code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import torch from transformers import AutoModel class __lowercase ( torch.nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase="sayef/fsner-bert-base-uncased" ): super(_UpperCAmelCase , self ).__init__() __a : List[Any] = AutoModel.from_pretrained(_UpperCAmelCase , return_dict=_UpperCAmelCase ) __a : Union[str, Any] = torch.nn.CosineSimilarity(3 , 1e-0_8 ) __a : Dict = torch.nn.Softmax(dim=1 ) def _lowerCamelCase ( self , **_UpperCAmelCase ): return self.bert(**_UpperCAmelCase ).last_hidden_state def _lowerCamelCase ( self , _UpperCAmelCase ): return token_embeddings.sum(2 , keepdim=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1 ): return self.softmax(T * self.cos(_UpperCAmelCase , _UpperCAmelCase ) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = W_supports['''sizes'''].tolist() __a : str = W_supports['''start_token_id'''].item() __a : Optional[int] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a : Union[str, Any] = self.BERT(**_UpperCAmelCase ) __a : int = self.BERT(**_UpperCAmelCase ) __a : Tuple = None __a : Union[str, Any] = None __a : Optional[Any] = W_supports['''input_ids'''] == start_token_id __a : Dict = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(_UpperCAmelCase ): if i == 0: __a : Optional[int] = 0 else: __a : Union[str, Any] = support_sizes[i - 1] __a : Tuple = S[s : s + size][start_token_masks[s : s + size]] __a : Union[str, Any] = S[s : s + size][end_token_masks[s : s + size]] __a : str = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a : str = torch.vstack((p_starts, p_start) ) __a : Optional[int] = torch.vstack((p_ends, p_end) ) else: __a : List[Any] = p_start __a : int = p_end return p_starts, p_ends
52
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer A = logging.get_logger(__name__) A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp A = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } A = { '''RUCAIBox/mvp''': 1_024, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = MvpTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) __a : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: __a : Union[str, Any] = getattr(_UpperCAmelCase , pre_tok_state.pop('''type''' ) ) __a : str = add_prefix_space __a : Optional[Any] = pre_tok_class(**_UpperCAmelCase ) __a : List[str] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __a : Tuple = '''post_processor''' __a : Dict = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: __a : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a : Any = tuple(state['''sep'''] ) if "cls" in state: __a : Optional[int] = tuple(state['''cls'''] ) __a : Any = False if state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: __a : Union[str, Any] = add_prefix_space __a : str = True if state.get('''trim_offsets''' , _UpperCAmelCase ) != trim_offsets: __a : List[Any] = trim_offsets __a : Optional[Any] = True if changes_to_apply: __a : List[str] = getattr(_UpperCAmelCase , state.pop('''type''' ) ) __a : List[str] = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property def _lowerCamelCase ( self ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , _UpperCAmelCase ): __a : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value __a : Tuple = value def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : List[Any] = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : List[str] = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Any = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __a : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : str = [self.sep_token_id] __a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
1
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''efficientformer''' def __init__( self , _UpperCAmelCase = [3, 2, 6, 4] , _UpperCAmelCase = [48, 96, 224, 448] , _UpperCAmelCase = [True, True, True, True] , _UpperCAmelCase = 448 , _UpperCAmelCase = 32 , _UpperCAmelCase = 4 , _UpperCAmelCase = 7 , _UpperCAmelCase = 5 , _UpperCAmelCase = 8 , _UpperCAmelCase = 4 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 16 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 2 , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 1e-1_2 , _UpperCAmelCase = 224 , _UpperCAmelCase = 1e-0_5 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Optional[int] = hidden_act __a : List[str] = hidden_dropout_prob __a : List[str] = hidden_sizes __a : List[Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : List[Any] = initializer_range __a : Optional[int] = layer_norm_eps __a : Union[str, Any] = patch_size __a : Dict = num_channels __a : Dict = depths __a : Optional[int] = mlp_expansion_ratio __a : Any = downsamples __a : Any = dim __a : Dict = key_dim __a : Dict = attention_ratio __a : Any = resolution __a : str = pool_size __a : List[Any] = downsample_patch_size __a : Any = downsample_stride __a : str = downsample_pad __a : Union[str, Any] = drop_path_rate __a : str = num_metaad_blocks __a : List[Any] = distillation __a : str = use_layer_scale __a : Optional[int] = layer_scale_init_value __a : Optional[Any] = image_size __a : Optional[int] = batch_norm_eps
52
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
1
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase = 16 , _UpperCAmelCase = 88 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 32 , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "geglu" , _UpperCAmelCase = None , ): super().__init__() __a : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_UpperCAmelCase , attention_head_dim=_UpperCAmelCase , in_channels=_UpperCAmelCase , num_layers=_UpperCAmelCase , dropout=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , cross_attention_dim=_UpperCAmelCase , attention_bias=_UpperCAmelCase , sample_size=_UpperCAmelCase , num_vector_embeds=_UpperCAmelCase , activation_fn=_UpperCAmelCase , num_embeds_ada_norm=_UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __a : Tuple = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __a : List[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __a : Union[str, Any] = [1, 0] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = True , ): __a : Dict = hidden_states __a : Any = [] __a : Any = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __a : Any = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __a : List[str] = self.transformer_index_for_condition[i] __a : List[str] = self.transformers[transformer_index]( _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , timestep=_UpperCAmelCase , cross_attention_kwargs=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __a : Union[str, Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __a : List[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_UpperCAmelCase )
52
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
1
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __A ( a_ :Any , a_ :Optional[int] , a_ :str , a_ :Optional[Any]=10_24) -> Dict: __a , __a : int = [], [] __a : Optional[Any] = list(zip(a_ , a_)) __a , __a : int = sorted_examples[0] def is_too_big(a_ :List[str]): return tok(a_ , return_tensors='''pt''').input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): __a : int = new_src + ''' ''' + src __a : Optional[int] = new_tgt + ''' ''' + tgt if is_too_big(a_) or is_too_big(a_): # cant fit, finalize example finished_src.append(a_) finished_tgt.append(a_) __a , __a : List[str] = src, tgt else: # can fit, keep adding __a , __a : Dict = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(a_) finished_tgt.append(a_) return finished_src, finished_tgt def __A ( a_ :Any , a_ :Path , a_ :int , a_ :int) -> Optional[int]: __a : Tuple = Path(a_) save_path.mkdir(exist_ok=a_) for split in ["train"]: __a , __a : Optional[int] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" __a : Optional[Any] = [x.rstrip() for x in Path(a_).open().readlines()] __a : Union[str, Any] = [x.rstrip() for x in Path(a_).open().readlines()] __a , __a : Optional[int] = pack_examples(a_ , a_ , a_ , a_) print(F"""packed {split} split from {len(a_)} examples -> {len(a_)}.""") Path(save_path / F"""{split}.source""").open('''w''').write('''\n'''.join(a_)) Path(save_path / F"""{split}.target""").open('''w''').write('''\n'''.join(a_)) for split in ["val", "test"]: __a , __a : List[str] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(a_ , save_path / F"""{split}.source""") shutil.copyfile(a_ , save_path / F"""{split}.target""") def __A ( ) -> Dict: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=a_ , help='''like facebook/bart-large-cnn,t5-base, etc.''') parser.add_argument('''--max_seq_len''' , type=a_ , default=1_28) parser.add_argument('''--data_dir''' , type=a_) parser.add_argument('''--save_path''' , type=a_) __a : Tuple = parser.parse_args() __a : Union[str, Any] = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(a_ , Path(args.data_dir) , args.max_seq_len , args.save_path) if __name__ == "__main__": packer_cli()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : Optional[Any] = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __a : List[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __a : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __a : List[str] = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __a : Union[str, Any] = shift_tokens_right(_UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __a : List[Any] = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits __a : int = optax.softmax_cross_entropy(_UpperCAmelCase , onehot(_UpperCAmelCase , logits.shape[-1] ) ).mean() __a : List[Any] = -(labels.shape[-1] * loss.item()) __a : List[str] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
52
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
52
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __lowerCAmelCase = Features({'''audio''': Audio()} ) __lowerCAmelCase = Features({'''labels''': ClassLabel} ) __lowerCAmelCase = "audio" __lowerCAmelCase = "labels" def _lowerCamelCase ( self , _UpperCAmelCase ): if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _UpperCAmelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) __a : int = copy.deepcopy(self ) __a : Any = self.label_schema.copy() __a : Tuple = features[self.label_column] __a : List[str] = label_schema return task_template @property def _lowerCamelCase ( self ): return { self.audio_column: "audio", self.label_column: "labels", }
52
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
1
