conv_pos_embeddings lowerCAmelCase = num_conv_pos_embedding_groups lowerCAmelCase = len(self.conv_dim ) lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = feat_proj_dropout lowerCAmelCase = final_dropout lowerCAmelCase = layerdrop lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range lowerCAmelCase = vocab_size lowerCAmelCase = num_clusters lowerCAmelCase = do_stable_layer_norm lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase = apply_spec_augment lowerCAmelCase = mask_time_prob lowerCAmelCase = mask_time_length lowerCAmelCase = mask_time_min_masks lowerCAmelCase = mask_feature_prob lowerCAmelCase = mask_feature_length lowerCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase = num_codevectors_per_group lowerCAmelCase = num_codevector_groups lowerCAmelCase = contrastive_logits_temperature lowerCAmelCase = feat_quantizer_dropout lowerCAmelCase = num_negatives lowerCAmelCase = codevector_dim lowerCAmelCase = proj_codevector_dim lowerCAmelCase = diversity_loss_weight # ctc loss lowerCAmelCase = ctc_loss_reduction lowerCAmelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase = list(_snake_case ) lowerCAmelCase = list(_snake_case ) lowerCAmelCase = list(_snake_case ) lowerCAmelCase = xvector_output_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
4
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[int] = ['''audio_values''', '''audio_mask'''] def __init__( self , _lowercase=2_048 , _lowercase=1 , _lowercase=[16, 16] , _lowercase=128 , _lowercase=44_100 , _lowercase=86 , _lowercase=2_048 , _lowercase=0.0 , **_lowercase , ): """simple docstring""" super().__init__( feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase , ) _lowerCAmelCase = spectrogram_length _lowerCAmelCase = num_channels _lowerCAmelCase = patch_size _lowerCAmelCase = feature_size // self.patch_size[1] _lowerCAmelCase = n_fft _lowerCAmelCase = sampling_rate // hop_length_to_sampling_rate _lowerCAmelCase = sampling_rate _lowerCAmelCase = padding_value _lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_lowercase , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=_lowercase , norm="""slaney""" , mel_scale="""slaney""" , ).T def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = spectrogram( _lowercase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) _lowerCAmelCase = log_spec[:, :-1] _lowerCAmelCase = log_spec - 20.0 _lowerCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _lowercase , _lowercase = None , _lowercase = True , _lowercase = None , _lowercase = False , _lowercase = False , **_lowercase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _lowerCAmelCase = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _lowerCAmelCase = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _lowerCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _lowercase ): _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _lowerCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _lowerCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _lowerCAmelCase = np.array(_lowercase ).astype(np.floataa ) # convert into correct format for padding _lowerCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _lowerCAmelCase = np.ones([len(_lowercase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _lowerCAmelCase = padded_audio_features * self.padding_value for i in range(len(_lowercase ) ): _lowerCAmelCase = audio_features[i] _lowerCAmelCase = feature # return as BatchFeature if return_attention_mask: _lowerCAmelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: _lowerCAmelCase = {"""audio_values""": padded_audio_features} _lowerCAmelCase = BatchFeature(data=_lowercase , tensor_type=_lowercase ) return encoded_inputs
5
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
0
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
7
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
0
from __future__ import annotations _lowerCAmelCase = [] def _snake_case ( __snake_case , __snake_case , __snake_case ): for i in range(len(__snake_case ) ): if board[row][i] == 1: return False for i in range(len(__snake_case ) ): if board[i][column] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , len(__snake_case ) ) ): if board[i][j] == 1: return False return True def _snake_case ( __snake_case , __snake_case ): if row >= len(__snake_case ): solution.append(__snake_case ) printboard(__snake_case ) print() return True for i in range(len(__snake_case ) ): if is_safe(__snake_case , __snake_case , __snake_case ): _UpperCamelCase = 1 solve(__snake_case , row + 1 ) _UpperCamelCase = 0 return False def _snake_case ( __snake_case ): for i in range(len(__snake_case ) ): for j in range(len(__snake_case ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) _lowerCAmelCase = 8 _lowerCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
10
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase (__A): """simple docstring""" if isinstance(__A , collections.abc.Iterable): return x return (x, x) @require_tf class __A : '''simple docstring''' def a__ (self , A , A ) -> Dict: """simple docstring""" pass def a__ (self ) -> List[str]: """simple docstring""" pass def a__ (self ) -> int: """simple docstring""" pass def a__ (self , A , A , A , A , A=None , **A ) -> Any: """simple docstring""" _a = VisionTextDualEncoderConfig.from_vision_text_configs(A , A ) _a = TFVisionTextDualEncoderModel(A ) _a = model(input_ids=A , pixel_values=A , attention_mask=A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def a__ (self , A , A , A , A , A=None , **A ) -> List[Any]: """simple docstring""" _a , _a = self.get_vision_text_model(A , A ) _a = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) _a = model(input_ids=A , pixel_values=A , attention_mask=A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def a__ (self , A , A , A , A , A=None , **A ) -> List[Any]: """simple docstring""" _a , _a = self.get_vision_text_model(A , A ) _a = {'''vision_model''': vision_model, '''text_model''': text_model} _a = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**A ) _a = model(input_ids=A , pixel_values=A , attention_mask=A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def a__ (self , A , A , A , A , A=None , **A ) -> Optional[Any]: """simple docstring""" _a , _a = self.get_vision_text_model(A , A ) _a = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) _a = model(input_ids=A , pixel_values=A , attention_mask=A ) _a = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a = TFVisionTextDualEncoderModel.from_pretrained(A ) _a = model(input_ids=A , pixel_values=A , attention_mask=A ) _a = after_output[0].numpy() _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A , 1E-5 ) def a__ (self , A , A , A , A , A=None , **A ) -> Tuple: """simple docstring""" _a , _a = self.get_vision_text_model(A , A ) _a = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) _a = model( input_ids=A , pixel_values=A , attention_mask=A , output_attentions=A ) _a = output.vision_model_output.attentions self.assertEqual(len(A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _a = to_atuple(vision_model.config.image_size ) _a = to_atuple(vision_model.config.patch_size ) _a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _a = output.text_model_output.attentions self.assertEqual(len(A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def a__ (self , A , A , A ) -> Union[str, Any]: """simple docstring""" _a = np.abs((a - b) ).max() self.assertLessEqual(A , A , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def a__ (self ) -> List[str]: """simple docstring""" _a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**A ) def a__ (self ) -> List[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**A ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**A ) def a__ (self ) -> List[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() self.check_save_load(**A ) def a__ (self ) -> Any: """simple docstring""" _a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**A ) @slow def a__ (self ) -> int: """simple docstring""" _a , _a = self.get_pretrained_model_and_inputs() _a = model_a(**A ) _a = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(A ) _a = TFVisionTextDualEncoderModel.from_pretrained(A ) _a = model_a(**A ) _a = after_outputs[0].numpy() _a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A , 1E-5 ) @require_tf class __A ( A , unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) _a = 13 _a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _a = random_attention_mask([batch_size, 4] ) _a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def a__ (self , A , A ) -> str: """simple docstring""" _a = TFViTModel(A , name='''vision_model''' ) _a = TFBertModel(A , name='''text_model''' ) return vision_model, text_model def a__ (self ) -> Optional[Any]: """simple docstring""" _a = TFViTModelTester(self ) _a = TFBertModelTester(self ) _a = vit_model_tester.prepare_config_and_inputs() _a = bert_model_tester.prepare_config_and_inputs() _a , _a , _a = vision_config_and_inputs ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( A , unittest.TestCase ): '''simple docstring''' def a__ (self ) -> int: """simple docstring""" _a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) _a = 13 _a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _a = random_attention_mask([batch_size, 4] ) _a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def a__ (self , A , A , A , A , A=None , **A ) -> List[str]: """simple docstring""" _a , _a = self.get_vision_text_model(A , A ) _a = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) _a = model( input_ids=A , pixel_values=A , attention_mask=A , output_attentions=A ) _a = output.vision_model_output.attentions self.assertEqual(len(A ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _a = to_atuple(vision_model.config.image_size ) _a = to_atuple(vision_model.config.patch_size ) _a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _a = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _a = output.text_model_output.attentions self.assertEqual(len(A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def a__ (self , A , A ) -> Dict: """simple docstring""" _a = TFDeiTModel(A , name='''vision_model''' ) _a = TFRobertaModel(A , name='''text_model''' ) return vision_model, text_model def a__ (self ) -> List[str]: """simple docstring""" _a = TFDeiTModelTester(self ) _a = TFRobertaModelTester(self ) _a = vit_model_tester.prepare_config_and_inputs() _a = bert_model_tester.prepare_config_and_inputs() _a , _a , _a = vision_config_and_inputs ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( A , unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) _a = 13 _a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _a = random_attention_mask([batch_size, 4] ) _a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = TFCLIPVisionModel(A , name='''vision_model''' ) _a = TFBertModel(A , name='''text_model''' ) return vision_model, text_model def a__ (self ) -> List[str]: """simple docstring""" _a = TFCLIPVisionModelTester(self ) _a = TFBertModelTester(self ) _a = clip_model_tester.prepare_config_and_inputs() _a = bert_model_tester.prepare_config_and_inputs() _a , _a = vision_config_and_inputs ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ) -> List[Any]: """simple docstring""" _a = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=A ) _a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=A , padding=A , return_tensors='''np''' ) _a = model(**A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _a = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , A , atol=1E-3 ) )
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
0
from manim import * class _snake_case ( UpperCAmelCase_ ): def lowercase__ ( self): '''simple docstring''' lowercase__ : str = Rectangle(height=0.5 , width=0.5) lowercase__ : Tuple = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0) lowercase__ : List[Any] = [mem.copy() for i in range(6)] lowercase__ : Tuple = [mem.copy() for i in range(6)] lowercase__ : List[str] = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : Tuple = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : List[Any] = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : Dict = Text("""CPU""" , font_size=24) lowercase__ : List[str] = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_) cpu.move_to([-2.5, -0.5, 0]) self.add(SCREAMING_SNAKE_CASE_) lowercase__ : str = [mem.copy() for i in range(1)] lowercase__ : Any = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : Optional[int] = Text("""GPU""" , font_size=24) lowercase__ : Union[str, Any] = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_) gpu.align_to(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) gpu.set_x(gpu.get_x() - 1) self.add(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = [mem.copy() for i in range(6)] lowercase__ : str = VGroup(*SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0) lowercase__ : Optional[Any] = Text("""Model""" , font_size=24) lowercase__ : Tuple = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_) model.move_to([3, -1.0, 0]) self.play( Create(SCREAMING_SNAKE_CASE_ , run_time=1) , Create(SCREAMING_SNAKE_CASE_ , run_time=1) , Create(SCREAMING_SNAKE_CASE_ , run_time=1) , ) lowercase__ : Optional[Any] = MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) lowercase__ : Any = Square(side_length=2.2) key.move_to([-5, 2, 0]) lowercase__ : Optional[int] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) step_a.move_to([2, 2, 0]) self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=2.5) , Write(SCREAMING_SNAKE_CASE_) , Write(SCREAMING_SNAKE_CASE_)) self.add(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [] lowercase__ : Union[str, Any] = [] lowercase__ : str = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0.0).set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.7) cpu_target.move_to(SCREAMING_SNAKE_CASE_) cpu_target.generate_target() lowercase__ : Union[str, Any] = 0.4_6 / 4 lowercase__ : Tuple = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.0_2 , direction=SCREAMING_SNAKE_CASE_) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=SCREAMING_SNAKE_CASE_ , buff=0.0) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=SCREAMING_SNAKE_CASE_ , buff=0.0) cpu_targs.append(SCREAMING_SNAKE_CASE_) first_animations.append(rect.animate(run_time=0.5).set_stroke(SCREAMING_SNAKE_CASE_)) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE_ , run_time=1.5)) self.play(*SCREAMING_SNAKE_CASE_) self.play(*SCREAMING_SNAKE_CASE_) self.wait()
12
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : int = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Dict = 'sew' def __init__( self , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_="group" , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="mean" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : int = feat_extract_norm __lowerCamelCase : Optional[int] = feat_extract_activation __lowerCamelCase : Any = list(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = list(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = list(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = conv_bias __lowerCamelCase : Dict = num_conv_pos_embeddings __lowerCamelCase : Optional[Any] = num_conv_pos_embedding_groups __lowerCamelCase : Dict = len(self.conv_dim ) __lowerCamelCase : Optional[Any] = num_hidden_layers __lowerCamelCase : Tuple = intermediate_size __lowerCamelCase : List[Any] = squeeze_factor __lowerCamelCase : List[str] = hidden_act __lowerCamelCase : Dict = num_attention_heads __lowerCamelCase : Dict = hidden_dropout __lowerCamelCase : Tuple = attention_dropout __lowerCamelCase : Dict = activation_dropout __lowerCamelCase : Optional[int] = feat_proj_dropout __lowerCamelCase : Tuple = final_dropout __lowerCamelCase : str = layerdrop __lowerCamelCase : int = layer_norm_eps __lowerCamelCase : int = initializer_range __lowerCamelCase : Optional[int] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase : Optional[Any] = apply_spec_augment __lowerCamelCase : Tuple = mask_time_prob __lowerCamelCase : Any = mask_time_length __lowerCamelCase : int = mask_time_min_masks __lowerCamelCase : int = mask_feature_prob __lowerCamelCase : Dict = mask_feature_length __lowerCamelCase : List[str] = mask_feature_min_masks # ctc loss __lowerCamelCase : Any = ctc_loss_reduction __lowerCamelCase : List[Any] = ctc_zero_infinity # sequence classification __lowerCamelCase : List[Any] = use_weighted_layer_sum __lowerCamelCase : Union[str, Any] = classifier_proj_size @property def lowercase_ ( self ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
13
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a__ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) a__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _a : Any = '''https://pypi.org/pypi/diffusers/json''' _a : Optional[int] = json.loads(request.urlopen(__a ).read() )['''releases'''].keys() return sorted(__a ,key=lambda __a : version.Version(__a ) ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__a ) os.makedirs(__a ,exist_ok=__a ) _a : int = Path(__a ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( __a : Union[str, os.PathLike] ) -> Optional[Any]: """simple docstring""" init_hf_modules() _a : List[Any] = Path(__a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__a ,exist_ok=__a ) _a : Any = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ) as f: _a : Optional[Any] = f.read() # Imports of the form `import .xxx` _a : List[str] = re.findall('''^\s*import\s+\.(\S+)\s*$''' ,__a ,flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' ,__a ,flags=re.MULTILINE ) # Unique-ify return list(set(__a ) ) def __UpperCAmelCase ( __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Optional[int] = False _a : str = [module_file] _a : Dict = [] # Let's recurse through all relative imports while not no_change: _a : Tuple = [] for f in files_to_check: new_imports.extend(get_relative_imports(__a ) ) _a : Any = Path(__a ).parent _a : int = [str(module_path / m ) for m in new_imports] _a : str = [f for f in new_import_files if f not in all_relative_imports] _a : int = [F"""{f}.py""" for f in new_import_files] _a : int = len(__a ) == 0 all_relative_imports.extend(__a ) return all_relative_imports def __UpperCAmelCase ( __a : str ) -> Any: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ) as f: _a : List[str] = f.read() # Imports of the form `import xxx` _a : List[str] = re.findall('''^\s*import\s+(\S+)\s*$''' ,__a ,flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' ,__a ,flags=re.MULTILINE ) # Only keep the top-level module _a : int = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all _a : List[str] = list(set(__a ) ) _a : Tuple = [] for imp in imports: try: importlib.import_module(__a ) except ImportError: missing_packages.append(__a ) if len(__a ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"""{', '.join(__a )}. Run `pip install {' '.join(__a )}`""" ) return get_relative_imports(__a ) def __UpperCAmelCase ( __a : Optional[int] ,__a : Optional[Any] ) -> Optional[int]: """simple docstring""" _a : Any = module_path.replace(os.path.sep ,'''.''' ) _a : Any = importlib.import_module(__a ) if class_name is None: return find_pipeline_class(__a ) return getattr(__a ,__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" from ..pipelines import DiffusionPipeline _a : Tuple = dict(inspect.getmembers(__a ,inspect.isclass ) ) _a : Optional[int] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls ,__a ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) _a : Optional[int] = cls return pipeline_class def __UpperCAmelCase ( __a : Union[str, os.PathLike] ,__a : str ,__a : Optional[Union[str, os.PathLike]] = None ,__a : bool = False ,__a : bool = False ,__a : Optional[Dict[str, str]] = None ,__a : Optional[Union[bool, str]] = None ,__a : Optional[str] = None ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[Any] = str(__a ) _a : Tuple = os.path.join(__a ,__a ) if os.path.isfile(__a ): _a : List[Any] = module_file_or_url _a : str = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: _a : int = get_diffusers_versions() # cut ".dev0" _a : Optional[Any] = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: _a : Union[str, Any] = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _a : Dict = F"""v{revision}""" elif revision == "main": _a : Dict = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _a : Union[str, Any] = COMMUNITY_PIPELINES_URL.format(revision=__a ,pipeline=__a ) try: _a : int = cached_download( __a ,cache_dir=__a ,force_download=__a ,proxies=__a ,resume_download=__a ,local_files_only=__a ,use_auth_token=__a ,) _a : Dict = '''git''' _a : str = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _a : Optional[Any] = hf_hub_download( __a ,__a ,cache_dir=__a ,force_download=__a ,proxies=__a ,resume_download=__a ,local_files_only=__a ,use_auth_token=__a ,) _a : Union[str, Any] = os.path.join('''local''' ,'''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _a : Dict = check_imports(__a ) # Now we move the module inside our cached dynamic modules. _a : int = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__a ) _a : Tuple = Path(__a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__a ,submodule_path / module_file ) for module_needed in modules_needed: _a : Any = F"""{module_needed}.py""" shutil.copy(os.path.join(__a ,__a ) ,submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__a ,__a ): _a : List[str] = use_auth_token elif use_auth_token is True: _a : Optional[int] = HfFolder.get_token() else: _a : str = None _a : List[Any] = model_info(__a ,revision=__a ,token=__a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _a : List[str] = submodule_path / commit_hash _a : Tuple = full_submodule + os.path.sep + commit_hash create_dynamic_module(__a ) if not (submodule_path / module_file).exists(): shutil.copy(__a ,submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __a ,F"""{module_needed}.py""" ,cache_dir=__a ,force_download=__a ,resume_download=__a ,proxies=__a ,use_auth_token=__a ,revision=__a ,local_files_only=__a ,) return os.path.join(__a ,__a ) def __UpperCAmelCase ( __a : Union[str, os.PathLike] ,__a : str ,__a : Optional[str] = None ,__a : Optional[Union[str, os.PathLike]] = None ,__a : bool = False ,__a : bool = False ,__a : Optional[Dict[str, str]] = None ,__a : Optional[Union[bool, str]] = None ,__a : Optional[str] = None ,__a : bool = False ,**__a : Tuple ,) -> int: """simple docstring""" _a : Any = get_cached_module_file( __a ,__a ,cache_dir=__a ,force_download=__a ,resume_download=__a ,proxies=__a ,use_auth_token=__a ,revision=__a ,local_files_only=__a ,) return get_class_in_module(__a ,final_module.replace('''.py''' ,'''''' ) )
14