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ :int , a_ :Dict , a_ :str , a_ :Optional[int]=None) -> List[str]: __a : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __a , __a : Union[str, Any] = True, True __a : List[Any] = dfs(a_ , a_ , a_ , a_) return path def __A ( a_ :int , a_ :int) -> Optional[int]: __a : Any = 0 __a : Optional[int] = -1 for i in range(a_): if i not in graph.keys(): continue if len(graph[i]) % 2 == 1: odd_degree_nodes += 1 __a : int = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ :List[str] , a_ :Tuple) -> Tuple: __a : List[str] = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] __a , __a : Any = check_circuit_or_path(a_ , a_) if check == 3: print('''graph is not Eulerian''') print('''no path''') return __a : Any = 1 if check == 2: __a : str = odd_node print('''graph has a Euler path''') if check == 1: print('''graph has a Euler cycle''') __a : Any = dfs(a_ , a_ , a_) print(a_) def __A ( ) -> List[str]: __a : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __a : Any = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __a : List[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __a : str = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __a : List[Any] = { 1: [], 2: [] # all degree is zero } __a : Tuple = 10 check_euler(a_ , a_) check_euler(a_ , a_) check_euler(a_ , a_) check_euler(a_ , a_) check_euler(a_ , a_) if __name__ == "__main__": main()
52
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
1
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A = logging.get_logger(__name__) A = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } A = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } A = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __A ( ) -> Union[str, Any]: __a : Optional[Any] = ( list(range(ord('''!''') , ord('''~''') + 1)) + list(range(ord('''¡''') , ord('''¬''') + 1)) + list(range(ord('''®''') , ord('''ÿ''') + 1)) ) __a : Dict = bs[:] __a : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(a_) cs.append(2**8 + n) n += 1 __a : Union[str, Any] = [chr(a_) for n in cs] return dict(zip(a_ , a_)) def __A ( a_ :List[str]) -> Optional[int]: __a : Union[str, Any] = set() __a : int = word[0] for char in word[1:]: pairs.add((prev_char, char)) __a : List[str] = char return pairs class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): __a : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token __a : Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token __a : Tuple = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token __a : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token __a : Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token __a : Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __a : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: __a : str = json.load(_UpperCAmelCase ) __a : Dict = {v: k for k, v in self.encoder.items()} __a : Any = errors # how to handle errors in decoding __a : int = bytes_to_unicode() __a : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: __a : Tuple = merges_handle.read().split('''\n''' )[1:-1] __a : Tuple = [tuple(merge.split() ) for merge in bpe_merges] __a : int = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __a : Union[str, Any] = {} __a : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __a : Any = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self ): return len(self.encoder ) def _lowerCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self , _UpperCAmelCase ): if token in self.cache: return self.cache[token] __a : Any = tuple(_UpperCAmelCase ) __a : Dict = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: __a : Dict = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __a , __a : Optional[Any] = bigram __a : Any = [] __a : Optional[Any] = 0 while i < len(_UpperCAmelCase ): try: __a : Any = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __a : Dict = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __a : Dict = tuple(_UpperCAmelCase ) __a : List[Any] = new_word if len(_UpperCAmelCase ) == 1: break else: __a : Optional[Any] = get_pairs(_UpperCAmelCase ) __a : Optional[int] = ''' '''.join(_UpperCAmelCase ) __a : Union[str, Any] = word return word def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Tuple = [] for token in re.findall(self.pat , _UpperCAmelCase ): __a : Any = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def _lowerCamelCase ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Optional[Any] = ''''''.join(_UpperCAmelCase ) __a : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : int = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __a : str = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '''\n''' ) __a : int = 0 with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __a : Optional[Any] = token_index writer.write(''' '''.join(_UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Union[str, Any] = [self.sep_token_id] __a : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): __a : List[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): __a : Union[str, Any] = ''' ''' + text return (text, kwargs) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_UpperCAmelCase ) __a : Optional[Any] = ''' '''.join(_UpperCAmelCase ) __a : Any = self.encode(_UpperCAmelCase ) if len(_UpperCAmelCase ) > self.model_max_length: __a : List[Any] = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
52
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
1
"""simple docstring""" from PIL import Image def __A ( a_ :Image) -> Image: __a , __a : Tuple = image.size __a : Optional[Any] = 0 __a : Dict = image.load() for i in range(a_): for j in range(a_): __a : Optional[Any] = pixels[j, i] mean += pixel mean //= width * height for j in range(a_): for i in range(a_): __a : Optional[Any] = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": A = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
52
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
1
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A = logging.getLogger(__name__) @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) __lowerCAmelCase = field(default=_UpperCamelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) __lowerCAmelCase = field(default=_UpperCamelCase , metadata={'''help''': '''whether to use adafactor'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) __lowerCAmelCase = field(default=_UpperCamelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) __lowerCAmelCase = field( default='''linear''' , metadata={'''help''': f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
52
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
1
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A = get_logger(__name__) A = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class __lowercase : '''simple docstring''' @add_start_docstrings(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __lowercase : '''simple docstring''' @add_start_docstrings(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' @add_start_docstrings(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): for processor in self: __a : int = inspect.signature(processor.__call__ ).parameters if len(_UpperCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"""Make sure that all the required parameters: {list(function_args.keys() )} for """ f"""{processor.__class__} are passed to the logits processor.""" ) __a : Optional[Any] = processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) else: __a : Union[str, Any] = processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not (temperature > 0): raise ValueError(f"""`temperature` has to be a strictly positive float, but is {temperature}""" ) __a : int = temperature def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = scores / self.temperature return scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase = -float('''Inf''' ) , _UpperCAmelCase = 1 ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(f"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) __a : List[str] = top_p __a : str = filter_value __a : List[str] = min_tokens_to_keep def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : str = lax.top_k(_UpperCAmelCase , scores.shape[-1] ) __a : Any = jnp.full_like(_UpperCAmelCase , self.filter_value ) __a : List[Any] = jax.nn.softmax(_UpperCAmelCase , axis=-1 ).cumsum(axis=-1 ) __a : int = cumulative_probs < self.top_p # include the token that is higher than top_p as well __a : Any = jnp.roll(_UpperCAmelCase , 1 ) score_mask |= score_mask.at[:, 0].set(_UpperCAmelCase ) # min tokens to keep __a : List[str] = score_mask.at[:, : self.min_tokens_to_keep].set(_UpperCAmelCase ) __a : Tuple = jnp.where(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __a : Any = jax.lax.sort_key_val(_UpperCAmelCase , _UpperCAmelCase )[-1] return next_scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase = -float('''Inf''' ) , _UpperCAmelCase = 1 ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or top_k <= 0: raise ValueError(f"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) __a : Any = max(_UpperCAmelCase , _UpperCAmelCase ) __a : int = filter_value def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : Optional[int] = scores.shape __a : Optional[Any] = jnp.full(batch_size * vocab_size , self.filter_value ) __a : Any = min(self.top_k , scores.shape[-1] ) # Safety check __a , __a : str = lax.top_k(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = jnp.broadcast_to((jnp.arange(_UpperCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __a : Dict = topk_scores.flatten() __a : Optional[Any] = topk_indices.flatten() + shift __a : Tuple = next_scores_flat.at[topk_indices_flat].set(_UpperCAmelCase ) __a : Any = next_scores_flat.reshape(_UpperCAmelCase , _UpperCAmelCase ) return next_scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : int = bos_token_id def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = jnp.full(scores.shape , -float('''inf''' ) ) __a : str = 1 - jnp.bool_(cur_len - 1 ) __a : Tuple = jnp.where(_UpperCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , _UpperCAmelCase ) return scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = max_length __a : Optional[int] = eos_token_id def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = jnp.full(scores.shape , -float('''inf''' ) ) __a : Optional[int] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __a : Tuple = jnp.where(_UpperCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , _UpperCAmelCase ) return scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or min_length < 0: raise ValueError(f"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or eos_token_id < 0: raise ValueError(f"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) __a : Union[str, Any] = min_length __a : int = eos_token_id def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # create boolean flag to decide if min length penalty should be applied __a : Dict = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __a : Dict = jnp.where(_UpperCAmelCase , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , _UpperCAmelCase ) return scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : int = list(_UpperCAmelCase ) __a : List[Any] = begin_index def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = 1 - jnp.bool_(cur_len - self.begin_index ) __a : int = jnp.where(_UpperCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , _UpperCAmelCase ) return scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : Union[str, Any] = list(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : Optional[int] = dict(_UpperCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __a : Optional[int] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __a : Optional[int] = force_token_array.at[index].set(_UpperCAmelCase ) __a : List[Any] = jnp.intaa(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): def _force_token(_UpperCAmelCase ): __a : Tuple = scores.shape[0] __a : Tuple = self.force_token_array[generation_idx] __a : int = jnp.ones_like(_UpperCAmelCase , dtype=scores.dtype ) * -float('''inf''' ) __a : int = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __a : Dict = lax.dynamic_update_slice(_UpperCAmelCase , _UpperCAmelCase , (0, current_token) ) return new_scores __a : Union[str, Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_UpperCAmelCase ) , lambda: scores , ) , ) return scores class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Union[str, Any] = generate_config.eos_token_id __a : Dict = generate_config.no_timestamps_token_id __a : Optional[int] = generate_config.no_timestamps_token_id + 1 __a : List[Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_UpperCAmelCase , '''max_initial_timestamp_index''' ): __a : List[Any] = generate_config.max_initial_timestamp_index else: __a : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: __a : Tuple = model_config.vocab_size def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # suppress <|notimestamps|> which is handled by without_timestamps __a : int = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(_UpperCAmelCase , _UpperCAmelCase ): __a : Any = jnp.where((cur_len - self.begin_index) >= 1 , _UpperCAmelCase , _UpperCAmelCase ) __a : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _UpperCAmelCase , ) __a : List[Any] = jnp.where((cur_len - self.begin_index) < 2 , _UpperCAmelCase , _UpperCAmelCase ) __a : Optional[Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _UpperCAmelCase , _UpperCAmelCase , ) return jnp.where( _UpperCAmelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , _UpperCAmelCase , ) __a : Optional[int] = jax.vmap(_UpperCAmelCase )(_UpperCAmelCase , _UpperCAmelCase ) __a : int = jnp.where(cur_len == self.begin_index , _UpperCAmelCase , _UpperCAmelCase ) __a : Union[str, Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _UpperCAmelCase , ) __a : List[str] = self.timestamp_begin + self.max_initial_timestamp_index __a : Optional[int] = jnp.where( _UpperCAmelCase , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , _UpperCAmelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp __a : Optional[Any] = jax.nn.log_softmax(_UpperCAmelCase , axis=-1 ) def handle_cumulative_probs(_UpperCAmelCase , _UpperCAmelCase ): __a : Any = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __a : Tuple = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , _UpperCAmelCase , ) __a : Dict = jax.vmap(_UpperCAmelCase )(_UpperCAmelCase , _UpperCAmelCase ) return scores
52
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" def __A ( a_ :int) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A = logging.getLogger(__name__) def __A ( a_ :Dict , a_ :Any) -> str: return (preds == labels).mean() @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) __lowerCAmelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) __lowerCAmelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) __a , __a , __a : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''') # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , a_) # Set seed set_seed(training_args.seed) try: __a : Optional[Any] = processors[data_args.task_name]() __a : Dict = processor.get_labels() __a : str = len(a_) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __a : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __a : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path) , config=a_ , cache_dir=model_args.cache_dir , ) # Get datasets __a : Optional[int] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __a : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(a_ :EvalPrediction) -> Dict: __a : int = np.argmax(p.predictions , axis=1) return {"acc": simple_accuracy(a_ , p.label_ids)} # Data collator __a : List[Any] = DataCollatorWithPadding(a_ , pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer __a : List[Any] = Trainer( model=a_ , args=a_ , train_dataset=a_ , eval_dataset=a_ , compute_metrics=a_ , data_collator=a_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation __a : Optional[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''') __a : Any = trainer.evaluate() __a : Optional[int] = os.path.join(training_args.output_dir , '''eval_results.txt''') if trainer.is_world_master(): with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key, value in result.items(): logger.info(''' %s = %s''' , a_ , a_) writer.write('''%s = %s\n''' % (key, value)) results.update(a_) return results def __A ( a_ :int) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
52
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A = logging.get_logger(__name__) A = {'''tokenizer_file''': '''tokenizer.json'''} A = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = None def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase=False , _UpperCAmelCase=False , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , **_UpperCAmelCase , ) __a : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: __a : Tuple = getattr(_UpperCAmelCase , pre_tok_state.pop('''type''' ) ) __a : Optional[int] = add_prefix_space __a : str = pre_tok_class(**_UpperCAmelCase ) __a : Optional[int] = add_prefix_space def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : str = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : int = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Optional[int] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] ) if len(_UpperCAmelCase ) > self.model_max_length: __a : Optional[int] = input_ids[-self.model_max_length :] return input_ids
52
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
1
"""simple docstring""" from __future__ import annotations def __A ( a_ :list) -> float: if not nums: raise ValueError('''List is empty''') return sum(a_) / len(a_) if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
1
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __lowercase ( ctypes.Structure ): '''simple docstring''' __lowerCAmelCase = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def __A ( ) -> Optional[Any]: if os.name == "nt": __a : Optional[Any] = CursorInfo() __a : str = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(a_ , ctypes.byref(a_)) __a : List[Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(a_ , ctypes.byref(a_)) elif os.name == "posix": sys.stdout.write('''\033[?25l''') sys.stdout.flush() def __A ( ) -> Optional[int]: if os.name == "nt": __a : Optional[int] = CursorInfo() __a : List[str] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(a_ , ctypes.byref(a_)) __a : str = True ctypes.windll.kernelaa.SetConsoleCursorInfo(a_ , ctypes.byref(a_)) elif os.name == "posix": sys.stdout.write('''\033[?25h''') sys.stdout.flush() @contextmanager def __A ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __A ( a_ :List[Any]) -> str: return 1.0 / (1.0 + np.exp(-_outputs)) def __A ( a_ :Tuple) -> str: __a : Tuple = np.max(_outputs , axis=-1 , keepdims=a_) __a : Any = np.exp(_outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=a_) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''sigmoid''' __lowerCAmelCase = '''softmax''' __lowerCAmelCase = '''none''' @add_end_docstrings( _UpperCamelCase , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = False __lowerCAmelCase = ClassificationFunction.NONE def __init__( self , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="" , **_UpperCAmelCase ): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __a : int = tokenizer_kwargs __a : List[Any] = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: __a : List[Any] = self.model.config.return_all_scores if isinstance(_UpperCAmelCase , _UpperCAmelCase ) or top_k is None: __a : Tuple = top_k __a : Tuple = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , _UpperCAmelCase , ) if return_all_scores: __a : Tuple = None else: __a : List[Any] = 1 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __a : List[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : Union[str, Any] = super().__call__(*_UpperCAmelCase , **_UpperCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __a : Union[str, Any] = '''top_k''' not in kwargs if isinstance(args[0] , _UpperCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowerCamelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ): __a : str = self.framework if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.tokenizer(**_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) == 1 and isinstance(inputs[0] , _UpperCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.model(**_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=1 , _UpperCAmelCase=True ): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __a : List[Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __a : Union[str, Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: __a : Tuple = self.model.config.function_to_apply else: __a : List[Any] = ClassificationFunction.NONE __a : List[Any] = model_outputs['''logits'''][0] __a : Optional[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __a : str = sigmoid(_UpperCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: __a : List[Any] = softmax(_UpperCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: __a : str = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __a : Union[str, Any] = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(_UpperCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase ) if top_k is not None: __a : List[Any] = dict_scores[:top_k] return dict_scores
52
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
1