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : List[Any] = logging.get_logger(__name__) def UpperCamelCase ( __magic_name__ : Dict ) -> List[Any]: """simple docstring""" lowercase__ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase__ = [144, 192, 240] lowercase__ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase__ = [96, 120, 144] lowercase__ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase__ = [64, 80, 96] lowercase__ = [16, 16, 24, 48, 64, 80, 320] lowercase__ = 0.0_5 lowercase__ = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase__ = 512 lowercase__ = 16 lowercase__ = 21 lowercase__ = """pascal-voc-id2label.json""" else: lowercase__ = 1000 lowercase__ = """imagenet-1k-id2label.json""" lowercase__ = """huggingface/label-files""" lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : List[Any]=False ) -> List[str]: """simple docstring""" for i in range(1 , 6 ): if f'''layer_{i}.''' in name: lowercase__ = name.replace(f'''layer_{i}.''' , f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: lowercase__ = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase__ = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase__ = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase__ = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase__ = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase__ = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase__ = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase__ = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase__ = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f'''.{i}.{j}.''' in name: lowercase__ = name.replace(f'''.{i}.{j}.''' , f'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f'''.{i}.{j}.''' in name: lowercase__ = name.replace(f'''.{i}.{j}.''' , f'''.{i}.''' ) if "expand_1x1" in name: lowercase__ = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase__ = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase__ = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if f'''.global_rep.{i}.weight''' in name: lowercase__ = name.replace(f'''.global_rep.{i}.weight''' , """.layernorm.weight""" ) if f'''.global_rep.{i}.bias''' in name: lowercase__ = name.replace(f'''.global_rep.{i}.bias''' , """.layernorm.bias""" ) if ".global_rep." in name: lowercase__ = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase__ = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase__ = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase__ = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase__ = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase__ = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase__ = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase__ = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase__ = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase__ = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase__ = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase__ = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase__ = """mobilevit.""" + name return name def UpperCamelCase ( __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[Any]=False ) -> List[str]: """simple docstring""" if base_model: lowercase__ = """""" else: lowercase__ = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if key[:8] == "encoder.": lowercase__ = key[8:] if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[0][6:] ) - 1 lowercase__ = int(key_split[3] ) lowercase__ = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) lowercase__ = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase__ = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] else: lowercase__ = val return orig_state_dict def UpperCamelCase ( ) -> Dict: """simple docstring""" lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : List[str]=False ) -> Optional[int]: """simple docstring""" lowercase__ = get_mobilevit_config(__magic_name__ ) # load original state_dict lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase__ = MobileViTForSemanticSegmentation(__magic_name__ ).eval() else: lowercase__ = MobileViTForImageClassification(__magic_name__ ).eval() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase__ = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase__ = torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase__ = torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase__ = torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase__ = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": lowercase__ = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": lowercase__ = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , __magic_name__ , atol=1E-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: lowercase__ = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase__ = model_mapping[mobilevit_name] image_processor.push_to_hub(__magic_name__ , organization="""apple""" ) model.push_to_hub(__magic_name__ , organization="""apple""" ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
15
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
0
def __a ( A__ : int ): SCREAMING_SNAKE_CASE = [1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0, 0, 0 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 for _ in range(1 , A__ ): SCREAMING_SNAKE_CASE = min(A__ , A__ , A__ ) ugly_nums.append(A__ ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'{ugly_numbers(2_0_0) = }')
16
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase_ ( unittest.TestCase ): _lowercase : List[str] = JukeboxTokenizer _lowercase : Any = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def lowerCAmelCase_ ( self : List[Any] ): import torch __A : Union[str, Any] = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) __A : Tuple = tokenizer(**self.metas )["""input_ids"""] # fmt: off __A : Any = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCAmelCase_ ( self : Optional[Any] ): import torch __A : int = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) __A : List[str] = tokenizer(**self.metas )["""input_ids"""] # fmt: off __A : Dict = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
17
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor _SCREAMING_SNAKE_CASE = random.Random() def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=1.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=None ): '''simple docstring''' if rng is None: _lowerCAmelCase = global_rng _lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=400 , _lowerCAmelCase=2000 , _lowerCAmelCase=24 , _lowerCAmelCase=24 , _lowerCAmelCase=0.0 , _lowerCAmelCase=16000 , _lowerCAmelCase=True , _lowerCAmelCase=True , ) -> Optional[int]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = min_seq_length _lowerCAmelCase = max_seq_length _lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase = feature_size _lowerCAmelCase = num_mel_bins _lowerCAmelCase = padding_value _lowerCAmelCase = sampling_rate _lowerCAmelCase = return_attention_mask _lowerCAmelCase = do_normalize def _snake_case ( self ) -> str: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _snake_case ( self , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> List[Any]: def _flatten(_lowerCAmelCase ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: _lowerCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : Union[str, Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = SpeechaTextFeatureExtractionTester(self ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[int]: self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def _snake_case ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size _lowerCAmelCase = feature_extractor(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = ["longest", "max_length", "do_not_pad"] _lowerCAmelCase = [None, 16, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = feature_extractor( _lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = [np.sum(_lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = ["longest", "max_length", "do_not_pad"] _lowerCAmelCase = [None, 16, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = feature_extractor( _lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" , return_attention_mask=_lowerCAmelCase ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = [np.sum(_lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = feature_extractor( _lowerCAmelCase , padding="max_length" , max_length=4 , truncation=_lowerCAmelCase , return_tensors="np" , return_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = feature_extractor( _lowerCAmelCase , padding="longest" , max_length=4 , truncation=_lowerCAmelCase , return_tensors="np" , return_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = feature_extractor( _lowerCAmelCase , padding="longest" , max_length=16 , truncation=_lowerCAmelCase , return_tensors="np" , return_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def _snake_case ( self ) -> List[str]: import torch _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: from datasets import load_dataset _lowerCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _lowerCAmelCase = ds.sort("id" ).select(range(_lowerCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _snake_case ( self ) -> Any: # fmt: off _lowerCAmelCase = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on _lowerCAmelCase = self._load_datasamples(1 ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
18
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _a = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _a = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _a = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase__ ( __snake_case, __snake_case ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase = len([g for position, g in enumerate(__snake_case ) if g == main_target[position]] ) return (item, float(__snake_case )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase = random.randint(0, len(__snake_case ) - 1 ) _UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" _UpperCamelCase = list(__snake_case ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: _UpperCamelCase = random.choice(__snake_case ) return "".join(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, ) -> list[str]: """simple docstring""" _UpperCamelCase = [] # Generate more children proportionally to the fitness score. _UpperCamelCase = int(parent_a[1] * 1_00 ) + 1 _UpperCamelCase = 10 if child_n >= 10 else child_n for _ in range(__snake_case ): _UpperCamelCase = population_score[random.randint(0, __snake_case )][0] _UpperCamelCase , _UpperCamelCase = crossover(parent_a[0], __snake_case ) # Append new string to the population list. pop.append(mutate(__snake_case, __snake_case ) ) pop.append(mutate(__snake_case, __snake_case ) ) return pop def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(__snake_case ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(__snake_case ) # Generate random starting population. _UpperCamelCase = [] for _ in range(__snake_case ): population.append(''''''.join([random.choice(__snake_case ) for i in range(len(__snake_case ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase , _UpperCamelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__snake_case ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase = [evaluate(__snake_case, __snake_case ) for item in population] # Check if there is a matching evolution. _UpperCamelCase = sorted(__snake_case, key=lambda __snake_case : x[1], reverse=__snake_case ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__snake_case ) # Normalize population score to be between 0 and 1. _UpperCamelCase = [ (item, score / len(__snake_case )) for item, score in population_score ] # This is selection for i in range(__snake_case ): population.extend(select(population_score[int(__snake_case )], __snake_case, __snake_case ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__snake_case ) > N_POPULATION: break if __name__ == "__main__": _a = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) _a = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) _a , _a , _a = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
19
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowercase_ (unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=100 , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , lowercase_=3 , ) -> Dict: a__ =parent a__ =vocab_size a__ =batch_size a__ =image_size a__ =patch_size a__ =num_channels a__ =is_training a__ =use_labels a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =type_sequence_label_size a__ =initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ =(image_size // patch_size) ** 2 a__ =num_patches + 1 def __UpperCamelCase ( self) -> Dict: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ =BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> List[Any]: a__ =FlaxBeitModel(config=lowercase_) a__ =model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Any: a__ =FlaxBeitForMaskedImageModeling(config=lowercase_) a__ =model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> List[str]: a__ =self.type_sequence_label_size a__ =FlaxBeitForImageClassification(config=lowercase_) a__ =model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a__ =1 a__ =FlaxBeitForImageClassification(lowercase_) a__ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a__ =model(lowercase_) def __UpperCamelCase ( self) -> Dict: a__ =self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ) =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __UpperCamelCase ( self) -> None: a__ =FlaxBeitModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def __UpperCamelCase ( self) -> Union[str, Any]: self.config_tester.run_common_tests() def __UpperCamelCase ( self) -> Dict: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> int: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model_class(lowercase_) @jax.jit def model_jitted(lowercase_ , **lowercase_): return model(pixel_values=lowercase_ , **lowercase_) with self.subTest('JIT Enabled'): a__ =model_jitted(**lowercase_).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): a__ =model_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) def __UpperCamelCase ( self) -> int: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_) def __UpperCamelCase ( self) -> Any: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def __UpperCamelCase ( self) -> Union[str, Any]: for model_class_name in self.all_model_classes: a__ =model_class_name.from_pretrained('microsoft/beit-base-patch16-224') a__ =model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(lowercase_) def _lowercase( ): a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class lowercase_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224') if is_vision_available() else None @slow def __UpperCamelCase ( self) -> Dict: a__ =FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k') a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(images=lowercase_ , return_tensors='np').pixel_values # prepare bool_masked_pos a__ =np.ones((1, 196) , dtype=lowercase_) # forward pass a__ =model(pixel_values=lowercase_ , bool_masked_pos=lowercase_) a__ =outputs.logits # verify the logits a__ =(1, 196, 8192) self.assertEqual(logits.shape , lowercase_) a__ =np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]]) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowercase_ , atol=1e-2)) @slow def __UpperCamelCase ( self) -> List[Any]: a__ =FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224') a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(images=lowercase_ , return_tensors='np') # forward pass a__ =model(**lowercase_) a__ =outputs.logits # verify the logits a__ =(1, 1000) self.assertEqual(logits.shape , lowercase_) a__ =np.array([-1.23_85, -1.09_87, -1.01_08]) self.assertTrue(np.allclose(logits[0, :3] , lowercase_ , atol=1e-4)) a__ =281 self.assertEqual(logits.argmax(-1).item() , lowercase_) @slow def __UpperCamelCase ( self) -> Union[str, Any]: a__ =FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k') a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(images=lowercase_ , return_tensors='np') # forward pass a__ =model(**lowercase_) a__ =outputs.logits # verify the logits a__ =(1, 21841) self.assertEqual(logits.shape , lowercase_) a__ =np.array([1.68_81, -0.27_87, 0.59_01]) self.assertTrue(np.allclose(logits[0, :3] , lowercase_ , atol=1e-4)) a__ =2396 self.assertEqual(logits.argmax(-1).item() , lowercase_)
20
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase_ : List[str] = 500000 UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = os.path.split(__file__) UpperCAmelCase_ : Any = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCAmelCase_ ( lowerCamelCase , **lowerCamelCase ): __magic_name__ : Tuple =dataset.map(**lowerCamelCase ) @get_duration def lowerCAmelCase_ ( lowerCamelCase , **lowerCamelCase ): __magic_name__ : List[str] =dataset.filter(**lowerCamelCase ) def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] ={"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : str =datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) __magic_name__ : str =generate_example_dataset( os.path.join(lowerCamelCase , """dataset.arrow""" ) , lowerCamelCase , num_examples=lowerCamelCase ) __magic_name__ : Dict =transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowerCamelCase ) def tokenize(lowerCamelCase ): return tokenizer(examples["""text"""] ) __magic_name__ : Union[str, Any] =map(lowerCamelCase ) __magic_name__ : List[Any] =map(lowerCamelCase , batched=lowerCamelCase ) __magic_name__ : Optional[int] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""numpy""" ): __magic_name__ : Optional[Any] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""pandas""" ): __magic_name__ : int =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): __magic_name__ : List[Any] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): __magic_name__ : Optional[Any] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) __magic_name__ : Optional[Any] =map(lowerCamelCase , function=lowerCamelCase , batched=lowerCamelCase ) __magic_name__ : Optional[int] =filter(lowerCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase , """wb""" ) as f: f.write(json.dumps(lowerCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
21
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case_ (): '''simple docstring''' _a = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=UpperCamelCase ) _a = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=UpperCamelCase ) env_command_parser(subparsers=UpperCamelCase ) launch_command_parser(subparsers=UpperCamelCase ) tpu_command_parser(subparsers=UpperCamelCase ) test_command_parser(subparsers=UpperCamelCase ) # Let's go _a = parser.parse_args() if not hasattr(UpperCamelCase , '''func''' ): parser.print_help() exit(1 ) # Run args.func(UpperCamelCase ) if __name__ == "__main__": main()
22
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : int = """https://openaipublic.azureedge.net/jukebox/models/""" snake_case__ : List[Any] = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def _snake_case (__lowercase): if key.endswith('.model.1.bias') and len(key.split('.')) > 10: UpperCamelCase_ = key.replace('.model.1.bias' , '.conv1d_1.bias') elif key.endswith('.model.1.weight') and len(key.split('.')) > 10: UpperCamelCase_ = key.replace('.model.1.weight' , '.conv1d_1.weight') elif key.endswith('.model.3.bias') and len(key.split('.')) > 10: UpperCamelCase_ = key.replace('.model.3.bias' , '.conv1d_2.bias') elif key.endswith('.model.3.weight') and len(key.split('.')) > 10: UpperCamelCase_ = key.replace('.model.3.weight' , '.conv1d_2.weight') if "conditioner_blocks.0." in key: UpperCamelCase_ = key.replace('conditioner_blocks.0' , 'conditioner_blocks') if "prime_prior" in key: UpperCamelCase_ = key.replace('prime_prior' , 'encoder') if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCamelCase_ = key.replace('.emb.' , '.') if key.endswith('k'): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook') if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.') if "x_emb.emb." in key: UpperCamelCase_ = key.replace('0.x_emb.emb' , 'embed_tokens') if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm') if ".ln" in key: return key.replace('.ln' , '.layer_norm') if "_ln" in key: return key.replace('_ln' , '_layer_norm') if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in') if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head') if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out') if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens') return key def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ = {} import re UpperCamelCase_ = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)') UpperCamelCase_ = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)') UpperCamelCase_ = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)') UpperCamelCase_ = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)') for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__lowercase): UpperCamelCase_ = re_encoder_block_conv_in.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[2]) * 2 + int(groups[3]) UpperCamelCase_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" UpperCamelCase_ = re_encoder_block_conv_in.sub(__lowercase , __lowercase) elif re_encoder_block_resnet.fullmatch(__lowercase): UpperCamelCase_ = re_encoder_block_resnet.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[2]) * 2 + int(groups[3]) UpperCamelCase_ = {'1': 1, '3': 2}[groups[-2]] UpperCamelCase_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" UpperCamelCase_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase_ = prefix + resnet_block UpperCamelCase_ = re_encoder_block_resnet.sub(__lowercase , __lowercase) elif re_encoder_block_proj_out.fullmatch(__lowercase): UpperCamelCase_ = re_encoder_block_proj_out.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" UpperCamelCase_ = re_encoder_block_proj_out.sub(__lowercase , __lowercase) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__lowercase): UpperCamelCase_ = re_decoder_block_conv_out.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[2]) * 2 + int(groups[3]) - 2 UpperCamelCase_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" UpperCamelCase_ = re_decoder_block_conv_out.sub(__lowercase , __lowercase) elif re_decoder_block_resnet.fullmatch(__lowercase): UpperCamelCase_ = re_decoder_block_resnet.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[2]) * 2 + int(groups[3]) - 2 UpperCamelCase_ = {'1': 1, '3': 2}[groups[-2]] UpperCamelCase_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" UpperCamelCase_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase_ = prefix + resnet_block UpperCamelCase_ = re_decoder_block_resnet.sub(__lowercase , __lowercase) elif re_decoder_block_proj_in.fullmatch(__lowercase): UpperCamelCase_ = re_decoder_block_proj_in.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" UpperCamelCase_ = re_decoder_block_proj_in.sub(__lowercase , __lowercase) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__lowercase): UpperCamelCase_ = re_prior_cond_conv_out.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[1]) * 2 + int(groups[2]) - 2 UpperCamelCase_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" UpperCamelCase_ = re_prior_cond_conv_out.sub(__lowercase , __lowercase) elif re_prior_cond_resnet.fullmatch(__lowercase): UpperCamelCase_ = re_prior_cond_resnet.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[1]) * 2 + int(groups[2]) - 2 UpperCamelCase_ = {'1': 1, '3': 2}[groups[-2]] UpperCamelCase_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" UpperCamelCase_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase_ = prefix + resnet_block UpperCamelCase_ = re_prior_cond_resnet.sub(__lowercase , __lowercase) elif re_prior_cond_proj_in.fullmatch(__lowercase): UpperCamelCase_ = re_prior_cond_proj_in.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" UpperCamelCase_ = re_prior_cond_proj_in.sub(__lowercase , __lowercase) # keep original key else: UpperCamelCase_ = original_key UpperCamelCase_ = replace_key(__lowercase) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""") # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: UpperCamelCase_ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""") UpperCamelCase_ = original_key UpperCamelCase_ = original_key UpperCamelCase_ = value return new_dict @torch.no_grad() def _snake_case (__lowercase=None , __lowercase=None): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/")[-1]}"""): UpperCamelCase_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=__lowercase) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=__lowercase) open(f"""{pytorch_dump_folder_path}/{file.split("/")[-1]}""" , 'wb').write(r.content) UpperCamelCase_ = MODEL_MAPPING[model_name.split('/')[-1]] UpperCamelCase_ = JukeboxConfig.from_pretrained(__lowercase) UpperCamelCase_ = JukeboxModel(__lowercase) UpperCamelCase_ = [] UpperCamelCase_ = {} for i, dict_name in enumerate(__lowercase): UpperCamelCase_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/")[-1]}""")['model'] UpperCamelCase_ = {} for k in old_dic.keys(): if k.endswith('.b'): UpperCamelCase_ = old_dic[k] elif k.endswith('.w'): UpperCamelCase_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCamelCase_ = old_dic[k] else: UpperCamelCase_ = old_dic[k] UpperCamelCase_ = 'vqvae' if i == 0 else f"""priors.{3 - i}""" UpperCamelCase_ = fix_jukebox_keys(__lowercase , model.state_dict() , __lowercase , __lowercase) weight_dict.append(__lowercase) UpperCamelCase_ = weight_dict.pop(0) model.vqvae.load_state_dict(__lowercase) for i in range(len(__lowercase)): model.priors[i].load_state_dict(weight_dict[2 - i]) Path(__lowercase).mkdir(exist_ok=__lowercase) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w') as txtfile: json.dump(__lowercase , __lowercase) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(__lowercase) return weight_dict if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) snake_case__ : int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
23
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Optional[Any] = '''''' UpperCAmelCase_ : List[Any] = '''''' UpperCAmelCase_ : Any = 1 # (0 is vertical, 1 is horizontal) def _UpperCamelCase ()-> None: '''simple docstring''' __snake_case , __snake_case = get_dataset(_lowerCamelCase , _lowerCamelCase ) print('''Processing...''' ) __snake_case , __snake_case , __snake_case = update_image_and_anno(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for index, image in enumerate(_lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __snake_case = random_chars(32 ) __snake_case = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __snake_case = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(_lowerCamelCase )} with {file_name}''' ) __snake_case = [] for anno in new_annos[index]: __snake_case = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(_lowerCamelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _UpperCamelCase (_lowerCamelCase : str , _lowerCamelCase : str )-> tuple[list, list]: '''simple docstring''' __snake_case = [] __snake_case = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , '''*.txt''' ) ): __snake_case = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(_lowerCamelCase ) as in_file: __snake_case = in_file.readlines() __snake_case = os.path.join(_lowerCamelCase , f'''{label_name}.jpg''' ) __snake_case = [] for obj_list in obj_lists: __snake_case = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def _UpperCamelCase (_lowerCamelCase : list , _lowerCamelCase : list , _lowerCamelCase : int = 1 )-> tuple[list, list, list]: '''simple docstring''' __snake_case = [] __snake_case = [] __snake_case = [] for idx in range(len(_lowerCamelCase ) ): __snake_case = [] __snake_case = img_list[idx] path_list.append(_lowerCamelCase ) __snake_case = anno_list[idx] __snake_case = cva.imread(_lowerCamelCase ) if flip_type == 1: __snake_case = cva.flip(_lowerCamelCase , _lowerCamelCase ) for bbox in img_annos: __snake_case = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __snake_case = cva.flip(_lowerCamelCase , _lowerCamelCase ) for bbox in img_annos: __snake_case = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowerCamelCase ) new_imgs_list.append(_lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def _UpperCamelCase (_lowerCamelCase : int = 32 )-> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __snake_case = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
24
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = F"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() SCREAMING_SNAKE_CASE : int = [sys.executable] + distributed_args execute_subprocess_async(a , env=os.environ.copy() )
25
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
0
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *_lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase=True , _lowerCamelCase=2 ) -> Union[str, Any]: """simple docstring""" from .. import __version__ __snake_case : Optional[Any] = take_from __snake_case : Union[str, Any] = () if not isinstance(args[0] , _lowerCamelCase ): __snake_case : Union[str, Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCamelCase ).base_version ) >= version.parse(_lowerCamelCase ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __snake_case : Dict = None if isinstance(_lowerCamelCase , _lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCamelCase ),) __snake_case : List[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(_lowerCamelCase , _lowerCamelCase ): values += (getattr(_lowerCamelCase , _lowerCamelCase ),) __snake_case : str = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __snake_case : str = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __snake_case : List[str] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , _lowerCamelCase , stacklevel=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0: __snake_case : Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : int = call_frame.filename __snake_case : Union[str, Any] = call_frame.lineno __snake_case : Union[str, Any] = call_frame.function __snake_case , __snake_case : str = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(_lowerCamelCase ) == 0: return elif len(_lowerCamelCase ) == 1: return values[0] return values
26
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCamelCase_ = TypeVar("T") class _a ( Generic[T] ): '''simple docstring''' def __init__( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any | T = None SCREAMING_SNAKE_CASE : int = len(A ) SCREAMING_SNAKE_CASE : list[T] = [any_type for _ in range(self.N )] + arr SCREAMING_SNAKE_CASE : int = fnc self.build() def UpperCamelCase_ ( self ): '''simple docstring''' for p in range(self.N - 1, 0, -1 ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.fn(self.st[p * 2], self.st[p * 2 + 1] ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' p += self.N SCREAMING_SNAKE_CASE : str = v while p > 1: SCREAMING_SNAKE_CASE : Union[str, Any] = p // 2 SCREAMING_SNAKE_CASE : List[str] = self.fn(self.st[p * 2], self.st[p * 2 + 1] ) def UpperCamelCase_ ( self, A, A ): # noqa: E741 '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = l + self.N, r + self.N SCREAMING_SNAKE_CASE : T | None = None while l <= r: if l % 2 == 1: SCREAMING_SNAKE_CASE : Any = self.st[l] if res is None else self.fn(A, self.st[l] ) if r % 2 == 0: SCREAMING_SNAKE_CASE : Optional[Any] = self.st[r] if res is None else self.fn(A, self.st[r] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCamelCase_ = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] UpperCamelCase_ = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } UpperCamelCase_ = SegmentTree(test_array, min) UpperCamelCase_ = SegmentTree(test_array, max) UpperCamelCase_ = SegmentTree(test_array, lambda a, b: a + b) def lowercase__( ): """simple docstring""" for i in range(len(__UpperCamelCase ) ): for j in range(__UpperCamelCase ,len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE : Dict = reduce(__UpperCamelCase ,test_array[i : j + 1] ) SCREAMING_SNAKE_CASE : Dict = reduce(__UpperCamelCase ,test_array[i : j + 1] ) SCREAMING_SNAKE_CASE : Dict = reduce(lambda __UpperCamelCase ,__UpperCamelCase : a + b ,test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__UpperCamelCase ,__UpperCamelCase ) assert max_range == max_segment_tree.query(__UpperCamelCase ,__UpperCamelCase ) assert sum_range == sum_segment_tree.query(__UpperCamelCase ,__UpperCamelCase ) test_all_segments() for index, value in test_updates.items(): UpperCamelCase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
28
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
0
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) return n == n[::-1] def lowercase ( lowerCAmelCase__ = 1_000_000 ): lowerCamelCase_ = 0 for i in range(1 ,lowerCAmelCase__ ): if is_palindrome(lowerCAmelCase__ ) and is_palindrome(bin(lowerCAmelCase__ ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
29
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __a = logging.getLogger(__name__) def lowerCamelCase__ ( _lowercase=2 , _lowercase=3 , _lowercase=16 , _lowercase = 10 , _lowercase = 2 ): '''simple docstring''' def get_dataset(_lowercase ): UpperCAmelCase_ : Optional[int] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_lowercase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Tuple = get_dataset(_lowercase ) UpperCAmelCase_ : List[Any] = get_dataset(_lowercase ) UpperCAmelCase_ : Optional[int] = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [] for epoch in range(_lowercase ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_, UpperCAmelCase_ : int = batch UpperCAmelCase_ : List[Any] = model(_lowercase ) UpperCAmelCase_ : Dict = torch.nn.functional.mse_loss(_lowercase , _lowercase ) accelerator.backward(_lowercase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __a( nn.Module ): """simple docstring""" def __init__( self ) -> Dict: super().__init__() UpperCAmelCase_ : List[str] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : int = nn.Parameter(torch.randn(1 ) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: return x * self.a + self.b class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(total_limit=1 ,project_dir=_SCREAMING_SNAKE_CASE ,automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def a__ ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Union[str, Any] = Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save initial UpperCAmelCase_ : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE ,'''initial''' ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : int = model.a.item(), model.b.item() UpperCAmelCase_ : Tuple = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Dict = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : List[Any] = dummy_dataloaders() UpperCAmelCase_ : List[str] = Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) accelerator.load_state(_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = train(2 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoint''' ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) # Load everything back in and make sure all states work accelerator.load_state(_SCREAMING_SNAKE_CASE ) test_rands += train(1 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : str = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : int = dummy_dataloaders() UpperCAmelCase_ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_SCREAMING_SNAKE_CASE ,project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() ((UpperCAmelCase_), (UpperCAmelCase_)) : int = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() UpperCAmelCase_ : int = train(3 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = dummy_dataloaders() UpperCAmelCase_ : List[str] = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = Accelerator(project_dir=_SCREAMING_SNAKE_CASE ,project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) accelerator.load_state(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_0''' ) ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Dict = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = train(2 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_1''' ) ) test_rands += train(1 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : str = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Tuple = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Optional[int] = Accelerator() with self.assertRaises(_SCREAMING_SNAKE_CASE ) as ve: accelerator.register_for_checkpointing(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def a__ ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_ : Union[str, Any] = torch.optim.lr_scheduler.StepLR(_SCREAMING_SNAKE_CASE ,step_size=1 ,gamma=0.99 ) UpperCAmelCase_, UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : str = ProjectConfiguration(automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase_ : List[str] = Accelerator(project_dir=_SCREAMING_SNAKE_CASE ,project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : List[Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() UpperCAmelCase_ : int = scheduler.state_dict() train(3 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertNotEqual(_SCREAMING_SNAKE_CASE ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_0''' ) ) self.assertEqual(_SCREAMING_SNAKE_CASE ,scheduler.state_dict() ) def a__ ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : List[str] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ,total_limit=2 ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_SCREAMING_SNAKE_CASE ,project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(_SCREAMING_SNAKE_CASE ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_10''' ) ) ) @require_cuda def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_SCREAMING_SNAKE_CASE ,env=os.environ.copy() ) if __name__ == "__main__": __a = '/tmp/accelerate/state_checkpointing' __a = DummyModel() __a = torch.optim.Adam(params=model.parameters(), lr=1E-3) __a = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __a ,__a = dummy_dataloaders() __a = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __a = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __a ,__a ,__a ,__a ,__a = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __a ,__a = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __a = group['params'][0].device break assert param_device.type == accelerator.device.type __a = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __a = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __a = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
30
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : List[str] = True lowerCamelCase__ : Optional[Any] = False if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowerCamelCase__ : Optional[Any] = parser.parse_args() lowerCamelCase__ : List[Any] = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } lowerCamelCase__ : str = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } lowerCamelCase__ : str = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: lowerCamelCase__ : Optional[int] = reader.read() lowerCamelCase__ : Optional[int] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): lowerCamelCase__ : Any = UNetaDModel(**config) else: lowerCamelCase__ : Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel lowerCamelCase__ : Optional[Any] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCamelCase__ : Optional[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCamelCase__ : List[str] = config[key] del config[key] lowerCamelCase__ : str = [k.replace('UNetRes', '') for k in config['down_block_types']] lowerCamelCase__ : List[str] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: lowerCamelCase__ : Optional[Any] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) lowerCamelCase__ : Dict = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue lowerCamelCase__ : int = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: lowerCamelCase__ : Dict = param_value lowerCamelCase__ : str = True if not has_changed: lowerCamelCase__ : Dict = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
31
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __UpperCamelCase ( unittest.TestCase ): def __init__( self , _UpperCamelCase ): _UpperCAmelCase = parent def UpperCamelCase( self ): return {} def A__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' _UpperCAmelCase = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCamelCase( self ): _UpperCAmelCase = MarkupLMFeatureExtractionTester(self ) @property def UpperCamelCase( self ): return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCamelCase( self ): # Initialize feature_extractor _UpperCAmelCase = self.feature_extraction_class() # Test not batched input _UpperCAmelCase = get_html_strings()[0] _UpperCAmelCase = feature_extractor(_UpperCamelCase ) # fmt: off _UpperCAmelCase = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] _UpperCAmelCase = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , _UpperCamelCase ) self.assertEqual(encoding.xpaths , _UpperCamelCase ) # Test batched _UpperCAmelCase = get_html_strings() _UpperCAmelCase = feature_extractor(_UpperCamelCase ) # fmt: off _UpperCAmelCase = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] _UpperCAmelCase = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _UpperCamelCase ) self.assertEqual(encoding.xpaths , _UpperCamelCase )
32
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Any , *_a:List[Any] , **_a:Any ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
0
"""simple docstring""" import numpy as np def __snake_case ( _lowercase ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def a ( A__ ) -> int: '''simple docstring''' return EnvironmentCommand() def a ( A__ ) -> int: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : int = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowercase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowercase ) def __init__( self : Any , _lowercase : int , *_lowercase : int ): SCREAMING_SNAKE_CASE__ : Any = accelerate_config_file def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_safetensors_available(): import safetensors SCREAMING_SNAKE_CASE__ : int = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors SCREAMING_SNAKE_CASE__ : Any = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" SCREAMING_SNAKE_CASE__ : int = '''not installed''' SCREAMING_SNAKE_CASE__ : List[str] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowercase ): SCREAMING_SNAKE_CASE__ : int = load_config_from_file(self._accelerate_config_file ).to_dict() SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( '''\n'''.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else f"""\t{accelerate_config}""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : int = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : Tuple = torch.__version__ SCREAMING_SNAKE_CASE__ : int = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''NA''' if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ : int = tf.__version__ try: # deprecated in v2.1 SCREAMING_SNAKE_CASE__ : Tuple = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool SCREAMING_SNAKE_CASE__ : List[Any] = bool(tf.config.list_physical_devices('''GPU''' ) ) SCREAMING_SNAKE_CASE__ : int = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[str] = '''not installed''' SCREAMING_SNAKE_CASE__ : int = '''NA''' if is_flax_available(): import flax import jax import jaxlib SCREAMING_SNAKE_CASE__ : Optional[int] = flax.__version__ SCREAMING_SNAKE_CASE__ : Optional[int] = jax.__version__ SCREAMING_SNAKE_CASE__ : int = jaxlib.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = jax.lib.xla_bridge.get_backend().platform SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f"""{safetensors_version}""", '''Accelerate version''': f"""{accelerate_version}""", '''Accelerate config''': f"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': f"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': f"""{flax_version} ({jax_backend})""", '''Jax version''': f"""{jax_version}""", '''JaxLib version''': f"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Any ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
from math import pi def lowercase ( __A : int , __A : int ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
36
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) UpperCamelCase : int = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class A__ ( A__ ): """simple docstring""" _lowercase = 'gptsan-japanese' _lowercase = [ 'past_key_values', ] _lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : str , lowerCamelCase__ : Tuple=36_000 , lowerCamelCase__ : Optional[int]=1_280 , lowerCamelCase__ : Any=1_024 , lowerCamelCase__ : Dict=8_192 , lowerCamelCase__ : Any=4_096 , lowerCamelCase__ : Optional[int]=128 , lowerCamelCase__ : Optional[int]=10 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : int=16 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : List[Any]=128 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : int=1E-5 , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Any="float32" , lowerCamelCase__ : str=False , lowerCamelCase__ : Any=False , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : str=0.002 , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Union[str, Any]=35_998 , lowerCamelCase__ : List[str]=35_995 , lowerCamelCase__ : int=35_999 , **lowerCamelCase__ : int , ): a__ : Optional[Any] = vocab_size a__ : Tuple = max_position_embeddings a__ : str = d_model a__ : Tuple = d_ff a__ : Tuple = d_ext a__ : List[Any] = d_spout a__ : str = num_switch_layers a__ : List[Any] = num_ext_layers a__ : List[Any] = num_switch_layers + num_ext_layers a__ : Dict = num_heads a__ : List[str] = num_experts a__ : Optional[Any] = expert_capacity a__ : str = dropout_rate a__ : int = layer_norm_epsilon a__ : Any = router_bias a__ : Dict = router_jitter_noise a__ : Any = router_dtype a__ : Optional[Any] = router_ignore_padding_tokens a__ : Optional[Any] = output_hidden_states a__ : List[Any] = output_attentions a__ : Any = initializer_factor a__ : List[Any] = output_router_logits a__ : Dict = use_cache super().__init__( separator_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
37
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
0
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=9_9 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : Dict = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Any = seq_length snake_case__ : int = is_training snake_case__ : List[Any] = use_input_mask snake_case__ : Dict = use_token_type_ids snake_case__ : Optional[Any] = use_labels snake_case__ : Optional[int] = vocab_size snake_case__ : List[str] = hidden_size snake_case__ : str = embedding_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : List[str] = type_sequence_label_size snake_case__ : Union[str, Any] = initializer_range snake_case__ : Tuple = num_labels snake_case__ : List[Any] = num_choices snake_case__ : Union[str, Any] = scope def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Tuple = None if self.use_input_mask: snake_case__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : int = None if self.use_token_type_ids: snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : List[Any] = None snake_case__ : str = None snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = MegatronBertModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[int] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = MegatronBertForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = MegatronBertForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[int] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = MegatronBertForNextSentencePrediction(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Any = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = MegatronBertForPreTraining(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[int] = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , next_sentence_label=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = MegatronBertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Tuple = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = self.num_labels snake_case__ : Optional[int] = MegatronBertForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : str = MegatronBertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Tuple = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_choices snake_case__ : Dict = MegatronBertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Tuple = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[int] = config_and_inputs snake_case__ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True # test_resize_embeddings = False lowerCamelCase__ = False def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): snake_case__ : List[Any] = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): snake_case__ : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) return inputs_dict def __UpperCamelCase ( self ): snake_case__ : Tuple = MegatronBertModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return torch.tensor( __magic_name__ , dtype=torch.long , device=__magic_name__ , ) A_ : str = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def __UpperCamelCase ( self ): snake_case__ : int = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: snake_case__ : Union[str, Any] = os.path.join(os.environ["""MYDIR"""] , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = MegatronBertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.half() snake_case__ : Any = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )[0] snake_case__ : List[str] = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : str = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): snake_case__ : List[Any] = output[0, ii, jj] snake_case__ : Optional[int] = expected[3 * ii + jj] snake_case__ : Dict = """ii={} jj={} a={} b={}""".format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertTrue(math.isclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rel_tol=__SCREAMING_SNAKE_CASE , abs_tol=__SCREAMING_SNAKE_CASE ) , msg=__SCREAMING_SNAKE_CASE )