"""simple docstring""" from __future__ import annotations import time A = list[tuple[int, int]] A = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = pos_x __a : str = pos_y __a : Any = (pos_y, pos_x) __a : Tuple = goal_x __a : Optional[int] = goal_y __a : Union[str, Any] = parent class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , _UpperCAmelCase ) __a : Optional[int] = Node(goal[1] , goal[0] , goal[1] , goal[0] , _UpperCAmelCase ) __a : Tuple = [self.start] __a : Optional[Any] = False def _lowerCamelCase ( self ): while self.node_queue: __a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __a : Any = True return self.retrace_path(_UpperCAmelCase ) __a : Tuple = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def _lowerCamelCase ( self , _UpperCAmelCase ): __a : str = [] for action in delta: __a : Optional[Any] = parent.pos_x + action[1] __a : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , _UpperCAmelCase ) ) return successors def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Optional[Any] = node __a : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a : int = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) __a : str = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) __a : Optional[int] = False def _lowerCamelCase ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __a : Optional[int] = self.fwd_bfs.node_queue.pop(0 ) __a : Dict = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __a : Optional[int] = True return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) __a : Optional[int] = current_bwd_node __a : Optional[Any] = current_fwd_node __a : Any = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = self.fwd_bfs.retrace_path(_UpperCAmelCase ) __a : List[str] = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() __a : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A = (0, 0) A = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A = time.time() A = BreadthFirstSearch(init, goal) A = bfs.search() A = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) A = time.time() A = BidirectionalBreadthFirstSearch(init, goal) A = bd_bfs.search() A = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
52
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
1
"""simple docstring""" A = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355818, } def __A ( a_ :str , a_ :str , a_ :float) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __a : Dict = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {", ".join(a_)}""" ) raise ValueError(a_) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
1
"""simple docstring""" from __future__ import annotations A = list[list[int]] # assigning initial values to the grid A = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __A ( a_ :Matrix , a_ :int , a_ :int , a_ :int) -> bool: for i in range(9): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3): for j in range(3): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __A ( a_ :Matrix) -> tuple[int, int] | None: for i in range(9): for j in range(9): if grid[i][j] == 0: return i, j return None def __A ( a_ :Matrix) -> Matrix | None: if location := find_empty_location(a_): __a , __a : int = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10): if is_safe(a_ , a_ , a_ , a_): __a : Union[str, Any] = digit if sudoku(a_) is not None: return grid __a : Optional[Any] = 0 return None def __A ( a_ :Matrix) -> None: for row in grid: for cell in row: print(a_ , end=''' ''') print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') A = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
52
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
1
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : Optional[Any] = parent __a : int = config_class __a : Any = has_text_modality __a : List[Any] = kwargs __a : Dict = common_properties def _lowerCamelCase ( self ): __a : Tuple = self.config_class(**self.inputs_dict ) __a : Any = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(_UpperCAmelCase ): try: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.parent.assertEqual( getattr(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , msg=f"""`{name} value {idx} expected, but was {getattr(_UpperCAmelCase , _UpperCAmelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_UpperCAmelCase ): try: __a : int = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , msg=f"""`{name} value {idx} expected, but was {getattr(_UpperCAmelCase , _UpperCAmelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowerCamelCase ( self ): __a : Optional[Any] = self.config_class(**self.inputs_dict ) __a : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = os.path.join(_UpperCAmelCase , '''config.json''' ) config_first.to_json_file(_UpperCAmelCase ) __a : Tuple = self.config_class.from_json_file(_UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_UpperCAmelCase ) __a : Optional[int] = self.config_class.from_pretrained(_UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowerCamelCase ( self ): __a : Dict = self.config_class(**self.inputs_dict ) __a : str = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) config_first.save_pretrained(_UpperCAmelCase ) __a : Optional[int] = self.config_class.from_pretrained(_UpperCAmelCase , subfolder=_UpperCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowerCamelCase ( self ): __a : Any = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __a : Dict = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowerCamelCase ( self ): if self.config_class.is_composition: return __a : Union[str, Any] = self.config_class() self.parent.assertIsNotNone(_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = copy.deepcopy(_UpperCAmelCase ) __a : Dict = self.config_class(**_UpperCAmelCase ) __a : List[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(_UpperCAmelCase , _UpperCAmelCase ) != value: wrong_values.append((key, getattr(_UpperCAmelCase , _UpperCAmelCase ), value) ) if len(_UpperCAmelCase ) > 0: __a : List[Any] = '''\n'''.join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
52
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" def __A ( a_ :list[int] , a_ :list[int]) -> tuple[float, float]: # Check if the input is valid if not len(a_) == len(a_) == 3: raise ValueError('''Please enter a valid equation.''') if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''') # Extract the coefficients __a , __a , __a : str = equationa __a , __a , __a : List[str] = equationa # Calculate the determinants of the matrices __a : Tuple = aa * ba - aa * ba __a : List[str] = ca * ba - ca * ba __a : int = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''') else: raise ValueError('''No solution. (Inconsistent system)''') else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __a : List[Any] = determinant_x / determinant __a : List[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
52
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
1
"""simple docstring""" from __future__ import annotations def __A ( a_ :int | str) -> bool: __a : Dict = str(a_) return n == n[::-1] def __A ( a_ :int = 1_00_00_00) -> Any: __a : Tuple = 0 for i in range(1 , a_): if is_palindrome(a_) and is_palindrome(bin(a_).split('''b''')[1]): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
1
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A = logging.getLogger() def __A ( ) -> str: __a : Tuple = argparse.ArgumentParser() parser.add_argument('''-f''') __a : Dict = parser.parse_args() return args.f def __A ( a_ :Tuple , a_ :int="eval") -> Optional[int]: __a : str = os.path.join(a_ , F"""{split}_results.json""") if os.path.exists(a_): with open(a_ , '''r''') as f: return json.load(a_) raise ValueError(F"""can't find {path}""") A = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : List[Any] = self.get_auto_remove_tmp_dir() __a : List[str] = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_flax_glue.main() __a : Optional[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = self.get_auto_remove_tmp_dir() __a : List[str] = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_clm_flax.main() __a : str = get_results(_UpperCAmelCase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def _lowerCamelCase ( self ): __a : List[Any] = self.get_auto_remove_tmp_dir() __a : str = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_summarization_flax.main() __a : Dict = get_results(_UpperCAmelCase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def _lowerCamelCase ( self ): __a : int = self.get_auto_remove_tmp_dir() __a : int = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_mlm_flax.main() __a : Optional[int] = get_results(_UpperCAmelCase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def _lowerCamelCase ( self ): __a : Dict = self.get_auto_remove_tmp_dir() __a : Union[str, Any] = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_ta_mlm_flax.main() __a : Any = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.4_2 ) @slow def _lowerCamelCase ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __a : Optional[int] = 7 if get_gpu_count() > 1 else 2 __a : Tuple = self.get_auto_remove_tmp_dir() __a : str = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_flax_ner.main() __a : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def _lowerCamelCase ( self ): __a : Tuple = self.get_auto_remove_tmp_dir() __a : Union[str, Any] = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_qa.main() __a : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
52