38
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
0
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 20 ): snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowerCAmelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
39
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off __UpperCAmelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = ["input_ids", "attention_mask"] UpperCAmelCase__ : int = NllbTokenizer UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else mask_token UpperCamelCase : Dict = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, src_lang=SCREAMING_SNAKE_CASE_, tgt_lang=SCREAMING_SNAKE_CASE_, additional_special_tokens=SCREAMING_SNAKE_CASE_, legacy_behaviour=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[int] = vocab_file UpperCamelCase : int = False if not self.vocab_file else True UpperCamelCase : int = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) UpperCamelCase : Optional[int] = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Optional[int] = src_lang if src_lang is not None else 'eng_Latn' UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case_ ( self ) -> str: return self._src_lang @src_lang.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCamelCase : str = src_lang UpperCamelCase : List[str] = self(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = tgt_lang_id return inputs def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "eng_Latn", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "fra_Latn", **SCREAMING_SNAKE_CASE_, ) -> BatchEncoding: UpperCamelCase : Union[str, Any] = src_lang UpperCamelCase : str = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ ( self ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : List[Any] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) if self.legacy_behaviour: UpperCamelCase : Union[str, Any] = [] UpperCamelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase : Optional[int] = [self.cur_lang_code] UpperCamelCase : List[str] = [self.eos_token_id] UpperCamelCase : int = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : List[str] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) if self.legacy_behaviour: UpperCamelCase : Optional[Any] = [] UpperCamelCase : Any = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase : int = [self.cur_lang_code] UpperCamelCase : Tuple = [self.eos_token_id] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Tuple = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase__ = 8.988e9 # units = N * m^s * C^-2 def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __lowercase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __lowercase = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __lowercase = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __lowercase = (COULOMBS_CONSTANT * charge_product / abs(A__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
41
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'ylacombe/bark-small' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = 'en_speaker_1' lowerCamelCase_ = 'This is a test string' lowerCamelCase_ = 'speaker_embeddings_path.json' lowerCamelCase_ = 'speaker_embeddings' def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 35 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
42
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
0
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : int = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : int,__A : int,__A : float,**__A : List[str] ): _lowerCamelCase : Dict = feature_size _lowerCamelCase : List[Any] = sampling_rate _lowerCamelCase : str = padding_value _lowerCamelCase : List[Any] = kwargs.pop("padding_side","right" ) _lowerCamelCase : int = kwargs.pop("return_attention_mask",__A ) super().__init__(**__A ) def lowerCamelCase_ ( self : Dict,__A : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ],__A : Union[bool, str, PaddingStrategy] = True,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[bool] = None,__A : Optional[Union[str, TensorType]] = None,): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__A,(list, tuple) ) and isinstance(processed_features[0],(dict, BatchFeature) ): _lowerCamelCase : Optional[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) _lowerCamelCase : Any = processed_features[self.model_input_names[0]] _lowerCamelCase : int = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__A ) == 0: if return_attention_mask: _lowerCamelCase : Tuple = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowerCamelCase : Union[str, Any] = required_input[0] if isinstance(__A,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowerCamelCase : Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__A ): _lowerCamelCase : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(__A ): _lowerCamelCase : Union[str, Any] = "tf" elif is_torch_tensor(__A ): _lowerCamelCase : str = "pt" elif isinstance(__A,(int, float, list, tuple, np.ndarray) ): _lowerCamelCase : Tuple = "np" else: raise ValueError( f'type of {first_element} unknown: {type(__A )}. ' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0],(int, float) ): _lowerCamelCase : List[str] = to_numpy(__A ) else: _lowerCamelCase : str = [to_numpy(__A ) for v in value] # Convert padding_strategy in PaddingStrategy _lowerCamelCase : int = self._get_padding_strategies(padding=__A,max_length=__A ) _lowerCamelCase : Optional[Any] = processed_features[self.model_input_names[0]] _lowerCamelCase : Union[str, Any] = len(__A ) if not all(len(__A ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) _lowerCamelCase : Optional[Any] = [] for i in range(__A ): _lowerCamelCase : Dict = {k: v[i] for k, v in processed_features.items()} # truncation _lowerCamelCase : Optional[int] = self._truncate( __A,max_length=__A,pad_to_multiple_of=__A,truncation=__A,) truncated_inputs.append(__A ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowerCamelCase : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowerCamelCase : Any = PaddingStrategy.MAX_LENGTH _lowerCamelCase : str = {} for i in range(__A ): # padding _lowerCamelCase : Tuple = self._pad( truncated_inputs[i],max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) for key, value in outputs.items(): if key not in batch_outputs: _lowerCamelCase : List[Any] = [] if value.dtype is np.dtype(np.floataa ): _lowerCamelCase : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(__A ) return BatchFeature(__A,tensor_type=__A ) def lowerCamelCase_ ( self : List[Any],__A : Union[Dict[str, np.ndarray], BatchFeature],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowerCamelCase : List[Any] = len(__A ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowerCamelCase : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowerCamelCase : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__A ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowerCamelCase : Tuple = np.ones(len(__A ),dtype=np.intaa ) if needs_to_be_padded: _lowerCamelCase : List[Any] = max_length - len(__A ) if self.padding_side == "right": if return_attention_mask: _lowerCamelCase : Tuple = np.pad( processed_features["attention_mask"],(0, difference) ) _lowerCamelCase : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowerCamelCase : Dict = np.pad( __A,__A,"constant",constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowerCamelCase : int = np.pad( processed_features["attention_mask"],(difference, 0) ) _lowerCamelCase : Union[str, Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowerCamelCase : Union[str, Any] = np.pad( __A,__A,"constant",constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def lowerCamelCase_ ( self : int,__A : Union[Dict[str, np.ndarray], BatchFeature],__A : Optional[int] = None,__A : Optional[int] = None,__A : Optional[bool] = None,): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) _lowerCamelCase : int = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowerCamelCase : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowerCamelCase : Optional[Any] = len(__A ) > max_length if needs_to_be_truncated: _lowerCamelCase : List[str] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowerCamelCase : Optional[int] = processed_features["attention_mask"][:max_length] return processed_features def lowerCamelCase_ ( self : int,__A : List[str]=False,__A : Optional[int]=None ): # Get padding strategy if padding is not False: if padding is True: _lowerCamelCase : Tuple = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__A,__A ): _lowerCamelCase : Optional[Any] = PaddingStrategy(__A ) elif isinstance(__A,__A ): _lowerCamelCase : Tuple = padding else: _lowerCamelCase : List[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
44
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
0
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : def __init__( self: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any]=13 ,__lowerCAmelCase: str=32 ,__lowerCAmelCase: Any=2 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: str=16 ,__lowerCAmelCase: Any=[1, 2, 1] ,__lowerCAmelCase: List[Any]=[2, 2, 4] ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: List[str]=2.0 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: Union[str, Any]=0.0 ,__lowerCAmelCase: Dict=0.0 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: Tuple="gelu" ,__lowerCAmelCase: List[str]=False ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-5 ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: List[Any]=10 ,__lowerCAmelCase: int=8 ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : List[Any] = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : str = num_channels _lowerCamelCase : Optional[int] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : Optional[int] = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : Union[str, Any] = mlp_ratio _lowerCamelCase : Tuple = qkv_bias _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Optional[int] = use_absolute_embeddings _lowerCamelCase : Optional[int] = patch_norm _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : int = scope _lowerCamelCase : Any = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Dict = encoder_stride def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def _lowercase ( self: Tuple ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def _lowercase ( self: Dict ,__lowerCAmelCase: Any ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = SwinvaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) _lowerCamelCase : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Tuple = SwinvaForMaskedImageModeling(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Tuple = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Optional[Any] = SwinvaForMaskedImageModeling(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ,__lowerCAmelCase: List[Any] ): '''simple docstring''' _lowerCamelCase : int = self.type_sequence_label_size _lowerCamelCase : Tuple = SwinvaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase__ = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[int] = SwinvaModelTester(self ) _lowerCamelCase : Dict = ConfigTester(self ,config_class=__lowerCAmelCase ,embed_dim=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def _lowercase ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def _lowercase ( self: List[str] ): '''simple docstring''' pass def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : List[str] = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : List[Any] = True for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = True _lowerCamelCase : Tuple = False _lowerCamelCase : int = True _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : List[Any] = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : int = outputs.attentions _lowerCamelCase : int = len(self.model_tester.depths ) self.assertEqual(len(__lowerCAmelCase ) ,__lowerCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCamelCase : int = True _lowerCamelCase : Any = config.window_size**2 _lowerCamelCase : Tuple = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Dict = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) # Check attention is always last and order is fine _lowerCamelCase : Tuple = True _lowerCamelCase : List[Any] = True _lowerCamelCase : Tuple = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : List[Any] = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) if hasattr(self.model_tester ,"num_hidden_states_types" ): _lowerCamelCase : Optional[int] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _lowerCamelCase : Union[str, Any] = 2 self.assertEqual(out_len + added_hidden_states ,len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def _lowercase ( self: Tuple ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : Union[str, Any] = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : int = outputs.hidden_states _lowerCamelCase : Optional[Any] = getattr( self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__lowerCAmelCase ) ,__lowerCAmelCase ) # Swinv2 has a different seq_length _lowerCamelCase : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) _lowerCamelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__lowerCAmelCase ) ,__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : Tuple = ( reshaped_hidden_states[0].view(__lowerCAmelCase ,__lowerCAmelCase ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = True self.check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Union[str, Any] = 3 _lowerCamelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = True self.check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Tuple = True self.check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,(padded_height, padded_width) ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = SwinvaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = _config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(config=__lowerCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: Optional[int] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( __lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.default_image_processor _lowerCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : str = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ) # verify the logits _lowerCamelCase : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowerCAmelCase ,atol=1e-4 ) )
46
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
def UpperCAmelCase__ ( lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __a : Optional[Any] = 1 __a : Tuple = 1 __a : Dict = {1: 1} for inputa in range(2 , lowerCamelCase_ ): __a : str = 0 __a : Optional[int] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __a : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __a : Union[str, Any] = counter if counter > pre_counter: __a : Dict = inputa __a : Optional[int] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
47
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A : def __init__( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int=13 , __magic_name__ : List[Any]=7 , __magic_name__ : Any=True , __magic_name__ : Optional[int]=True , __magic_name__ : Tuple=False , __magic_name__ : List[Any]=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=32 , __magic_name__ : str=5 , __magic_name__ : int=4 , __magic_name__ : Dict=37 , __magic_name__ : Tuple="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Dict=16 , __magic_name__ : Any=2 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=3 , __magic_name__ : List[str]=4 , __magic_name__ : Union[str, Any]=None , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , use_stable_embedding=__magic_name__ , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = OpenLlamaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = OpenLlamaModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , ) lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , ) lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = OpenLlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = OpenLlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # first forward pass lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , use_cache=__magic_name__ , ) lowerCAmelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , output_hidden_states=__magic_name__ , )["hidden_states"][0] lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , output_hidden_states=__magic_name__ , )["hidden_states"][0] # select random slice lowerCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Dict = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ :Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ :List[str] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ :List[str] = False snake_case__ :Any = False def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = OpenLlamaModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ = type self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = input_dict["input_ids"] lowerCAmelCase__ = input_ids.ne(1 ).to(__magic_name__ ) lowerCAmelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ = OpenLlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = "single_label_classification" lowerCAmelCase__ = input_dict["input_ids"] lowerCAmelCase__ = input_ids.ne(1 ).to(__magic_name__ ) lowerCAmelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ = OpenLlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = "multi_label_classification" lowerCAmelCase__ = input_dict["input_ids"] lowerCAmelCase__ = input_ids.ne(1 ).to(__magic_name__ ) lowerCAmelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ = OpenLlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ = OpenLlamaModel(__magic_name__ ) original_model.to(__magic_name__ ) original_model.eval() lowerCAmelCase__ = original_model(__magic_name__ ).last_hidden_state lowerCAmelCase__ = original_model(__magic_name__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ = {"type": scaling_type, "factor": 10.0} lowerCAmelCase__ = OpenLlamaModel(__magic_name__ ) scaled_model.to(__magic_name__ ) scaled_model.eval() lowerCAmelCase__ = scaled_model(__magic_name__ ).last_hidden_state lowerCAmelCase__ = scaled_model(__magic_name__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) )
48
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _UpperCAmelCase ( _lowerCAmelCase ): a__ : torch.FloatTensor class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : Optional[int] , _lowercase : int = 3 , _lowercase : int = 3 , _lowercase : Tuple[str] = ("DownEncoderBlock2D",) , _lowercase : Tuple[str] = ("UpDecoderBlock2D",) , _lowercase : Tuple[int] = (64,) , _lowercase : int = 1 , _lowercase : str = "silu" , _lowercase : int = 3 , _lowercase : int = 32 , _lowercase : int = 2_56 , _lowercase : int = 32 , _lowercase : Optional[int] = None , _lowercase : float = 0.18_215 , _lowercase : str = "group" , ): super().__init__() # pass init params to Encoder __UpperCAmelCase = Encoder( in_channels=_lowercase , out_channels=_lowercase , down_block_types=_lowercase , block_out_channels=_lowercase , layers_per_block=_lowercase , act_fn=_lowercase , norm_num_groups=_lowercase , double_z=_lowercase , ) __UpperCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels __UpperCAmelCase = nn.Convad(_lowercase , _lowercase , 1 ) __UpperCAmelCase = VectorQuantizer(_lowercase , _lowercase , beta=0.25 , remap=_lowercase , sane_index_shape=_lowercase ) __UpperCAmelCase = nn.Convad(_lowercase , _lowercase , 1 ) # pass init params to Decoder __UpperCAmelCase = Decoder( in_channels=_lowercase , out_channels=_lowercase , up_block_types=_lowercase , block_out_channels=_lowercase , layers_per_block=_lowercase , act_fn=_lowercase , norm_num_groups=_lowercase , norm_type=_lowercase , ) @apply_forward_hook def a ( self : List[Any] , _lowercase : torch.FloatTensor , _lowercase : bool = True ): __UpperCAmelCase = self.encoder(_lowercase ) __UpperCAmelCase = self.quant_conv(_lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowercase ) @apply_forward_hook def a ( self : Dict , _lowercase : torch.FloatTensor , _lowercase : bool = False , _lowercase : bool = True ): # also go through quantization layer if not force_not_quantize: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.quantize(_lowercase ) else: __UpperCAmelCase = h __UpperCAmelCase = self.post_quant_conv(_lowercase ) __UpperCAmelCase = self.decoder(_lowercase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowercase ) def a ( self : Optional[Any] , _lowercase : torch.FloatTensor , _lowercase : bool = True ): __UpperCAmelCase = sample __UpperCAmelCase = self.encode(_lowercase ).latents __UpperCAmelCase = self.decode(_lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowercase )
49
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = [] for line in lines: lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) lowerCamelCase__ = """\n""".join(__lowerCAmelCase ) # Make a hash from all this code lowerCamelCase__ = full_str.encode("""utf-8""" ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCamelCase : Dict = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase : str = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase : List[Any] = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
50
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
0
'''simple docstring''' import math import sys def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 UpperCAmelCase = [-1] * (number + 1) UpperCAmelCase = 0 for i in range(1 , number + 1 ): UpperCAmelCase = sys.maxsize UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): UpperCAmelCase = 1 + answers[i - (j**2)] UpperCAmelCase = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : str = logging.get_logger(__name__) _snake_case : Any = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """speech_to_text_2""" a_ = ["""past_key_values"""] a_ = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Tuple , lowerCAmelCase_ : str=1_0_0_0_0 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]="relu" , lowerCAmelCase_ : int=2_5_6 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1_0_2_4 , **lowerCAmelCase_ : Optional[Any] , ) -> Optional[Any]: __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = decoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = max_target_positions super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
53
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : str =logging.get_logger(__name__) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =os.path.abspath(lowercase__ ) logger.info(F'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model UpperCAmelCase_ =tf.train.list_variables(lowercase__ ) UpperCAmelCase_ =[] UpperCAmelCase_ =[] UpperCAmelCase_ =[] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCAmelCase_ =full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(F'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' UpperCAmelCase_ =name[1:] # figure out how many levels deep the name is UpperCAmelCase_ =0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(lowercase__ ) # read data UpperCAmelCase_ =tf.train.load_variable(lowercase__ , lowercase__ ) names.append("/".join(lowercase__ ) ) arrays.append(lowercase__ ) logger.info(F'Read a total of {len(lowercase__ ):,} layers' ) # Sanity check if len(set(lowercase__ ) ) != 1: raise ValueError(F'Found layer names with different depths (layer depth {list(set(lowercase__ ) )})' ) UpperCAmelCase_ =list(set(lowercase__ ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(lowercase__ , lowercase__ ): UpperCAmelCase_ =full_name.split("/" ) UpperCAmelCase_ =model UpperCAmelCase_ =[] for i, m_name in enumerate(lowercase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): UpperCAmelCase_ =int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) UpperCAmelCase_ =getattr(lowercase__ , "embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) UpperCAmelCase_ =getattr(lowercase__ , "encoder" ) UpperCAmelCase_ =getattr(lowercase__ , "layer" ) UpperCAmelCase_ =pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) UpperCAmelCase_ =getattr(lowercase__ , "pooler" ) UpperCAmelCase_ =getattr(lowercase__ , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "token_type_embeddings" ) else: raise ValueError(F'Unknown embedding layer with name {full_name}' ) trace.append("weight" ) UpperCAmelCase_ =getattr(lowercase__ , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) UpperCAmelCase_ =getattr(lowercase__ , "attention" ) UpperCAmelCase_ =getattr(lowercase__ , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) UpperCAmelCase_ =getattr(lowercase__ , "attention" ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) UpperCAmelCase_ =getattr(lowercase__ , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) UpperCAmelCase_ =getattr(lowercase__ , "attention" ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) UpperCAmelCase_ =getattr(lowercase__ , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) UpperCAmelCase_ =getattr(lowercase__ , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) UpperCAmelCase_ =getattr(lowercase__ , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) UpperCAmelCase_ =getattr(lowercase__ , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) UpperCAmelCase_ =getattr(lowercase__ , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) UpperCAmelCase_ =getattr(lowercase__ , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) UpperCAmelCase_ =getattr(lowercase__ , "intermediate" ) UpperCAmelCase_ =getattr(lowercase__ , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) UpperCAmelCase_ =getattr(lowercase__ , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) UpperCAmelCase_ =getattr(lowercase__ , "weight" ) else: logger.warning(F'Ignored {m_name}' ) # for certain layers reshape is necessary UpperCAmelCase_ =".".join(lowercase__ ) if re.match(R"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , lowercase__ ) or re.match( R"(\S+)\.attention\.output\.dense\.weight" , lowercase__ ): UpperCAmelCase_ =array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCAmelCase_ =array.transpose() if pointer.shape == array.shape: UpperCAmelCase_ =torch.from_numpy(lowercase__ ) else: raise ValueError( F'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' F' {array.shape}' ) logger.info(F'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' logger.info(F'Loading model based on config from {config_path}...' ) UpperCAmelCase_ =BertConfig.from_json_file(lowercase__ ) UpperCAmelCase_ =BertModel(lowercase__ ) # Load weights from checkpoint logger.info(F'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model logger.info(F'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": __lowercase : Dict =argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) __lowercase : int =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
54
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
55
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _a : str = logging.get_logger(__name__) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" __snake_case = torch.load(lowercase__ , map_location='cpu' ) if "model" in sd.keys(): __snake_case = torch.load(lowercase__ , map_location='cpu' )['model'] # pop unnecessary weights __snake_case = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) __snake_case = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __snake_case = sd.pop(lowercase__ ) __snake_case = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __snake_case = sd[key] # We split QKV in separate Q,K,V __snake_case = key.replace('.qkv_proj.' , '.q_proj.' ) __snake_case = key.replace('.qkv_proj.' , '.k_proj.' ) __snake_case = key.replace('.qkv_proj.' , '.v_proj.' ) __snake_case = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __snake_case , __snake_case , __snake_case = torch.split(lowercase__ , depth // 3 , dim=0 ) __snake_case = q __snake_case = k __snake_case = v del sd[key] return sd @torch.no_grad() def _a (lowercase__ : str , lowercase__ : Tuple , lowercase__ : List[Any]=None ) -> Optional[int]: """simple docstring""" __snake_case = load_checkpoint(lowercase__ ) if config is not None: __snake_case = OPTConfig.from_pretrained(lowercase__ ) else: __snake_case = OPTConfig() __snake_case = OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": _a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") _a : List[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : Optional[Any] = 16 A_ : List[Any] = 32 def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = 1_6 , UpperCAmelCase__ = "bert-base-cased" ) -> Union[str, Any]: UpperCamelCase_: str = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_: Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_: Tuple = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_: Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. UpperCamelCase_: Dict = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) UpperCamelCase_: Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: # Initialize accelerator UpperCamelCase_: List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_: List[str] = config['lr'] UpperCamelCase_: Any = int(config['num_epochs'] ) UpperCamelCase_: str = int(config['seed'] ) UpperCamelCase_: Union[str, Any] = int(config['batch_size'] ) UpperCamelCase_: List[Any] = args.model_name_or_path set_seed(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_: int = get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_: Tuple = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) # Instantiate optimizer UpperCamelCase_: Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase_: Optional[int] = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase_: Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: UpperCamelCase_: Dict = 1 UpperCamelCase_: int = (len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase_: Dict = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase__ , ) else: UpperCamelCase_: int = DummyScheduler(UpperCAmelCase__ , total_num_steps=UpperCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Tuple = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase_: List[str] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase_: List[str] = 0 # Now we train the model UpperCamelCase_: Dict = evaluate.load('glue' , 'mrpc' ) UpperCamelCase_: Optional[int] = 0 UpperCamelCase_: Optional[Any] = {} for epoch in range(UpperCAmelCase__ , UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = model(**UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.loss UpperCamelCase_: Any = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCamelCase_: Optional[int] = 0 for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_: Optional[Any] = model(**UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase__ ) - 1: UpperCamelCase_: str = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase_: List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) UpperCamelCase_: Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: UpperCamelCase_: List[Any] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case () -> int: UpperCamelCase_: str = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase__ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase__ , default=3 , help='Number of train epochs.' , ) UpperCamelCase_: int = parser.parse_args() UpperCamelCase_: List[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
57
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
0
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ): '''simple docstring''' return (-y * np.log(__UpperCamelCase ) - (1 - y) * np.log(1 - h )).mean() def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[int] = np.dot(__UpperCamelCase , __UpperCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__UpperCamelCase ) ) ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int=7_0_0_0_0 ): '''simple docstring''' snake_case_ : Dict = np.zeros(x.shape[1] ) for iterations in range(__UpperCamelCase ): snake_case_ : Any = np.dot(__UpperCamelCase , __UpperCamelCase ) snake_case_ : List[str] = sigmoid_function(__UpperCamelCase ) snake_case_ : Optional[Any] = np.dot(x.T , h - y ) / y.size snake_case_ : str = theta - alpha * gradient # updating the weights snake_case_ : int = np.dot(__UpperCamelCase , __UpperCamelCase ) snake_case_ : List[str] = sigmoid_function(__UpperCamelCase ) snake_case_ : Dict = cost_function(__UpperCamelCase , __UpperCamelCase ) if iterations % 1_0_0 == 0: print(F'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __lowerCAmelCase : Any = datasets.load_iris() __lowerCAmelCase : List[Any] = iris.data[:, :2] __lowerCAmelCase : Tuple = (iris.target != 0) * 1 __lowerCAmelCase : Any = 0.1 __lowerCAmelCase : List[Any] = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' return sigmoid_function( np.dot(__UpperCamelCase , __UpperCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((__lowerCAmelCase) , (__lowerCAmelCase)) : Union[str, Any] = (x[:, 0].min(), x[:, 0].max()) ((__lowerCAmelCase) , (__lowerCAmelCase)) : Tuple = (x[:, 1].min(), x[:, 1].max()) ((__lowerCAmelCase) , (__lowerCAmelCase)) : Optional[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __lowerCAmelCase : Any = np.c_[xxa.ravel(), xxa.ravel()] __lowerCAmelCase : Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
58
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' lowerCamelCase__: Any =tempfile.mkdtemp() lowerCamelCase__: Any =8 # DPR tok lowerCamelCase__: Tuple =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__: int =os.path.join(self.tmpdirname , "dpr_tokenizer") os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) lowerCamelCase__: Any =os.path.join(UpperCAmelCase_ , DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok lowerCamelCase__: str =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: Tuple =["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCamelCase__: Any ={"unk_token": "<unk>"} lowerCamelCase__: str =os.path.join(self.tmpdirname , "bart_tokenizer") os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) lowerCamelCase__: Dict =os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: List[str] =os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCAmelCase_) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer")) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)], }) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT) return dataset def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.get_dummy_dataset() lowerCamelCase__: int =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: lowerCamelCase__: int =dataset lowerCamelCase__: str =RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : bool) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: int =self.get_dummy_dataset() lowerCamelCase__: int =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowerCamelCase__: Optional[Any] =os.path.join(self.tmpdirname , "dataset") lowerCamelCase__: Tuple =os.path.join(self.tmpdirname , "index.faiss") dataset.get_index("embeddings").save(os.path.join(self.tmpdirname , "index.faiss")) dataset.drop_index("embeddings") dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset")) del dataset lowerCamelCase__: Dict =RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowerCamelCase__: Tuple =RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase_) , ) return retriever def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)], }) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT) lowerCamelCase__: Dict =os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index") dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr") pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb")) lowerCamelCase__: Dict =os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl") lowerCamelCase__: str ={sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(UpperCAmelCase_ , open(UpperCAmelCase_ , "wb")) lowerCamelCase__: Dict =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowerCamelCase__: Any =RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer()) return retriever def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =1 lowerCamelCase__: List[Any] =self.get_dummy_canonical_hf_index_retriever() lowerCamelCase__: Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(UpperCAmelCase_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , UpperCAmelCase_) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: str =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: lowerCamelCase__: List[Any] =self.get_dummy_dataset() retriever.save_pretrained(UpperCAmelCase_) lowerCamelCase__: List[str] =RagRetriever.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: Any =retriever.retrieve(UpperCAmelCase_ , n_docs=1) self.assertTrue(out is not None) def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =1 lowerCamelCase__: Optional[Any] =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) lowerCamelCase__: Any =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str =retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(UpperCAmelCase_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , UpperCAmelCase_) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_) lowerCamelCase__: List[Any] =RagRetriever.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: Any =retriever.retrieve(UpperCAmelCase_ , n_docs=1) self.assertTrue(out is not None) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =1 lowerCamelCase__: Dict =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) lowerCamelCase__: str =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(UpperCAmelCase_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , UpperCAmelCase_) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =RagRetriever.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[Any] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: str =retriever.retrieve(UpperCAmelCase_ , n_docs=1) self.assertTrue(out is not None) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =1 lowerCamelCase__: Optional[int] =self.get_dummy_legacy_index_retriever() lowerCamelCase__: Any =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(UpperCAmelCase_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["text", "title"]) self.assertEqual(len(doc_dicts[0]["text"]) , UpperCAmelCase_) self.assertEqual(doc_dicts[0]["text"][0] , "bar") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_) lowerCamelCase__: Optional[int] =RagRetriever.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: int =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: Tuple =retriever.retrieve(UpperCAmelCase_ , n_docs=1) self.assertTrue(out is not None) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE_ (self : Dict) ->Union[str, Any]: '''simple docstring''' import torch lowerCamelCase__: Union[str, Any] =1 lowerCamelCase__: Optional[Any] =self.get_dummy_canonical_hf_index_retriever() lowerCamelCase__: str =[[5, 7], [10, 11]] lowerCamelCase__: List[str] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: Optional[int] =retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , np.ndarray) lowerCamelCase__: Optional[Any] =retriever( UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ , return_tensors="pt" , ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any =self.get_dpr_ctx_encoder_tokenizer() lowerCamelCase__: Dict =1 lowerCamelCase__: Tuple =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) retriever.set_ctx_encoder_tokenizer(UpperCAmelCase_) lowerCamelCase__: List[Any] =[[5, 7], [10, 11]] lowerCamelCase__: Any =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: List[Any] =retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_) self.assertEqual( len(UpperCAmelCase_) , 6) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask")) , UpperCAmelCase_) # check for doc token related keys in dictionary.
59
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase_ = { '''169M''': 1_2, '''430M''': 2_4, '''1B5''': 2_4, '''3B''': 3_2, '''7B''': 3_2, '''14B''': 4_0, } lowerCAmelCase_ = { '''169M''': 7_6_8, '''430M''': 1_0_2_4, '''1B5''': 2_0_4_8, '''3B''': 2_5_6_0, '''7B''': 4_0_9_6, '''14B''': 5_1_2_0, } def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : Optional[int] = list(state_dict.keys() ) for name in state_dict_keys: snake_case_ : Dict = state_dict.pop(_UpperCamelCase ) # emb -> embedding if name.startswith('''emb.''' ): snake_case_ : Optional[int] = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): snake_case_ : str = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention snake_case_ : str = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , _UpperCamelCase ) # ffn -> feed_forward snake_case_ : Union[str, Any] = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , _UpperCamelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): snake_case_ : Union[str, Any] = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): snake_case_ : Tuple = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): snake_case_ : Optional[Any] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": snake_case_ : str = '''rwkv.''' + name snake_case_ : Dict = weight return state_dict def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=None ) -> List[Any]: """simple docstring""" if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) snake_case_ : int = 50_277 snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: snake_case_ : str = PreTrainedTokenizerFast(tokenizer_file=_UpperCamelCase ) snake_case_ : Optional[Any] = len(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) # 2. Build the config snake_case_ : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case_ : Optional[Any] = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) snake_case_ : Dict = RwkvConfig( vocab_size=_UpperCamelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_UpperCamelCase ) # 3. Download model file then convert state_dict snake_case_ : List[Any] = hf_hub_download(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Optional[Any] = torch.load(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : Optional[Any] = convert_state_dict(_UpperCamelCase ) # 4. Split in shards and save snake_case_ , snake_case_ : List[str] = shard_checkpoint(_UpperCamelCase ) for shard_file, shard in shards.items(): torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) if index is not None: snake_case_ : Optional[int] = os.path.join(_UpperCamelCase , _UpperCamelCase ) # Save the index as well with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: snake_case_ : Optional[int] = json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + '''\n''' f.write(_UpperCamelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) snake_case_ : Optional[int] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case_ : Optional[int] = torch.load(os.path.join(_UpperCamelCase , _UpperCamelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) snake_case_ : Any = AutoModelForCausalLM.from_pretrained(_UpperCamelCase ) model.push_to_hub(_UpperCamelCase , max_shard_size='''2GB''' ) tokenizer.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) lowerCAmelCase_ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
60
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __lowerCamelCase : """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : Collection[float] | None = None ) -> None: if components is None: lowerCAmelCase__ = [] lowerCAmelCase__ = list(SCREAMING_SNAKE_CASE__ ) def __len__( self : Tuple ) -> int: return len(self.__components ) def __str__( self : List[Any] ) -> str: return "(" + ",".join(map(SCREAMING_SNAKE_CASE__ , self.__components ) ) + ")" def __add__( self : Tuple , SCREAMING_SNAKE_CASE__ : Vector ) -> Vector: lowerCAmelCase__ = len(self ) if size == len(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) else: raise Exception("must have the same size" ) def __sub__( self : str , SCREAMING_SNAKE_CASE__ : Vector ) -> Vector: lowerCAmelCase__ = len(self ) if size == len(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : List[str] , SCREAMING_SNAKE_CASE__ : float ) -> Vector: ... @overload def __mul__( self : Dict , SCREAMING_SNAKE_CASE__ : Vector ) -> float: ... def __mul__( self : int , SCREAMING_SNAKE_CASE__ : float | Vector ) -> float | Vector: if isinstance(SCREAMING_SNAKE_CASE__ , (float, int) ): lowerCAmelCase__ = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(self ) == len(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = len(self ) lowerCAmelCase__ = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return sum(SCREAMING_SNAKE_CASE__ ) else: # error case raise Exception("invalid operand!" ) def a ( self : Optional[int] ) -> Vector: return Vector(self.__components ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> float: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def a ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) lowerCAmelCase__ = value def a ( self : Tuple ) -> float: if len(self.__components ) == 0: raise Exception("Vector is empty" ) lowerCAmelCase__ = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE__ ) ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : bool = False ) -> float: lowerCAmelCase__ = self * other lowerCAmelCase__ = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _A ( lowerCAmelCase_ : int ): """simple docstring""" assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) return Vector([0] * dimension ) def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (isinstance(lowerCAmelCase_ , lowerCAmelCase_ )) lowerCAmelCase__ = [0] * dimension lowerCAmelCase__ = 1 return Vector(lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : float , lowerCAmelCase_ : Vector , lowerCAmelCase_ : Vector ): """simple docstring""" assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (isinstance(lowerCAmelCase_ , (int, float) )) ) return x * scalar + y def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" random.seed(lowerCAmelCase_ ) lowerCAmelCase__ = [random.randint(lowerCAmelCase_ , lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) class __lowerCamelCase : """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : list[list[float]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: lowerCAmelCase__ = matrix lowerCAmelCase__ = w lowerCAmelCase__ = h def __str__( self : List[str] ) -> str: lowerCAmelCase__ = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): lowerCAmelCase__ = [] for i in range(self.__height ): lowerCAmelCase__ = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE__ ) return Matrix(SCREAMING_SNAKE_CASE__ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): lowerCAmelCase__ = [] for i in range(self.__height ): lowerCAmelCase__ = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE__ ) return Matrix(SCREAMING_SNAKE_CASE__ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : float ) -> Matrix: ... @overload def __mul__( self : Tuple , SCREAMING_SNAKE_CASE__ : Vector ) -> Vector: ... def __mul__( self : List[Any] , SCREAMING_SNAKE_CASE__ : float | Vector ) -> Vector | Matrix: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # matrix-vector if len(SCREAMING_SNAKE_CASE__ ) == self.__width: lowerCAmelCase__ = zero_vector(self.__height ) for i in range(self.__height ): lowerCAmelCase__ = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] ans.change_component(SCREAMING_SNAKE_CASE__ , sum(SCREAMING_SNAKE_CASE__ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): # matrix-scalar lowerCAmelCase__ = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(SCREAMING_SNAKE_CASE__ , self.__width , self.__height ) return None def a ( self : Dict ) -> int: return self.__height def a ( self : Dict ) -> int: return self.__width def a ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: lowerCAmelCase__ = value else: raise Exception("change_component: indices out of bounds" ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) lowerCAmelCase__ = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowerCAmelCase__ = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE__ , self.__width - 1 , self.__height - 1 ).determinant() def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: raise Exception("Indices out of bounds" ) def a ( self : Any ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowerCAmelCase__ = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE__ ) for y in range(self.__width ) ] return sum(SCREAMING_SNAKE_CASE__ ) def _A ( lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = [[0] * n for _ in range(lowerCAmelCase_ )] return Matrix(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" random.seed(lowerCAmelCase_ ) lowerCAmelCase__ = [ [random.randint(lowerCAmelCase_ , lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ )] for _ in range(lowerCAmelCase_ ) ] return Matrix(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