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[Any] = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __a : Optional[int] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __a : Dict = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above __a : Union[str, Any] = tf_top_k_top_p_filtering(_UpperCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __a : Tuple = output[output != -float('''inf''' )] __a : Union[str, Any] = tf.cast( tf.where(tf.not_equal(_UpperCAmelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-1_2 ) tf.debugging.assert_equal(_UpperCAmelCase , _UpperCAmelCase ) @require_tf class __lowercase ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' if is_tf_available(): __lowerCAmelCase = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def _lowerCamelCase ( self ): # TF-only test: tf.saved_model export __a : int = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a : Any = 2 __a : str = 2 class __lowercase ( tf.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super(_UpperCAmelCase , self ).__init__() __a : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCAmelCase , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = self.model.generate( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , max_new_tokens=_UpperCAmelCase , return_dict_in_generate=_UpperCAmelCase , ) return {"sequences": outputs["sequences"]} __a : List[str] = [[2, 0], [102, 103]] __a : List[str] = [[1, 0], [1, 1]] __a : Optional[int] = DummyModel(model=_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCAmelCase , _UpperCAmelCase , signatures={'''serving_default''': dummy_model.serving} ) __a : Union[str, Any] = tf.saved_model.load(_UpperCAmelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCAmelCase ) + 1 ): __a : Optional[int] = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } __a : List[str] = serving_func(**_UpperCAmelCase )['''sequences'''] __a : List[Any] = test_model.generate(**_UpperCAmelCase , max_new_tokens=_UpperCAmelCase ) tf.debugging.assert_equal(_UpperCAmelCase , _UpperCAmelCase ) @slow def _lowerCamelCase ( self ): # TF-only test: tf.saved_model export __a : int = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a : List[Any] = 1 __a : Any = 2 class __lowercase ( tf.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super(_UpperCAmelCase , self ).__init__() __a : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCAmelCase , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : str = self.model.generate( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , max_new_tokens=_UpperCAmelCase , return_dict_in_generate=_UpperCAmelCase , ) return {"sequences": outputs["sequences"]} __a : Optional[Any] = [[2], [102, 103]] __a : List[Any] = [[1], [1, 1]] __a : Dict = DummyModel(model=_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCAmelCase , _UpperCAmelCase , signatures={'''serving_default''': dummy_model.serving} ) __a : List[Any] = tf.saved_model.load(_UpperCAmelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCAmelCase ) ): __a : Optional[Any] = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } __a : List[str] = serving_func(**_UpperCAmelCase )['''sequences'''] __a : List[Any] = test_model.generate(**_UpperCAmelCase , max_new_tokens=_UpperCAmelCase ) tf.debugging.assert_equal(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_tensorflow_text def _lowerCamelCase ( self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCAmelCase ) class __lowercase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self ): super().__init__() __a : List[Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCAmelCase , '''spiece.model''' ) , '''rb''' ).read() ) __a : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def _lowerCamelCase ( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ): __a : Union[str, Any] = self.tokenizer.tokenize(_UpperCAmelCase ) __a , __a : str = text.pad_model_inputs( _UpperCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __a : int = self.model.generate(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) return self.tokenizer.detokenize(_UpperCAmelCase ) __a : Tuple = CompleteSentenceTransformer() __a : Union[str, Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) __a : Tuple = complete_model(_UpperCAmelCase ) __a : Optional[int] = tf.keras.Model(_UpperCAmelCase , _UpperCAmelCase ) keras_model.save(_UpperCAmelCase ) def _lowerCamelCase ( self ): # Has PT equivalent: this test relies on random sampling __a : int = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 10, '''temperature''': 0.7, } __a : int = 14 __a : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a : Tuple = '''Hello, my dog is cute and''' __a : Any = tokenizer(_UpperCAmelCase , return_tensors='''tf''' ) __a : Dict = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a : List[Any] = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) __a : int = model.generate(**_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __a : Any = [638, 198] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) __a : Optional[Any] = model.generate(**_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _lowerCamelCase ( self ): # Has PT equivalent: ample use of framework-specific code __a : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) __a : Optional[int] = '''Hugging Face is a technology company based in New York and Paris.''' __a : Union[str, Any] = bart_tokenizer(_UpperCAmelCase , return_tensors='''tf''' ).input_ids __a : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) __a : Dict = bart_model.generate(_UpperCAmelCase ).numpy() class __lowercase ( _UpperCamelCase ): '''simple docstring''' def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): return super().call(_UpperCAmelCase , **_UpperCAmelCase ) __a : Any = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) __a : Optional[int] = bart_model.generate(_UpperCAmelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCAmelCase , _UpperCAmelCase ) ) class __lowercase ( bart_model.model.encoder.__class__ ): '''simple docstring''' def _lowerCamelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ): return super().call(_UpperCAmelCase , **_UpperCAmelCase ) __a : Optional[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) __a : Optional[int] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __a : Tuple = bart_model.generate(_UpperCAmelCase ).numpy() with self.assertRaises(_UpperCAmelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCAmelCase , foo='''bar''' )
52
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
1
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (KDPMaDiscreteScheduler,) __lowerCAmelCase = 10 def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : Dict = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : str = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __a : Optional[int] = self.dummy_model() __a : Any = self.dummy_sample_deter * scheduler.init_noise_sigma __a : Tuple = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __a : Tuple = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __a : int = model(_UpperCAmelCase , _UpperCAmelCase ) __a : List[Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __a : str = output.prev_sample __a : Union[str, Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Any = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def _lowerCamelCase ( self ): if torch_device == "mps": return __a : Tuple = self.scheduler_classes[0] __a : Union[str, Any] = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __a : int = self.dummy_model() __a : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __a : str = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __a : Union[str, Any] = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __a : str = model(_UpperCAmelCase , _UpperCAmelCase ) __a : Optional[int] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = output.prev_sample __a : str = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def _lowerCamelCase ( self ): if torch_device == "mps": return __a : Optional[int] = self.scheduler_classes[0] __a : Optional[int] = self.get_scheduler_config() __a : int = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) __a : List[Any] = self.dummy_model() __a : Any = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __a : Optional[int] = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __a : int = model(_UpperCAmelCase , _UpperCAmelCase ) __a : Optional[Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __a : int = output.prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
52
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''transfo-xl''' __lowerCAmelCase = ['''mems'''] __lowerCAmelCase = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCAmelCase=267735 , _UpperCAmelCase=[20000, 40000, 200000] , _UpperCAmelCase=1024 , _UpperCAmelCase=1024 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=4096 , _UpperCAmelCase=4 , _UpperCAmelCase=False , _UpperCAmelCase=18 , _UpperCAmelCase=1600 , _UpperCAmelCase=1000 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=-1 , _UpperCAmelCase=True , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="normal" , _UpperCAmelCase=0.0_1 , _UpperCAmelCase=0.0_1 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): __a : str = vocab_size __a : int = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __a : List[Any] = [False] + [True] * len(self.cutoffs ) else: __a : List[Any] = [False] + [False] * len(self.cutoffs ) __a : Tuple = d_model __a : str = d_embed __a : Tuple = d_head __a : int = d_inner __a : str = div_val __a : str = pre_lnorm __a : Optional[Any] = n_layer __a : Union[str, Any] = n_head __a : Dict = mem_len __a : Optional[Any] = same_length __a : Any = attn_type __a : Any = clamp_len __a : List[str] = sample_softmax __a : List[Any] = adaptive __a : List[str] = dropout __a : str = dropatt __a : Any = untie_r __a : Optional[int] = init __a : Tuple = init_range __a : List[Any] = proj_init_std __a : Tuple = init_std __a : Tuple = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowerCamelCase ( self , _UpperCAmelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
52
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
1
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __A ( a_ :List[str] , a_ :Union[str, Any] , a_ :List[Any]) -> Optional[int]: __a : List[Any] = 0 if start < end: __a : List[Any] = randint(a_ , a_) __a : Tuple = a[end] __a : Any = a[pivot] __a : Dict = temp __a , __a : List[str] = _in_place_partition(a_ , a_ , a_) count += _in_place_quick_sort(a_ , a_ , p - 1) count += _in_place_quick_sort(a_ , p + 1 , a_) return count def __A ( a_ :Any , a_ :str , a_ :Dict) -> Tuple: __a : str = 0 __a : int = randint(a_ , a_) __a : Optional[int] = a[end] __a : Any = a[pivot] __a : int = temp __a : Optional[Any] = start - 1 for index in range(a_ , a_): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __a : List[str] = new_pivot_index + 1 __a : Dict = a[new_pivot_index] __a : int = a[index] __a : List[Any] = temp __a : Optional[int] = a[new_pivot_index + 1] __a : str = a[end] __a : List[str] = temp return new_pivot_index + 1, count A = TemporaryFile() A = 100 # 1000 elements are to be sorted A , A = 0, 1 # mean and standard deviation A = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array A = np.load(outfile) A = len(M) - 1 A = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
52
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets A = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' A = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' A = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , ): __a : str = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __a : Tuple = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] __a : Optional[int] = TER( normalized=_UpperCAmelCase , no_punct=_UpperCAmelCase , asian_support=_UpperCAmelCase , case_sensitive=_UpperCAmelCase , ) __a : str = sb_ter.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
52
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
1