61
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): '''simple docstring''' def _A ( self : Any ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=UpperCAmelCase_ , ) def _A ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def _A ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): '''simple docstring''' def _A ( self : str ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=UpperCAmelCase_ , ) def _A ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def _A ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase_ ) def lowerCamelCase__ ( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def lowerCamelCase__ ( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @require_beam def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE : Tuple = DummyBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) SCREAMING_SNAKE_CASE : int = builder.as_dataset() self.assertEqual(dset["train"].num_rows , UpperCAmelCase_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , UpperCAmelCase_ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _A ( self : List[Any] ): import apache_beam as beam SCREAMING_SNAKE_CASE : List[Any] = beam.io.parquetio.WriteToParquet SCREAMING_SNAKE_CASE : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE : Any = DummyBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: SCREAMING_SNAKE_CASE : Tuple = partial(UpperCAmelCase_ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( UpperCAmelCase_ , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( UpperCAmelCase_ , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) SCREAMING_SNAKE_CASE : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , UpperCAmelCase_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , UpperCAmelCase_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _A ( self : List[str] ): with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE : Optional[Any] = DummyBeamDataset(cache_dir=UpperCAmelCase_ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _A ( self : Dict ): SCREAMING_SNAKE_CASE : int = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE : Any = NestedBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) SCREAMING_SNAKE_CASE : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , UpperCAmelCase_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , UpperCAmelCase_ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
62
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
0
import re from filelock import FileLock try: import nltk a : Optional[int] = True except (ImportError, ModuleNotFoundError): a : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCamelCase__ ( __lowerCamelCase : str ): re.sub("""<n>""" , """""" , __lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowerCamelCase ) )
63
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
0
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase_ : int = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase=768 ) -> Union[str, Any]: super().__init__(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= proj_size SCREAMING_SNAKE_CASE__: Tuple= CLIPVisionModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= PaintByExampleMapper(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE__: Union[str, Any]= nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE__: Optional[Any]= nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=False ) -> Dict: SCREAMING_SNAKE_CASE__: str= self.model(pixel_values=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= clip_output.pooler_output SCREAMING_SNAKE_CASE__: List[Any]= self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE__: str= self.final_layer_norm(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= self.proj_out(lowerCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase ) -> int: super().__init__() SCREAMING_SNAKE_CASE__: List[str]= (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE__: Tuple= config.hidden_size SCREAMING_SNAKE_CASE__: List[Any]= 1 SCREAMING_SNAKE_CASE__: List[Any]= nn.ModuleList( [ BasicTransformerBlock(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , activation_fn='''gelu''' , attention_bias=lowerCAmelCase ) for _ in range(lowerCAmelCase ) ] ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Optional[Any]: for block in self.blocks: SCREAMING_SNAKE_CASE__: List[Any]= block(lowerCAmelCase ) return hidden_states
64
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): snake_case_ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case_ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __lowercase ( self : Union[str, Any] ,A : Dict ,A : Union[str, Any] ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = TextaTextGenerationPipeline(model=A ,tokenizer=A ) return generator, ["Something to write", "Something else"] def __lowercase ( self : str ,A : Union[str, Any] ,A : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = generator("""Something there""" ) self.assertEqual(A ,[{"""generated_text""": ANY(A )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) UpperCAmelCase__ : List[str] = generator(["""This is great !""", """Something else"""] ,num_return_sequences=2 ,do_sample=A ) self.assertEqual( A ,[ [{"""generated_text""": ANY(A )}, {"""generated_text""": ANY(A )}], [{"""generated_text""": ANY(A )}, {"""generated_text""": ANY(A )}], ] ,) UpperCAmelCase__ : Union[str, Any] = generator( ["""This is great !""", """Something else"""] ,num_return_sequences=2 ,batch_size=2 ,do_sample=A ) self.assertEqual( A ,[ [{"""generated_text""": ANY(A )}, {"""generated_text""": ANY(A )}], [{"""generated_text""": ANY(A )}, {"""generated_text""": ANY(A )}], ] ,) with self.assertRaises(A ): generator(4 ) @require_torch def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = pipeline("""text2text-generation""" ,model="""patrickvonplaten/t5-tiny-random""" ,framework="""pt""" ) # do_sample=False necessary for reproducibility UpperCAmelCase__ : int = generator("""Something there""" ,do_sample=A ) self.assertEqual(A ,[{"""generated_text""": """"""}] ) UpperCAmelCase__ : Union[str, Any] = 3 UpperCAmelCase__ : str = generator( """Something there""" ,num_return_sequences=A ,num_beams=A ,) UpperCAmelCase__ : int = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(A ,A ) UpperCAmelCase__ : List[str] = generator("""This is a test""" ,do_sample=A ,num_return_sequences=2 ,return_tensors=A ) self.assertEqual( A ,[ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] ,) UpperCAmelCase__ : Tuple = generator.model.config.eos_token_id UpperCAmelCase__ : List[str] = """<pad>""" UpperCAmelCase__ : Union[str, Any] = generator( ["""This is a test""", """This is a second test"""] ,do_sample=A ,num_return_sequences=2 ,batch_size=2 ,return_tensors=A ,) self.assertEqual( A ,[ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] ,) @require_tf def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = pipeline("""text2text-generation""" ,model="""patrickvonplaten/t5-tiny-random""" ,framework="""tf""" ) # do_sample=False necessary for reproducibility UpperCAmelCase__ : Optional[Any] = generator("""Something there""" ,do_sample=A ) self.assertEqual(A ,[{"""generated_text""": """"""}] )
65
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = "▁" UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : int = BertGenerationTokenizer _UpperCamelCase : List[str] = False _UpperCamelCase : Union[str, Any] = True def __a ( self ): super().setUp() _lowercase : Union[str, Any] = BertGenerationTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ): _lowercase : str = '<s>' _lowercase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(_lowerCAmelCase ) , 1_0_0_2 ) def __a ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def __a ( self ): _lowercase : int = BertGenerationTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) _lowercase : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(_lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) _lowercase : str = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowercase : int = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def __a ( self ): return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def __a ( self ): _lowercase : Union[str, Any] = 'Hello World!' _lowercase : Dict = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def __a ( self ): _lowercase : Any = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _lowercase : int = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @require_torch @slow def __a ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _lowercase : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] _lowercase : Union[str, Any] = ' '.join(_lowerCAmelCase ) _lowercase : int = self.big_tokenizer.encode_plus(_lowerCAmelCase , return_tensors='pt' , return_token_type_ids=_lowerCAmelCase ) _lowercase : Any = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_lowerCAmelCase ) _lowercase : Optional[int] = BertGenerationConfig() _lowercase : Any = BertGenerationEncoder(_lowerCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCAmelCase ) model(**_lowerCAmelCase ) @slow def __a ( self ): # fmt: off _lowercase : List[Any] = {'input_ids': [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
66
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } snake_case = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE_ : Any = GPTaTokenizer def __init__( self : int ,__A : Optional[int]=None ,__A : Optional[int]=None ,__A : List[str]=None ,__A : Any="<|endoftext|>" ,__A : int="<|endoftext|>" ,__A : List[str]="<|endoftext|>" ,__A : str=False ,**__A : Union[str, Any] ,) -> int: super().__init__( __A ,__A ,tokenizer_file=__A ,unk_token=__A ,bos_token=__A ,eos_token=__A ,add_prefix_space=__A ,**__A ,) _lowercase = kwargs.pop('add_bos_token' ,__A ) _lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__A ) != add_prefix_space: _lowercase = getattr(__A ,pre_tok_state.pop('type' ) ) _lowercase = add_prefix_space _lowercase = pre_tok_class(**__A ) _lowercase = add_prefix_space def __UpperCAmelCase ( self : Any ,*__A : List[Any] ,**__A : Tuple ) -> BatchEncoding: _lowercase = kwargs.get('is_split_into_words' ,__A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A ,**__A ) def __UpperCAmelCase ( self : int ,*__A : Any ,**__A : Any ) -> BatchEncoding: _lowercase = kwargs.get('is_split_into_words' ,__A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__A ,**__A ) def __UpperCAmelCase ( self : int ,__A : str ,__A : Optional[str] = None ) -> Tuple[str]: _lowercase = self._tokenizer.model.save(__A ,name=__A ) return tuple(__A ) def __UpperCAmelCase ( self : List[Any] ,__A : "Conversation" ) -> List[int]: _lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__A ,add_special_tokens=__A ) + [self.eos_token_id] ) if len(__A ) > self.model_max_length: _lowercase = input_ids[-self.model_max_length :] return input_ids
67
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
0
import sys __A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowercase__ ( A_: str ) -> int: """simple docstring""" __UpperCAmelCase =1 for digit in s: product *= int(A_ ) return product def lowercase__ ( A_: str = N ) -> int: """simple docstring""" __UpperCAmelCase =-sys.maxsize - 1 __UpperCAmelCase =n[:13] __UpperCAmelCase =13 while cur_index < len(A_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __UpperCAmelCase =substr[1:] + n[cur_index] cur_index += 1 else: __UpperCAmelCase =max(A_ , str_eval(A_ ) ) __UpperCAmelCase =n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
68
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
0
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[str]="pt" ) -> List[Any]: __snake_case = {"add_prefix_space": True} if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not line.startswith(" " ) else {} __snake_case = padding_side return tokenizer( [line] , max_length=_UpperCAmelCase , padding="max_length" if pad_to_max_length else None , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=None , ) -> List[Any]: __snake_case = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Dict , a_ : List[str] , a_ : List[Any] , a_ : int , a_ : List[Any] , a_ : int="train" , a_ : Optional[int]=None , a_ : List[str]=None , a_ : Dict=None , a_ : str="" , ): """simple docstring""" super().__init__() __snake_case = Path(a_ ).joinpath(type_path + ".source" ) __snake_case = Path(a_ ).joinpath(type_path + ".target" ) __snake_case = self.get_char_lens(self.src_file ) __snake_case = max_source_length __snake_case = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' __snake_case = tokenizer __snake_case = prefix if n_obs is not None: __snake_case = self.src_lens[:n_obs] __snake_case = src_lang __snake_case = tgt_lang def __len__( self : Any ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Tuple , a_ : Union[str, Any] ): """simple docstring""" __snake_case = index + 1 # linecache starts at 1 __snake_case = self.prefix + linecache.getline(str(self.src_file ) , a_ ).rstrip("\n" ) __snake_case = linecache.getline(str(self.tgt_file ) , a_ ).rstrip("\n" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , a_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __snake_case = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , a_ ) else self.tokenizer ) __snake_case = self.tokenizer.generator if isinstance(self.tokenizer , a_ ) else self.tokenizer __snake_case = encode_line(a_ , a_ , self.max_source_length , "right" ) __snake_case = encode_line(a_ , a_ , self.max_target_length , "right" ) __snake_case = source_inputs["input_ids"].squeeze() __snake_case = target_inputs["input_ids"].squeeze() __snake_case = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A ( a_ : List[str] ): """simple docstring""" return [len(a_ ) for x in Path(a_ ).open().readlines()] def A ( self : List[Any] , a_ : str ): """simple docstring""" __snake_case = torch.stack([x["input_ids"] for x in batch] ) __snake_case = torch.stack([x["attention_mask"] for x in batch] ) __snake_case = torch.stack([x["decoder_input_ids"] for x in batch] ) __snake_case = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , a_ ) else self.tokenizer.pad_token_id ) __snake_case = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , a_ ) else self.tokenizer.pad_token_id ) __snake_case = trim_batch(a_ , a_ ) __snake_case , __snake_case = trim_batch(a_ , a_ , attention_mask=a_ ) __snake_case = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch a : int = getLogger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : List[List] ) -> Tuple: return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> None: __snake_case = get_git_info() save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , "git_log.json" ) ) def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=4 , **_UpperCAmelCase : str ) -> Optional[Any]: with open(_UpperCAmelCase , "w" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase , **_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> List[str]: with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def __UpperCAmelCase ( ) -> int: __snake_case = git.Repo(search_parent_directories=_UpperCAmelCase ) __snake_case = { "repo_id": str(_UpperCAmelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __UpperCAmelCase ( _UpperCAmelCase : Callable , _UpperCAmelCase : Iterable ) -> List: return list(map(_UpperCAmelCase , _UpperCAmelCase ) ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> Dict: with open(_UpperCAmelCase , "wb" ) as f: return pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> List[str]: def remove_articles(_UpperCAmelCase : int ): return re.sub(R"\b(a|an|the)\b" , " " , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase : int ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase : Optional[int] ): __snake_case = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> int: __snake_case = normalize_answer(_UpperCAmelCase ).split() __snake_case = normalize_answer(_UpperCAmelCase ).split() __snake_case = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) __snake_case = sum(common.values() ) if num_same == 0: return 0 __snake_case = 1.0 * num_same / len(_UpperCAmelCase ) __snake_case = 1.0 * num_same / len(_UpperCAmelCase ) __snake_case = (2 * precision * recall) / (precision + recall) return fa def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[str]: return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict: assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) __snake_case = 0 for hypo, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> Union[str, Any]: return model_prefix.startswith("rag" ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> int: __snake_case = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __snake_case = "dropout_rate" for p in extra_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not hasattr(_UpperCAmelCase , _UpperCAmelCase ) and not hasattr(_UpperCAmelCase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) continue __snake_case = p if hasattr(_UpperCAmelCase , _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) delattr(_UpperCAmelCase , _UpperCAmelCase ) return hparams, config
69
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
import random class A: '''simple docstring''' @staticmethod def a__ ( A_ : str ) -> tuple[list[int], list[int]]: """simple docstring""" lowerCamelCase_ = [ord(A_ ) for i in text] lowerCamelCase_ = [] lowerCamelCase_ = [] for i in plain: lowerCamelCase_ = random.randint(1 , 300 ) lowerCamelCase_ = (i + k) * k cipher.append(A_ ) key.append(A_ ) return cipher, key @staticmethod def a__ ( A_ : list[int] , A_ : list[int] ) -> str: """simple docstring""" lowerCamelCase_ = [] for i in range(len(A_ ) ): lowerCamelCase_ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(A_ ) ) return "".join(A_ ) if __name__ == "__main__": lowerCamelCase , lowerCamelCase : Tuple = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
70
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=False ) -> int: """simple docstring""" UpperCAmelCase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): UpperCAmelCase_ : int = "segformer.encoder." + key if key.startswith("backbone" ): UpperCAmelCase_ : Tuple = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase_ : Optional[int] = key[key.find("patch_embed" ) + len("patch_embed" )] UpperCAmelCase_ : Optional[int] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if "norm" in key: UpperCAmelCase_ : List[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase_ : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] UpperCAmelCase_ : List[str] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if "layer_norm1" in key: UpperCAmelCase_ : int = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: UpperCAmelCase_ : str = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase_ : Optional[int] = key[key.find("block" ) + len("block" )] UpperCAmelCase_ : Any = key.replace(F'''block{idx}''' , F'''block.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if "attn.q" in key: UpperCAmelCase_ : List[str] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("attn" , "attention.self" ) if "fc1" in key: UpperCAmelCase_ : int = key.replace("fc1" , "dense1" ) if "fc2" in key: UpperCAmelCase_ : int = key.replace("fc2" , "dense2" ) if "linear_pred" in key: UpperCAmelCase_ : List[str] = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("linear_fuse.conv" , "linear_fuse" ) UpperCAmelCase_ : Dict = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase_ : List[str] = key[key.find("linear_c" ) + len("linear_c" )] UpperCAmelCase_ : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if key.startswith("head" ): UpperCAmelCase_ : Dict = key.replace("head" , "classifier" ) UpperCAmelCase_ : str = value return new_state_dict def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase_ : int = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase_ : Optional[int] = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase_ : int = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase_ : Tuple = kv_bias[ config.hidden_sizes[i] : ] def a__ ( ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : int = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = SegformerConfig() UpperCAmelCase_ : Any = False # set attributes based on model_name UpperCAmelCase_ : Optional[Any] = "huggingface/label-files" if "segformer" in model_name: UpperCAmelCase_ : Optional[int] = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: UpperCAmelCase_ : List[str] = 1_50 UpperCAmelCase_ : List[Any] = "ade20k-id2label.json" UpperCAmelCase_ : str = (1, 1_50, 1_28, 1_28) elif "city" in model_name: UpperCAmelCase_ : Optional[int] = 19 UpperCAmelCase_ : Union[str, Any] = "cityscapes-id2label.json" UpperCAmelCase_ : List[Any] = (1, 19, 1_28, 1_28) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = model_name[4:6] UpperCAmelCase_ : Optional[int] = 10_00 UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : Optional[int] = (1, 10_00) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes UpperCAmelCase_ : Tuple = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ : List[str] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": UpperCAmelCase_ : Optional[Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Dict = 2_56 elif size == "b2": UpperCAmelCase_ : Tuple = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Union[str, Any] = 7_68 UpperCAmelCase_ : Union[str, Any] = [3, 4, 6, 3] elif size == "b3": UpperCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : int = 7_68 UpperCAmelCase_ : Optional[Any] = [3, 4, 18, 3] elif size == "b4": UpperCAmelCase_ : List[Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : List[Any] = 7_68 UpperCAmelCase_ : Tuple = [3, 8, 27, 3] elif size == "b5": UpperCAmelCase_ : Dict = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Optional[int] = 7_68 UpperCAmelCase_ : List[Any] = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) UpperCAmelCase_ : Dict = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_SCREAMING_SNAKE_CASE , align=_SCREAMING_SNAKE_CASE , do_random_crop=_SCREAMING_SNAKE_CASE ) # prepare image UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : int = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: UpperCAmelCase_ : List[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) else: UpperCAmelCase_ : Optional[int] = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) )["state_dict"] # rename keys UpperCAmelCase_ : Union[str, Any] = rename_keys(_SCREAMING_SNAKE_CASE , encoder_only=_SCREAMING_SNAKE_CASE ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict if encoder_only: UpperCAmelCase_ : Any = False UpperCAmelCase_ : Optional[Any] = SegformerForImageClassification(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Any = SegformerForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # forward pass UpperCAmelCase_ : int = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": UpperCAmelCase_ : Any = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": UpperCAmelCase_ : Tuple = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": UpperCAmelCase_ : Any = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": UpperCAmelCase_ : Tuple = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": UpperCAmelCase_ : List[Any] = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": UpperCAmelCase_ : Any = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": UpperCAmelCase_ : List[str] = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": UpperCAmelCase_ : List[str] = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": UpperCAmelCase_ : int = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": UpperCAmelCase_ : List[Any] = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: UpperCAmelCase_ : Any = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCamelCase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
71
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
0