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def __A ( a_ :Iterable[str] , a_ :int) -> Generator[tuple[str, ...], None, None]: __a : List[str] = iter(a_) while True: __a : List[Any] = tuple(itertools.islice(a_ , a_)) if not chunk: return yield chunk def __A ( a_ :str) -> str: __a : int = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters]) __a : Tuple = '''''' if len(a_) < 2: return dirty for i in range(len(a_) - 1): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(a_) & 1: clean += "X" return clean def __A ( a_ :str) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) __a : Optional[Any] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __a : Tuple = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(a_) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(a_) return table def __A ( a_ :str , a_ :str) -> str: __a : Optional[Any] = generate_table(a_) __a : Optional[int] = prepare_input(a_) __a : List[str] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(a_ , 2): __a , __a : Optional[Any] = divmod(table.index(a_) , 5) __a , __a : Tuple = divmod(table.index(a_) , 5) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __A ( a_ :str , a_ :str) -> str: __a : Any = generate_table(a_) __a : Any = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(a_ , 2): __a , __a : Any = divmod(table.index(a_) , 5) __a , __a : Union[str, Any] = divmod(table.index(a_) , 5) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
52
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __A ( a_ :int , a_ :Union[str, Any]) -> int: assert isinstance(a_ , a_) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True]) def __A ( a_ :str , a_ :Tuple , a_ :Optional[int]) -> Optional[int]: __a : Union[str, Any] = tmp_path / '''cache''' __a : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a : Optional[int] = JsonDatasetReader(a_ , cache_dir=a_ , keep_in_memory=a_).read() _check_json_dataset(a_ , a_) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __A ( a_ :List[str] , a_ :List[str] , a_ :Any) -> Dict: __a : Optional[int] = tmp_path / '''cache''' __a : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __a : Tuple = features.copy() if features else default_expected_features __a : Dict = ( Features({feature: Value(a_) for feature, dtype in features.items()}) if features is not None else None ) __a : int = JsonDatasetReader(a_ , features=a_ , cache_dir=a_).read() _check_json_dataset(a_ , a_) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def __A ( a_ :Any , a_ :List[Any] , a_ :Union[str, Any]) -> Optional[Any]: __a : List[str] = tmp_path / '''cache''' __a : Tuple = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __a : str = features.copy() if features else default_expected_features __a : Optional[int] = ( Features({feature: Value(a_) for feature, dtype in features.items()}) if features is not None else None ) __a : int = JsonDatasetReader(a_ , features=a_ , cache_dir=a_).read() assert isinstance(a_ , a_) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __A ( a_ :Optional[Any] , a_ :List[str]) -> Tuple: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __a : List[Any] = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __a : Dict = features.copy() __a : List[Any] = ( Features({feature: Value(a_) for feature, dtype in features.items()}) if features is not None else None ) __a : List[Any] = tmp_path / '''cache''' __a : Optional[Any] = JsonDatasetReader(a_ , features=a_ , cache_dir=a_).read() assert isinstance(a_ , a_) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train'''), '''train''', '''test''']) def __A ( a_ :Tuple , a_ :Optional[int] , a_ :List[Any]) -> int: __a : Tuple = tmp_path / '''cache''' __a : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __a : List[str] = JsonDatasetReader(a_ , cache_dir=a_ , split=a_).read() _check_json_dataset(a_ , a_) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list]) def __A ( a_ :Tuple , a_ :Dict , a_ :Any) -> Optional[int]: if issubclass(a_ , a_): __a : List[str] = jsonl_path elif issubclass(a_ , a_): __a : str = [jsonl_path] __a : Optional[int] = tmp_path / '''cache''' __a : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __a : Dict = JsonDatasetReader(a_ , cache_dir=a_).read() _check_json_dataset(a_ , a_) def __A ( a_ :int , a_ :Union[str, Any] , a_ :Any=("train",)) -> List[str]: assert isinstance(a_ , a_) for split in splits: __a : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True]) def __A ( a_ :int , a_ :List[Any] , a_ :Any) -> Optional[Any]: __a : str = tmp_path / '''cache''' __a : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a : List[Any] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=a_ , keep_in_memory=a_).read() _check_json_datasetdict(a_ , a_) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __A ( a_ :Tuple , a_ :str , a_ :Dict) -> List[str]: __a : List[str] = tmp_path / '''cache''' __a : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __a : List[str] = features.copy() if features else default_expected_features __a : Optional[Any] = ( Features({feature: Value(a_) for feature, dtype in features.items()}) if features is not None else None ) __a : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , features=a_ , cache_dir=a_).read() _check_json_datasetdict(a_ , a_) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train'''), '''train''', '''test''']) def __A ( a_ :Dict , a_ :Union[str, Any] , a_ :Optional[Any]) -> Any: if split: __a : List[Any] = {split: jsonl_path} else: __a : int = '''train''' __a : str = {'''train''': jsonl_path, '''test''': jsonl_path} __a : int = tmp_path / '''cache''' __a : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __a : int = JsonDatasetReader(a_ , cache_dir=a_).read() _check_json_datasetdict(a_ , a_ , splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def __A ( a_ :Tuple) -> Optional[Any]: return json.load(a_) def __A ( a_ :Optional[Any]) -> Any: return [json.loads(a_) for line in buffer] class __lowercase : '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase ).write() buffer.seek(0 ) __a : Dict = load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase ).write() buffer.seek(0 ) __a : int = load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __a : Tuple = load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __a : List[str] = load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 def _lowerCamelCase ( self , _UpperCAmelCase ): with pytest.raises(_UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Any = tmp_path_factory.mktemp('''data''' ) / f"""test.json.{extension}""" __a : int = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , compression=_UpperCAmelCase ).write() with fsspec.open(_UpperCAmelCase , '''rb''' , compression='''infer''' ) as f: __a : List[Any] = f.read() with fsspec.open(_UpperCAmelCase , '''rb''' , compression='''infer''' ) as f: __a : Optional[Any] = f.read() assert exported_content == original_content
52
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (UnCLIPScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : List[Any] = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_UpperCAmelCase ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_UpperCAmelCase , prev_timestep=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : Any = self.get_scheduler_config(variance_type='''fixed_small_log''' ) __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_5_4_9_6_2_5 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_9_9_4_9_8_7 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : List[str] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config(variance_type='''learned_range''' ) __a : Optional[int] = scheduler_class(**_UpperCAmelCase ) __a : int = 0.5 assert scheduler._get_variance(1 , predicted_variance=_UpperCAmelCase ) - -1_0.1_7_1_2_7_9_0 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_UpperCAmelCase ) - -5.7_9_9_8_0_5_2 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_UpperCAmelCase ) - -0.0_0_1_0_0_1_1 < 1e-5 def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : Dict = scheduler.timesteps __a : Optional[int] = self.dummy_model() __a : Any = self.dummy_sample_deter __a : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual __a : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __a : Tuple = pred_prev_sample __a : Optional[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Any = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1e-3 def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : str = self.get_scheduler_config() __a : Union[str, Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(25 ) __a : Tuple = scheduler.timesteps __a : Any = self.dummy_model() __a : Optional[Any] = self.dummy_sample_deter __a : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual __a : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) if i + 1 == timesteps.shape[0]: __a : List[Any] = None else: __a : str = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a : List[str] = scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , prev_timestep=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __a : Tuple = pred_prev_sample __a : Any = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Dict = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1e-3 def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): pass
52
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''PerceiverFeatureExtractor'''] A = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
1
"""simple docstring""" import re def __A ( a_ :str) -> str: if len(re.findall('''[ATCG]''' , a_)) != len(a_): raise ValueError('''Invalid Strand''') return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''')) if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
1
"""simple docstring""" from __future__ import annotations def __A ( a_ :float , a_ :float , a_ :float , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError('''You cannot supply more or less than 2 values''') elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''') elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''') elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''') elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
1
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
1