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCAmelCase : int = TypeVar('''T''') class __magic_name__ ( Generic[T] ): def __init__( self , snake_case_ = True ): lowercase ={} # dictionary of lists lowercase =directed def _A( self , snake_case_ , snake_case_ ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) self.adj_list[destination_vertex].append(snake_case_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) lowercase =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(snake_case_ ) lowercase =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase =[destination_vertex] lowercase =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case_ ) lowercase =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase =[destination_vertex] lowercase =[] return self def __repr__( self ): return pformat(self.adj_list )
72
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Any = logging.get_logger(__name__) a_ : List[Any] = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class _snake_case ( A__ ): _lowercase : Optional[Any] = '''ctrl''' _lowercase : str = ['''past_key_values'''] _lowercase : Optional[Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , a=24_6534 , a=256 , a=1280 , a=8192 , a=48 , a=16 , a=0.1 , a=0.1 , a=1E-6 , a=0.02 , a=True , **a , ) -> List[str]: SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = dff SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache super().__init__(**a)
73
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __SCREAMING_SNAKE_CASE : int = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __SCREAMING_SNAKE_CASE : Any = model(_A )['''last_hidden_state'''] __SCREAMING_SNAKE_CASE : Dict = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. __SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor( [ [ [0.0_68_17_62, 0.10_89_44_51, 0.06_77_25_04], [-0.06_42_36_68, 0.02_36_66_15, 0.04_32_93_44], [-0.06_05_72_95, 0.09_97_41_35, -0.00_07_05_84], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
74
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class lowerCamelCase_ : def __init__( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = {} def lowercase_ ( self : Optional[int] , _A : Optional[int] , _A : str , _A : List[str]=1 ): '''simple docstring''' if self.graph.get(_A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCAmelCase__ : Tuple = [[w, v]] if not self.graph.get(_A ): UpperCAmelCase__ : List[Any] = [] def lowercase_ ( self : Dict ): '''simple docstring''' return list(self.graph ) def lowercase_ ( self : int , _A : List[str] , _A : str ): '''simple docstring''' if self.graph.get(_A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_A ) def lowercase_ ( self : Dict , _A : List[Any]=-2 , _A : Optional[int]=-1 ): '''simple docstring''' if s == d: return [] UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : int = [] if s == -2: UpperCAmelCase__ : Tuple = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_A ) != 0: UpperCAmelCase__ : Dict = stack[len(_A ) - 1] else: UpperCAmelCase__ : str = ss # check if se have reached the starting point if len(_A ) == 0: return visited def lowercase_ ( self : Tuple , _A : int=-1 ): '''simple docstring''' if c == -1: UpperCAmelCase__ : Tuple = floor(random() * 10_000 ) + 10 for i in range(_A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCAmelCase__ : Union[str, Any] = floor(random() * c ) + 1 if n != i: self.add_pair(_A , _A , 1 ) def lowercase_ ( self : Tuple , _A : List[str]=-2 ): '''simple docstring''' UpperCAmelCase__ : int = deque() UpperCAmelCase__ : Optional[int] = [] if s == -2: UpperCAmelCase__ : Union[str, Any] = list(self.graph )[0] d.append(_A ) visited.append(_A ) while d: UpperCAmelCase__ : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase_ ( self : int , _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase_ ( self : Dict , _A : Union[str, Any] ): '''simple docstring''' return len(self.graph[u] ) def lowercase_ ( self : Dict , _A : Optional[Any]=-2 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[Any] = [] if s == -2: UpperCAmelCase__ : List[str] = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Any = s UpperCAmelCase__ : Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_A ) != 0: UpperCAmelCase__ : Union[str, Any] = stack[len(_A ) - 1] else: UpperCAmelCase__ : Union[str, Any] = ss # check if se have reached the starting point if len(_A ) == 0: return sorted_nodes def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = [] UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Union[str, Any] = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : int = -2 UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Optional[int] = s UpperCAmelCase__ : Any = False UpperCAmelCase__ : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase__ : Dict = len(_A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase__ : Union[str, Any] = True if len(_A ) != 0: UpperCAmelCase__ : List[str] = stack[len(_A ) - 1] else: UpperCAmelCase__ : Optional[Any] = False indirect_parents.append(_A ) UpperCAmelCase__ : Tuple = s UpperCAmelCase__ : Tuple = ss # check if se have reached the starting point if len(_A ) == 0: return list(_A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Dict = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Union[str, Any] = -2 UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[Any] = s UpperCAmelCase__ : str = False UpperCAmelCase__ : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase__ : List[str] = len(_A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase__ : Union[str, Any] = True if len(_A ) != 0: UpperCAmelCase__ : int = stack[len(_A ) - 1] else: UpperCAmelCase__ : Dict = False indirect_parents.append(_A ) UpperCAmelCase__ : int = s UpperCAmelCase__ : Optional[int] = ss # check if se have reached the starting point if len(_A ) == 0: return False def lowercase_ ( self : Dict , _A : Any=-2 , _A : List[str]=-1 ): '''simple docstring''' UpperCAmelCase__ : Any = time() self.dfs(_A , _A ) UpperCAmelCase__ : Union[str, Any] = time() return end - begin def lowercase_ ( self : Union[str, Any] , _A : Optional[int]=-2 ): '''simple docstring''' UpperCAmelCase__ : Dict = time() self.bfs(_A ) UpperCAmelCase__ : Any = time() return end - begin class lowerCamelCase_ : def __init__( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = {} def lowercase_ ( self : List[Any] , _A : List[str] , _A : Optional[int] , _A : Any=1 ): '''simple docstring''' if self.graph.get(_A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCAmelCase__ : Any = [[w, v]] # add the other way if self.graph.get(_A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCAmelCase__ : List[str] = [[w, u]] def lowercase_ ( self : Optional[Any] , _A : Optional[int] , _A : Dict ): '''simple docstring''' if self.graph.get(_A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_A ) # the other way round if self.graph.get(_A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_A ) def lowercase_ ( self : Optional[Any] , _A : int=-2 , _A : Optional[int]=-1 ): '''simple docstring''' if s == d: return [] UpperCAmelCase__ : int = [] UpperCAmelCase__ : Dict = [] if s == -2: UpperCAmelCase__ : Optional[Any] = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Optional[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_A ) != 0: UpperCAmelCase__ : str = stack[len(_A ) - 1] else: UpperCAmelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(_A ) == 0: return visited def lowercase_ ( self : str , _A : Tuple=-1 ): '''simple docstring''' if c == -1: UpperCAmelCase__ : str = floor(random() * 10_000 ) + 10 for i in range(_A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCAmelCase__ : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(_A , _A , 1 ) def lowercase_ ( self : Tuple , _A : List[str]=-2 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = deque() UpperCAmelCase__ : Optional[int] = [] if s == -2: UpperCAmelCase__ : int = list(self.graph )[0] d.append(_A ) visited.append(_A ) while d: UpperCAmelCase__ : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase_ ( self : Tuple , _A : int ): '''simple docstring''' return len(self.graph[u] ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : str = [] UpperCAmelCase__ : Any = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Union[str, Any] = -2 UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : List[Any] = s UpperCAmelCase__ : Any = False UpperCAmelCase__ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase__ : Tuple = len(_A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase__ : Dict = True if len(_A ) != 0: UpperCAmelCase__ : Optional[int] = stack[len(_A ) - 1] else: UpperCAmelCase__ : Optional[int] = False indirect_parents.append(_A ) UpperCAmelCase__ : Optional[int] = s UpperCAmelCase__ : Dict = ss # check if se have reached the starting point if len(_A ) == 0: return list(_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : str = [] UpperCAmelCase__ : Any = list(self.graph )[0] stack.append(_A ) visited.append(_A ) UpperCAmelCase__ : Dict = -2 UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Optional[Any] = s UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase__ : List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase__ : Union[str, Any] = len(_A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase__ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase__ : List[str] = True if len(_A ) != 0: UpperCAmelCase__ : Any = stack[len(_A ) - 1] else: UpperCAmelCase__ : Optional[Any] = False indirect_parents.append(_A ) UpperCAmelCase__ : List[str] = s UpperCAmelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(_A ) == 0: return False def lowercase_ ( self : int ): '''simple docstring''' return list(self.graph ) def lowercase_ ( self : List[Any] , _A : Any=-2 , _A : List[str]=-1 ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = time() self.dfs(_A , _A ) UpperCAmelCase__ : Tuple = time() return end - begin def lowercase_ ( self : int , _A : str=-2 ): '''simple docstring''' UpperCAmelCase__ : Tuple = time() self.bfs(_A ) UpperCAmelCase__ : int = time() return end - begin
75
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase = 1_00_00_00 ): __lowercase : Optional[Any] = limit + 1 __lowercase : str = [0] * limit for first_term in range(1 , __UpperCamelCase ): for n in range(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __lowercase : Union[str, Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
76
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> list: """simple docstring""" __UpperCAmelCase : List[Any] = len(UpperCamelCase ) for _ in range(UpperCamelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": A = list(range(10, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
77
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> None: '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): UpperCAmelCase_ , UpperCAmelCase_ = array[indexa], array[indexa] def lowerCAmelCase_ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> None: '''simple docstring''' if length > 1: UpperCAmelCase_ = int(length / 2 ) for i in range(snake_case_ , low + middle ): comp_and_swap(snake_case_ , snake_case_ , i + middle , snake_case_ ) bitonic_merge(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) bitonic_merge(snake_case_ , low + middle , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> None: '''simple docstring''' if length > 1: UpperCAmelCase_ = int(length / 2 ) bitonic_sort(snake_case_ , snake_case_ , snake_case_ , 1 ) bitonic_sort(snake_case_ , low + middle , snake_case_ , 0 ) bitonic_merge(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[Any] =input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_: int =[int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
78
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = ['pixel_values'] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase__ : str = get_size_dict(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase__ : Any = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="""crop_size""" ) UpperCAmelCase__ : Optional[int] = do_resize UpperCAmelCase__ : List[str] = do_rescale UpperCAmelCase__ : Tuple = do_normalize UpperCAmelCase__ : Tuple = do_center_crop UpperCAmelCase__ : List[str] = crop_size UpperCAmelCase__ : List[Any] = size UpperCAmelCase__ : Union[str, Any] = resample UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase__ : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = None , **_lowerCAmelCase , ): UpperCAmelCase__ : Union[str, Any] = get_size_dict(_lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase__ : Tuple = get_resize_output_image_size(_lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=_lowerCAmelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase__ : List[Any] = (size["""height"""], size["""width"""]) else: raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): UpperCAmelCase__ : str = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase ): return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): UpperCAmelCase__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : List[str] = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" , default_to_square=_lowerCAmelCase ) UpperCAmelCase__ : str = resample if resample is not None else self.resample UpperCAmelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : int = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : List[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : Optional[Any] = size if size is not None else self.size UpperCAmelCase__ : List[str] = get_size_dict(_lowerCAmelCase ) if not is_batched(_lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = [images] if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase__ : Tuple = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase__ : Any = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase__ : Tuple = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase__ : Union[str, Any] = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase__ : Optional[int] = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase__ : Tuple = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase__ : Any = {"""pixel_values""": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
79
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __UpperCamelCase : List[Any] = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] __UpperCamelCase : Optional[int] = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = """ Hello world! cécé herlolip""" __UpperCamelCase : List[Any] = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __lowercase = emb.weight.data return lin_layer @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): __lowercase = torch.hub.load("""pytorch/fairseq""" , lowerCamelCase ).eval() else: __lowercase = load_xsum_checkpoint(lowerCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __lowercase = checkpoint_path.replace(""".""" , """-""" ) __lowercase = BartConfig.from_pretrained(lowerCamelCase ) __lowercase = bart.encode(lowerCamelCase ).unsqueeze(0 ) __lowercase = BartTokenizer.from_pretrained(lowerCamelCase ).encode(lowerCamelCase , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(lowerCamelCase , lowerCamelCase ).all(): raise ValueError( F'converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}' ) if checkpoint_path == "bart.large.mnli": __lowercase = bart.state_dict() remove_ignore_keys_(lowerCamelCase ) __lowercase = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = BartForSequenceClassification(lowerCamelCase ).eval() model.load_state_dict(lowerCamelCase ) __lowercase = bart.predict("""mnli""" , lowerCamelCase , return_logits=lowerCamelCase ) __lowercase = model(lowerCamelCase )[0] # logits else: # no classification heads to worry about __lowercase = bart.model.state_dict() remove_ignore_keys_(lowerCamelCase ) __lowercase = state_dict["""decoder.embed_tokens.weight"""] __lowercase = bart.extract_features(lowerCamelCase ) if hf_checkpoint_name == "facebook/bart-large": __lowercase = BartModel(lowerCamelCase ).eval() model.load_state_dict(lowerCamelCase ) __lowercase = model(lowerCamelCase ).model[0] else: __lowercase = BartForConditionalGeneration(lowerCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(lowerCamelCase ) if hasattr(lowerCamelCase , """lm_head""" ): __lowercase = make_linear_from_emb(model.model.shared ) __lowercase = model.model(lowerCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) __UpperCamelCase : Any = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
80
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Any = CustomTokenizer pass
81
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Dict=36 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Optional[Any]=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int ) -> Dict: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = 300 return config def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase__ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = MraModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> int: '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = MraModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MraForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MraForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MraForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MraForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = MraForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = () def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MraModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MraModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason="MRA does not output attentions" ) def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) UpperCAmelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = 50265 UpperCAmelCase_ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) UpperCAmelCase_ = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )[0] UpperCAmelCase_ = 50265 UpperCAmelCase_ = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
82
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
0
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase__ = 256 class __snake_case ( _lowercase): snake_case__ : Optional[Any] = ["melgan"] def __init__( self : List[Any] , __lowerCAmelCase : SpectrogramNotesEncoder , __lowerCAmelCase : SpectrogramContEncoder , __lowerCAmelCase : TaFilmDecoder , __lowerCAmelCase : DDPMScheduler , __lowerCAmelCase : OnnxRuntimeModel if is_onnx_available() else Any , ): """simple docstring""" super().__init__() # From MELGAN _lowerCamelCase : Tuple = math.log(1E-5 ) # Matches MelGAN training. _lowerCamelCase : Optional[Any] = 4.0 # Largest value for most examples _lowerCamelCase : Tuple = 1_2_8 self.register_modules( notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any]=(-1.0, 1.0) , __lowerCAmelCase : Union[str, Any]=False ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = output_range if clip: _lowerCamelCase : Union[str, Any] = torch.clip(__lowerCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. _lowerCamelCase : List[Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=(-1.0, 1.0) , __lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = input_range _lowerCamelCase : int = torch.clip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if clip else outputs # Scale to [0, 1]. _lowerCamelCase : Dict = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Any = input_tokens > 0 _lowerCamelCase , _lowerCamelCase : Optional[int] = self.notes_encoder( encoder_input_tokens=__lowerCAmelCase , encoder_inputs_mask=__lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : str = self.continuous_encoder( encoder_inputs=__lowerCAmelCase , encoder_inputs_mask=__lowerCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = noise_time if not torch.is_tensor(__lowerCAmelCase ): _lowerCamelCase : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: _lowerCamelCase : Any = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCamelCase : List[Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _lowerCamelCase : Dict = self.decoder( encodings_and_masks=__lowerCAmelCase , decoder_input_tokens=__lowerCAmelCase , decoder_noise_time=__lowerCAmelCase ) return logits @torch.no_grad() def __call__( self : str , __lowerCAmelCase : List[List[int]] , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : int = 1_0_0 , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "numpy" , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , ): """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__lowerCAmelCase )}.''' ) _lowerCamelCase : List[Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _lowerCamelCase : Dict = np.zeros([1, 0, self.n_dims] , np.floataa ) _lowerCamelCase : Optional[Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowerCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(__lowerCAmelCase ): if i == 0: _lowerCamelCase : Optional[int] = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _lowerCamelCase : Optional[Any] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowerCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _lowerCamelCase : str = ones _lowerCamelCase : Union[str, Any] = self.scale_features( __lowerCAmelCase , output_range=[-1.0, 1.0] , clip=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__lowerCAmelCase , continuous_mask=__lowerCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _lowerCamelCase : Union[str, Any] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowerCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _lowerCamelCase : Tuple = self.decode( encodings_and_masks=__lowerCAmelCase , input_tokens=__lowerCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _lowerCamelCase : Union[str, Any] = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample _lowerCamelCase : Optional[int] = self.scale_to_features(__lowerCAmelCase , input_range=[-1.0, 1.0] ) _lowerCamelCase : Union[str, Any] = mel[:1] _lowerCamelCase : int = mel.cpu().float().numpy() _lowerCamelCase : Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase ) logger.info('''Generated segment''' , __lowerCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": _lowerCamelCase : Union[str, Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _lowerCamelCase : str = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowerCAmelCase )
83