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __A ( a_ :Tuple , a_ :List[Any]) -> Union[str, Any]: assert isinstance(a_ , a_) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True]) def __A ( a_ :Any , a_ :Union[str, Any] , a_ :List[str] , a_ :Union[str, Any]) -> Dict: __a : List[str] = tmp_path / '''cache''' __a : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a : Tuple = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=a_ , keep_in_memory=a_).read() _check_sql_dataset(a_ , a_) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __A ( a_ :Any , a_ :Any , a_ :Optional[int] , a_ :Optional[Any]) -> List[str]: __a : Optional[Any] = tmp_path / '''cache''' __a : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __a : List[str] = features.copy() if features else default_expected_features __a : str = ( Features({feature: Value(a_) for feature, dtype in features.items()}) if features is not None else None ) __a : List[Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=a_ , cache_dir=a_).read() _check_sql_dataset(a_ , a_) def __A ( a_ :Optional[Any]) -> List[Any]: with contextlib.closing(sqlitea.connect(a_)) as con: __a : Optional[Any] = con.cursor() cur.execute('''SELECT * FROM dataset''') for row in cur: yield row @require_sqlalchemy def __A ( a_ :Union[str, Any] , a_ :Optional[Any] , a_ :List[str]) -> Optional[int]: __a : Optional[int] = tmp_path / '''cache''' __a : List[Any] = os.path.join(a_ , '''tmp.sql''') __a : int = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=a_).read() SqlDatasetWriter(a_ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1).write() __a : Dict = iter_sql_file(a_) __a : Any = iter_sql_file(a_) for rowa, rowa in zip(a_ , a_): assert rowa == rowa @require_sqlalchemy def __A ( a_ :Optional[int] , a_ :Union[str, Any] , a_ :int) -> Optional[Any]: __a : Union[str, Any] = tmp_path / '''cache''' __a : str = os.path.join(a_ , '''tmp.sql''') __a : int = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=a_).read() SqlDatasetWriter(a_ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2).write() __a : Optional[Any] = iter_sql_file(a_) __a : Tuple = iter_sql_file(a_) for rowa, rowa in zip(a_ , a_): assert rowa == rowa @require_sqlalchemy def __A ( a_ :int , a_ :str , a_ :int) -> List[str]: __a : int = tmp_path / '''cache''' __a : int = os.path.join(a_ , '''tmp.sql''') __a : Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=a_).read() with pytest.raises(a_): SqlDatasetWriter(a_ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0).write()
52
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
1
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = LongformerTokenizer __lowerCAmelCase = True __lowerCAmelCase = LongformerTokenizerFast __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __a : List[str] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __a : Optional[int] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __a : List[str] = {'''unk_token''': '''<unk>'''} __a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = '''lower newer''' __a : List[Any] = '''lower newer''' return input_text, output_text def _lowerCamelCase ( self ): __a : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : Tuple = '''lower newer''' __a : Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __a : Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Optional[int] = tokens + [tokenizer.unk_token] __a : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=_UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=_UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowerCamelCase ( self ): __a : Dict = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __a : Any = tokenizer.encode('''sequence builders''' , add_special_tokens=_UpperCAmelCase ) __a : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_UpperCAmelCase ) __a : str = tokenizer.encode( '''sequence builders''' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : Tuple = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __a : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self ): __a : Tuple = self.get_tokenizer() __a : Union[str, Any] = '''Encode this sequence.''' __a : List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __a : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __a : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __a : List[str] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing spaces after special tokens __a : Dict = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )} ) # mask token has a left space __a : Any = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) __a : Optional[Any] = '''Encode <mask> sequence''' __a : Union[str, Any] = '''Encode <mask>sequence''' __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : int = encoded.index(_UpperCAmelCase ) __a : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Union[str, Any] = tokenizer.encode(_UpperCAmelCase ) __a : Any = encoded.index(_UpperCAmelCase ) __a : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Dict = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __a : List[Any] = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __a : Optional[Any] = '''A, <mask> AllenNLP sentence.''' __a : Tuple = tokenizer_r.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) __a : Union[str, Any] = tokenizer_p.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __a : int = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __a : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _lowerCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __a : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __a : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , _UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , _UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Any = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __a : Union[str, Any] = f"""{text_of_1_token} {text_of_1_token}""" __a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : List[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Any = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : str = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Any = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : List[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Union[str, Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : Optional[Any] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __a : int = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Tuple = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ) + 1, 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : List[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : List[Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) __a : List[str] = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) __a : Union[str, Any] = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , )
52
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) A = logging.getLogger(__name__) A = {'''facebook/bart-base''': BartForConditionalGeneration} A = {'''facebook/bart-base''': BartTokenizer} def __A ( ) -> str: __a : int = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''') parser.add_argument( '''--validation_file''' , type=a_ , default=a_ , help='''A csv or a json file containing the validation data.''') parser.add_argument( '''--max_length''' , type=a_ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=a_ , default=a_ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=a_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=a_ , ) parser.add_argument( '''--config_name''' , type=a_ , default=a_ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=a_ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=a_ , default=a_ , help='''Where to store the final ONNX file.''') __a : Any = parser.parse_args() return args def __A ( a_ :int , a_ :List[Any]="cpu") -> List[Any]: __a : Optional[int] = model_dict[model_name].from_pretrained(a_).to(a_) __a : Tuple = tokenizer_dict[model_name].from_pretrained(a_) if model_name in ["facebook/bart-base"]: __a : Any = 0 __a : Any = None __a : Optional[int] = 0 return huggingface_model, tokenizer def __A ( a_ :Optional[Any] , a_ :int , a_ :Tuple , a_ :List[str] , a_ :int) -> Optional[int]: model.eval() __a : Dict = None __a : List[str] = torch.jit.script(BARTBeamSearchGenerator(a_)) with torch.no_grad(): __a : List[Any] = '''My friends are cool but they eat too many carbs.''' __a : Any = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='''pt''').to(model.device) __a : List[str] = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=a_ , max_length=a_ , early_stopping=a_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( a_ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , a_ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=a_ , ) logger.info('''Model exported to {}'''.format(a_)) __a : Dict = remove_dup_initializers(os.path.abspath(a_)) logger.info('''Deduplicated and optimized model written to {}'''.format(a_)) __a : Tuple = onnxruntime.InferenceSession(a_) __a : Tuple = ort_sess.run( a_ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(a_), '''max_length''': np.array(a_), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3) logger.info('''Model outputs from torch and ONNX Runtime are similar.''') logger.info('''Success.''') def __A ( ) -> Any: __a : Tuple = parse_args() __a : Tuple = 5 __a : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO) transformers.utils.logging.set_verbosity_error() __a : Optional[int] = torch.device(args.device) __a , __a : Tuple = load_model_tokenizer(args.model_name_or_path , a_) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''') model.to(a_) if args.max_length: __a : int = args.max_length if args.num_beams: __a : List[str] = args.num_beams if args.output_file_path: __a : Any = args.output_file_path else: __a : Tuple = '''BART.onnx''' logger.info('''Exporting model to ONNX''') export_and_validate_model(a_ , a_ , a_ , a_ , a_) if __name__ == "__main__": main()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
1