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '''https://openaipublic.azureedge.net/jukebox/models/''' UpperCAmelCase = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: lowercase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: lowercase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: lowercase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: lowercase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: lowercase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: lowercase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowercase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: lowercase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = {} import re lowercase = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) lowercase = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) lowercase = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) lowercase = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) lowercase = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) lowercase = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) lowercase = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) lowercase = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) lowercase = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__SCREAMING_SNAKE_CASE ): lowercase = re_encoder_block_conv_in.match(__SCREAMING_SNAKE_CASE ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) lowercase = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowercase = re_encoder_block_conv_in.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(__SCREAMING_SNAKE_CASE ): lowercase = re_encoder_block_resnet.match(__SCREAMING_SNAKE_CASE ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) lowercase = {'1': 1, '3': 2}[groups[-2]] lowercase = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowercase = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowercase = prefix + resnet_block lowercase = re_encoder_block_resnet.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(__SCREAMING_SNAKE_CASE ): lowercase = re_encoder_block_proj_out.match(__SCREAMING_SNAKE_CASE ) lowercase = regex_match.groups() lowercase = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowercase = re_encoder_block_proj_out.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__SCREAMING_SNAKE_CASE ): lowercase = re_decoder_block_conv_out.match(__SCREAMING_SNAKE_CASE ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowercase = re_decoder_block_conv_out.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(__SCREAMING_SNAKE_CASE ): lowercase = re_decoder_block_resnet.match(__SCREAMING_SNAKE_CASE ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase = {'1': 1, '3': 2}[groups[-2]] lowercase = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowercase = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowercase = prefix + resnet_block lowercase = re_decoder_block_resnet.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(__SCREAMING_SNAKE_CASE ): lowercase = re_decoder_block_proj_in.match(__SCREAMING_SNAKE_CASE ) lowercase = regex_match.groups() lowercase = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowercase = re_decoder_block_proj_in.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__SCREAMING_SNAKE_CASE ): lowercase = re_prior_cond_conv_out.match(__SCREAMING_SNAKE_CASE ) lowercase = regex_match.groups() lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowercase = re_prior_cond_conv_out.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(__SCREAMING_SNAKE_CASE ): lowercase = re_prior_cond_resnet.match(__SCREAMING_SNAKE_CASE ) lowercase = regex_match.groups() lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase = {'1': 1, '3': 2}[groups[-2]] lowercase = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowercase = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowercase = prefix + resnet_block lowercase = re_prior_cond_resnet.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(__SCREAMING_SNAKE_CASE ): lowercase = re_prior_cond_proj_in.match(__SCREAMING_SNAKE_CASE ) lowercase = regex_match.groups() lowercase = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowercase = re_prior_cond_proj_in.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # keep original key else: lowercase = original_key lowercase = replace_key(__SCREAMING_SNAKE_CASE ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowercase = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowercase = original_key lowercase = original_key lowercase = value return new_dict @torch.no_grad() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowercase = requests.get(F'''{PREFIX}{file}''' , allow_redirects=__SCREAMING_SNAKE_CASE ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__SCREAMING_SNAKE_CASE ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , 'wb' ).write(r.content ) lowercase = MODEL_MAPPING[model_name.split('/' )[-1]] lowercase = JukeboxConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) lowercase = JukeboxModel(__SCREAMING_SNAKE_CASE ) lowercase = [] lowercase = {} for i, dict_name in enumerate(__SCREAMING_SNAKE_CASE ): lowercase = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['model'] lowercase = {} for k in old_dic.keys(): if k.endswith('.b' ): lowercase = old_dic[k] elif k.endswith('.w' ): lowercase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowercase = old_dic[k] else: lowercase = old_dic[k] lowercase = 'vqvae' if i == 0 else F'''priors.{3 - i}''' lowercase = fix_jukebox_keys(__SCREAMING_SNAKE_CASE , model.state_dict() , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) weight_dict.append(__SCREAMING_SNAKE_CASE ) lowercase = weight_dict.pop(0 ) model.vqvae.load_state_dict(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , 'w' ) as txtfile: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) UpperCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
84
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _a ( lowercase__ : str , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = multiprocessing.Manager() SCREAMING_SNAKE_CASE__ : Tuple = manager.list() SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.Process(target=lowercase__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _a ( lowercase__ : Tuple , lowercase__ : Any , lowercase__ : int ): '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil SCREAMING_SNAKE_CASE__ : Tuple = shutil.rmtree SCREAMING_SNAKE_CASE__ : Dict = os.rmdir SCREAMING_SNAKE_CASE__ : str = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: SCREAMING_SNAKE_CASE__ : Optional[int] = {} with swallow_io(): with time_limit(lowercase__ ): exec(lowercase__ , lowercase__ ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(f'''failed: {e}''' ) # Needed for cleaning up. SCREAMING_SNAKE_CASE__ : Optional[Any] = rmtree SCREAMING_SNAKE_CASE__ : Any = rmdir SCREAMING_SNAKE_CASE__ : Any = chdir @contextlib.contextmanager def _a ( lowercase__ : Optional[Any] ): '''simple docstring''' def signal_handler(lowercase__ : List[Any] , lowercase__ : Dict ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , lowercase__ ) signal.signal(signal.SIGALRM , lowercase__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = WriteOnlyStringIO() with contextlib.redirect_stdout(lowercase__ ): with contextlib.redirect_stderr(lowercase__ ): with redirect_stdin(lowercase__ ): yield @contextlib.contextmanager def _a ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(lowercase__ ): yield dirname class snake_case ( UpperCamelCase_ ): pass class snake_case ( io.StringIO ): def __lowercase( self : Union[str, Any] , *a_ : Union[str, Any] , **a_ : List[str] )-> int: """simple docstring""" raise OSError def __lowercase( self : Tuple , *a_ : Tuple , **a_ : Any )-> int: """simple docstring""" raise OSError def __lowercase( self : Union[str, Any] , *a_ : Union[str, Any] , **a_ : List[str] )-> Dict: """simple docstring""" raise OSError def __lowercase( self : Union[str, Any] , *a_ : Any , **a_ : Optional[int] )-> List[str]: """simple docstring""" return False class snake_case ( contextlib._RedirectStream ): # type: ignore lowercase_ = 'stdin' @contextlib.contextmanager def _a ( lowercase__ : Union[str, Any] ): '''simple docstring''' if root == ".": yield return SCREAMING_SNAKE_CASE__ : str = os.getcwd() os.chdir(lowercase__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowercase__ ) def _a ( lowercase__ : Optional[int]=None ): '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None import os SCREAMING_SNAKE_CASE__ : Optional[Any] = '1' SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Optional[int] = None import shutil SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None import subprocess SCREAMING_SNAKE_CASE__ : Tuple = None # type: ignore SCREAMING_SNAKE_CASE__ : Union[str, Any] = None import sys SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : int = None
85
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __a :List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _a : """simple docstring""" _lowerCamelCase : List[str] = PegasusConfig _lowerCamelCase : Any = {} _lowerCamelCase : Optional[Any] = 'gelu' def __init__( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : str=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : List[str]=99 , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : Union[str, Any]=5 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=20 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Any=1 , UpperCAmelCase : Union[str, Any]=0 , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = eos_token_id A_ = pad_token_id A_ = bos_token_id def __A ( self : Union[str, Any] ): A_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) A_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) A_ = np.concatenate([input_ids, eos_tensor] , axis=1 ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A_ = prepare_pegasus_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ): A_ = 20 A_ = model_class_name(UpperCAmelCase ) A_ = model.encode(inputs_dict["input_ids"] ) A_ , A_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) A_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) A_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) A_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A_ = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , ) A_ = model.decode(UpperCAmelCase , UpperCAmelCase ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def __A ( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ): A_ = 20 A_ = model_class_name(UpperCAmelCase ) A_ = model.encode(inputs_dict["input_ids"] ) A_ , A_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) A_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) A_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A_ = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) A_ = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Dict ,__UpperCamelCase : List[Any] ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : int=None ,): """simple docstring""" if attention_mask is None: A_ = np.not_equal(__UpperCamelCase ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: A_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _lowerCamelCase : Tuple = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _lowerCamelCase : List[str] = True _lowerCamelCase : List[str] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False def __A ( self : Optional[int] ): A_ = FlaxPegasusModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase ) def __A ( self : Dict ): self.config_tester.run_common_tests() def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[str] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Union[str, Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : str ): return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) with self.subTest("JIT Enabled" ): A_ = encode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A_ = encode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self : Optional[Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = model_class(UpperCAmelCase ) A_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) A_ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ): return model.decode( decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , ) with self.subTest("JIT Enabled" ): A_ = decode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A_ = decode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __A ( self : int ): for model_class_name in self.all_model_classes: A_ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=UpperCAmelCase ) A_ = np.ones((1, 1) ) A_ = model(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @slow def __A ( self : Optional[int] ): A_ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) A_ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) A_ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] A_ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] A_ = tokenizer(UpperCAmelCase , return_tensors="np" , truncation=UpperCAmelCase , max_length=512 , padding=UpperCAmelCase ) A_ = model.generate(**UpperCAmelCase , num_beams=2 ).sequences A_ = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) assert tgt_text == decoded
86
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
0
from itertools import count def SCREAMING_SNAKE_CASE ( lowercase_ = 50 ) -> int: """simple docstring""" A__ = [1] * min_block_length for n in count(lowercase_ ): fill_count_functions.append(1 ) for block_length in range(lowercase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_000_000: break return n if __name__ == "__main__": print(F'''{solution() = }''')
87
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Optional[int] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } SCREAMING_SNAKE_CASE : Optional[Any] = "▁" class _lowerCamelCase( _a ): lowercase_ : int = VOCAB_FILES_NAMES lowercase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = ["""input_ids""", """attention_mask"""] lowercase_ : Dict = BarthezTokenizer def __init__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase="<s>", lowerCamelCase="</s>", lowerCamelCase="</s>", lowerCamelCase="<s>", lowerCamelCase="<unk>", lowerCamelCase="<pad>", lowerCamelCase="<mask>", **lowerCamelCase, ) -> Tuple: """simple docstring""" _lowercase : List[str] = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else mask_token super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, **lowerCamelCase, ) _lowercase : Tuple = vocab_file _lowercase : Any = False if not self.vocab_file else True def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : int = [self.cls_token_id] _lowercase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Optional[Any] = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : Union[str, Any] = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase): copyfile(self.vocab_file, lowerCamelCase) return (out_vocab_file,)
89
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
0
'''simple docstring''' from __future__ import annotations def _snake_case ( A , A , A , A , A , ) -> None: lowerCAmelCase__ = len(A ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A , A , ) def _snake_case ( A ) -> None: lowerCAmelCase__ = [] depth_first_search([] , [] , [] , A , A ) # Print all the boards for board in boards: for column in board: print(A ) print('''''' ) print(len(A ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
90
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '''▁''' _lowercase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowercase = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _lowercase = { '''xlm-roberta-base''': 5_12, '''xlm-roberta-large''': 5_12, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_12, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_12, '''xlm-roberta-large-finetuned-conll03-english''': 5_12, '''xlm-roberta-large-finetuned-conll03-german''': 5_12, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] ,A_ : str ,A_ : str="<s>" ,A_ : Any="</s>" ,A_ : Tuple="</s>" ,A_ : Any="<s>" ,A_ : Optional[Any]="<unk>" ,A_ : int="<pad>" ,A_ : str="<mask>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : Optional[int] ,) -> None: # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else mask_token A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,sep_token=A_ ,cls_token=A_ ,pad_token=A_ ,mask_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A = 1 A = len(self.sp_model ) + self.fairseq_offset A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ) -> Any: A = self.__dict__.copy() A = None A = self.sp_model.serialized_model_proto() return state def __setstate__( self : str ,A_ : str ) -> Optional[Any]: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = ''.join(A_ ).replace(A_ ,' ' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
91
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCamelCase_ = ["""bert-base-uncased""", """bert-base-cased"""] UpperCamelCase_ = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __SCREAMING_SNAKE_CASE ( tf.keras.Model ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[Any] ): '''simple docstring''' super().__init__() lowercase : Dict =tokenizer lowercase : str =AutoConfig.from_pretrained(UpperCAmelCase__ ) lowercase : str =TFAutoModel.from_config(UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : List[Any] ): '''simple docstring''' lowercase : List[Any] =self.tokenizer(UpperCAmelCase__ ) lowercase : int =self.bert(**UpperCAmelCase__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : int ): '''simple docstring''' super().setUp() lowercase : str =[ BertTokenizer.from_pretrained(UpperCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowercase : Tuple =[TFBertTokenizer.from_pretrained(UpperCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(UpperCAmelCase__ , use_fast_bert_tokenizer=UpperCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase : Any =[ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowercase : Optional[Any] =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowercase : Tuple =tokenizer(UpperCAmelCase__ , return_tensors='''tf''' , padding='''longest''' ) lowercase : Optional[int] =tf_tokenizer(UpperCAmelCase__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowerCamelCase_ ( self : Dict ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowercase : int =tf_tokenizer(self.paired_sentences ) lowercase : Dict =tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowercase : Any =tf.function(UpperCAmelCase__ ) for test_inputs in (self.test_sentences, self.paired_sentences): lowercase : int =tf.constant(UpperCAmelCase__ ) lowercase : List[str] =compiled_tokenizer(UpperCAmelCase__ ) lowercase : Tuple =tf_tokenizer(UpperCAmelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowercase : str =ModelToSave(tokenizer=UpperCAmelCase__ ) lowercase : List[str] =tf.convert_to_tensor(self.test_sentences ) lowercase : List[Any] =model(UpperCAmelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase : List[str] =Path(UpperCAmelCase__ ) / '''saved.model''' model.save(UpperCAmelCase__ ) lowercase : Dict =tf.keras.models.load_model(UpperCAmelCase__ ) lowercase : Dict =loaded_model(UpperCAmelCase__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
92
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
0
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or number < 0: raise ValueError('Input must be a non-negative integer' ) lowerCAmelCase__ :Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
93
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
95
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
0
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = OpenAIGPTTokenizer UpperCAmelCase__ = OpenAIGPTTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = False def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __magic_name__: str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __magic_name__: Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__: List[str] = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] __magic_name__: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__snake_case ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def lowerCamelCase__ ( self : List[Any] , __snake_case : Optional[Any] ) -> Optional[int]: return "lower newer", "lower newer" def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: __magic_name__: Optional[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __magic_name__: Union[str, Any] = """lower""" __magic_name__: Optional[int] = ["""low""", """er</w>"""] __magic_name__: List[Any] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __magic_name__: Optional[int] = tokens + ["""<unk>"""] __magic_name__: List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Any=1_5 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __magic_name__: str = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) # Simple input __magic_name__: Dict = """This is a simple input""" __magic_name__: Any = ["""This is a simple input 1""", """This is a simple input 2"""] __magic_name__: int = ("""This is a simple input""", """This is a pair""") __magic_name__: int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Simple input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Simple input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" , ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Pair input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" , ) def lowerCamelCase__ ( self : Dict ) -> Any: pass @require_ftfy @require_spacy @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ): pass
96
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __a = 'sshleifer/bart-tiny-random' __a = 'patrickvonplaten/t5-tiny-random' @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : int ) -> List[Any]: return AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> int: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _lowercase ( self : Any ) -> List[str]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> Union[str, Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=SCREAMING_SNAKE_CASE_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _lowercase ( self : List[str] ) -> Dict: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _lowercase ( self : Tuple ) -> Optional[Any]: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=SCREAMING_SNAKE_CASE_ , d=SCREAMING_SNAKE_CASE_ )
97
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase__ : Any = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def a__ ( lowercase : Optional[Any], lowercase : List[str], lowercase : Tuple=None, lowercase : Tuple=None, lowercase : int=None, lowercase : Optional[int]=None, lowercase : Any=None, lowercase : Optional[int]=None, ) -> Any: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: _UpperCamelCase = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: _UpperCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowerCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple=13 , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Dict=99 , lowerCAmelCase__ : Union[str, Any]=16 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : List[Any]=1 , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : Dict=0.02 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id _UpperCamelCase = initializer_range def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _UpperCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) _UpperCamelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , ) _UpperCamelCase = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def snake_case__ ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = 9_9 def snake_case__ ( self : Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _UpperCamelCase = input_ids.shape[0] _UpperCamelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_config_and_data() _UpperCamelCase = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase__ ) _UpperCamelCase = lm_model(input_ids=lowerCAmelCase__ ) _UpperCamelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _UpperCamelCase = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase__ ) _UpperCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _UpperCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _UpperCamelCase = lm_model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) _UpperCamelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) _UpperCamelCase = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() _UpperCamelCase = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase , __magic_name__ ): """simple docstring""" _snake_case : List[Any] = True _snake_case : str = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _snake_case : Union[str, Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def snake_case__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaxBlenderbotSmallModelTester(self ) def snake_case__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int=None , **lowerCAmelCase__ : Any ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self : Any ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _UpperCamelCase = np.ones((1, 1) ) * model.config.eos_token_id _UpperCamelCase = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ )
98
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """swinv2""" _lowerCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __A=224 , __A=4 , __A=3 , __A=96 , __A=[2, 2, 6, 2] , __A=[3, 6, 12, 24] , __A=7 , __A=4.0 , __A=True , __A=0.0 , __A=0.0 , __A=0.1 , __A="gelu" , __A=False , __A=0.02 , __A=1E-5 , __A=32 , **__A , ): super().__init__(**__A ) __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = depths __a = len(__A ) __a = num_heads __a = window_size __a = mlp_ratio __a = qkv_bias __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = drop_path_rate __a = hidden_act __a = use_absolute_embeddings __a = layer_norm_eps __a = initializer_range __a = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __a = int(embed_dim * 2 ** (len(__A ) - 1) ) __a = (0, 0, 0, 0)
99
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Any = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
100
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
0