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A = logging.get_logger(__name__) @add_end_docstrings( _UpperCamelCase , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def _lowerCamelCase ( self , _UpperCAmelCase ): if self.framework == "tf": __a : int = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __a : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_UpperCAmelCase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = self.get_masked_index(_UpperCAmelCase ) __a : Any = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _lowerCamelCase ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): if return_tensors is None: __a : Tuple = self.framework __a : Optional[int] = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.ensure_exactly_one_mask_token(_UpperCAmelCase ) return model_inputs def _lowerCamelCase ( self , _UpperCAmelCase ): __a : str = self.model(**_UpperCAmelCase ) __a : Optional[int] = model_inputs['''input_ids'''] return model_outputs def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=5 , _UpperCAmelCase=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __a : Union[str, Any] = target_ids.shape[0] __a : Optional[Any] = model_outputs['''input_ids'''][0] __a : str = model_outputs['''logits'''] if self.framework == "tf": __a : Dict = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __a : List[Any] = outputs.numpy() __a : int = outputs[0, masked_index, :] __a : Optional[int] = stable_softmax(_UpperCAmelCase , axis=-1 ) if target_ids is not None: __a : Any = tf.gather_nd(tf.squeeze(_UpperCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) __a : Union[str, Any] = tf.expand_dims(_UpperCAmelCase , 0 ) __a : List[str] = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) __a , __a : str = topk.values.numpy(), topk.indices.numpy() else: __a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_UpperCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __a : int = outputs[0, masked_index, :] __a : str = logits.softmax(dim=-1 ) if target_ids is not None: __a : List[Any] = probs[..., target_ids] __a , __a : Union[str, Any] = probs.topk(_UpperCAmelCase ) __a : List[str] = [] __a : Union[str, Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __a : Tuple = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __a : Optional[Any] = input_ids.numpy().copy() if target_ids is not None: __a : str = target_ids[p].tolist() __a : Optional[Any] = p # Filter padding out: __a : Tuple = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __a : Tuple = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __a : Union[str, Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) if single_mask: return result[0] return result def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = [targets] try: __a : Tuple = self.tokenizer.get_vocab() except Exception: __a : Any = {} __a : Optional[Any] = [] for target in targets: __a : Optional[Any] = vocab.get(_UpperCAmelCase , _UpperCAmelCase ) if id_ is None: __a : Union[str, Any] = self.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , max_length=1 , truncation=_UpperCAmelCase , )['''input_ids'''] if len(_UpperCAmelCase ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue __a : List[str] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) __a : List[Any] = list(set(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) __a : Optional[int] = np.array(_UpperCAmelCase ) return target_ids def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None ): __a : Any = {} if targets is not None: __a : Dict = self.get_target_ids(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = target_ids if top_k is not None: __a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ): __a : Tuple = super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) == 1: return outputs[0] return outputs
52
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
1
"""simple docstring""" import math import tensorflow as tf from packaging import version def __A ( a_ :Union[str, Any]) -> Any: __a : List[str] = tf.convert_to_tensor(a_) __a : Union[str, Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0) , x.dtype))) return x * cdf def __A ( a_ :Union[str, Any]) -> Any: __a : str = tf.convert_to_tensor(a_) __a : Any = tf.cast(math.pi , x.dtype) __a : Union[str, Any] = tf.cast(0.0_4_4_7_1_5 , x.dtype) __a : Tuple = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(a_ , 3)))) return x * cdf def __A ( a_ :List[Any]) -> Dict: __a : List[str] = tf.convert_to_tensor(a_) return x * tf.tanh(tf.math.softplus(a_)) def __A ( a_ :Optional[int]) -> Optional[Any]: __a : Dict = tf.convert_to_tensor(a_) __a : Optional[int] = tf.cast(0.0_4_4_7_1_5 , x.dtype) __a : Tuple = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x))) def __A ( a_ :Dict) -> Tuple: __a : Optional[int] = tf.convert_to_tensor(a_) __a : Optional[Any] = tf.cast(1.7_0_2 , x.dtype) return x * tf.math.sigmoid(coeff * x) def __A ( a_ :Tuple) -> List[Any]: return tf.clip_by_value(_gelu(a_) , -10 , 10) def __A ( a_ :Union[str, Any] , a_ :str=-1) -> str: __a , __a : str = tf.split(a_ , 2 , axis=a_) return a * tf.math.sigmoid(a_) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __A ( a_ :List[Any]) -> Optional[Any]: return tf.keras.activations.gelu(a_ , approximate=a_) A = tf.keras.activations.gelu A = approximate_gelu_wrap else: A = _gelu A = _gelu_new A = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __A ( a_ :List[Any]) -> List[str]: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys())}""")
52
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
52
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
1
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo A = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' A = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' A = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_UpperCAmelCase , hypotheses=_UpperCAmelCase , min_len=_UpperCAmelCase , max_len=_UpperCAmelCase ) }
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
1
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger A = '''<<<<<<< This should probably be modified because it mentions: ''' A = '''======= >>>>>>> ''' A = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] A = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def __A ( a_ :Namespace) -> int: return ConvertCommand(args.tfds_path , args.datasets_directory) class __lowercase ( _UpperCamelCase ): '''simple docstring''' @staticmethod def _lowerCamelCase ( _UpperCAmelCase ): __a : List[str] = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): __a : Dict = get_logger('''datasets-cli/converting''' ) __a : Union[str, Any] = tfds_path __a : Any = datasets_directory def _lowerCamelCase ( self ): if os.path.isdir(self._tfds_path ): __a : Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __a : int = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __a : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) __a : Tuple = [] __a : Union[str, Any] = [] __a : Union[str, Any] = {} if os.path.isdir(self._tfds_path ): __a : Union[str, Any] = os.listdir(_UpperCAmelCase ) else: __a : List[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) __a : List[str] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: __a : Optional[int] = f.readlines() __a : List[str] = [] __a : Any = False __a : Tuple = False __a : Union[str, Any] = [] for line in lines: __a : Optional[int] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __a : int = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __a : str = '''''' continue elif "from absl import logging" in out_line: __a : Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: __a : Union[str, Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __a : List[str] = True __a : Optional[Any] = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __a : List[str] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __a : Tuple = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __a : List[Any] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __a : Union[str, Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __a : Optional[int] = f_name.replace('''.py''' , '''''' ) __a : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: __a : List[Any] = os.path.basename(_UpperCAmelCase ) __a : List[str] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
52
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def __A ( ) -> str: __a : Dict = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __a : Union[str, Any] = get_sagemaker_input() else: __a : Tuple = get_cluster_input() return config def __A ( a_ :str=None) -> str: if subparsers is not None: __a : int = subparsers.add_parser('''config''' , description=a_) else: __a : Optional[Any] = argparse.ArgumentParser('''Accelerate config command''' , description=a_) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_) return parser def __A ( a_ :Tuple) -> Any: __a : List[Any] = get_user_input() if args.config_file is not None: __a : str = args.config_file else: if not os.path.isdir(a_): os.makedirs(a_) __a : Any = default_yaml_config_file if config_file.endswith('''.json'''): config.to_json_file(a_) else: config.to_yaml_file(a_) print(F"""accelerate configuration saved at {config_file}""") def __A ( ) -> int: __a : int = config_command_parser() __a : List[Any] = parser.parse_args() config_command(a_) if __name__ == "__main__": main()
52
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
1
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
1
"""simple docstring""" class __lowercase : '''simple docstring''' def __init__( self ): __a : str = 0 __a : int = 0 __a : Optional[int] = {} def _lowerCamelCase ( self , _UpperCAmelCase ): if vertex not in self.adjacency: __a : Tuple = {} self.num_vertices += 1 def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return __a : Optional[int] = weight __a : Dict = weight def _lowerCamelCase ( self ): __a : str = self.get_edges() for edge in edges: __a , __a , __a : Any = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): __a : Union[str, Any] = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __a : Dict = edges[i][2] + 1 for edge in edges: __a , __a , __a : str = edge __a : Any = weight __a : Optional[int] = weight def __str__( self ): __a : str = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: __a : Optional[Any] = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('''\n''' ) def _lowerCamelCase ( self ): __a : List[Any] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _lowerCamelCase ( self ): return self.adjacency.keys() @staticmethod def _lowerCamelCase ( _UpperCAmelCase=None , _UpperCAmelCase=None ): __a : str = Graph() if vertices is None: __a : Any = [] if edges is None: __a : Union[str, Any] = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class __lowercase : '''simple docstring''' def __init__( self ): __a : str = {} __a : Union[str, Any] = {} def __len__( self ): return len(self.parent ) def _lowerCamelCase ( self , _UpperCAmelCase ): if item in self.parent: return self.find(_UpperCAmelCase ) __a : str = item __a : List[Any] = 0 return item def _lowerCamelCase ( self , _UpperCAmelCase ): if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: __a : Any = self.find(self.parent[item] ) return self.parent[item] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = self.find(_UpperCAmelCase ) __a : Tuple = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __a : List[str] = roota return roota if self.rank[roota] < self.rank[roota]: __a : Union[str, Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __a : Any = roota return roota return None @staticmethod def _lowerCamelCase ( _UpperCAmelCase ): __a : Union[str, Any] = graph.num_vertices __a : Tuple = Graph.UnionFind() __a : Union[str, Any] = [] while num_components > 1: __a : Tuple = {} for vertex in graph.get_vertices(): __a : List[str] = -1 __a : int = graph.get_edges() for edge in edges: __a , __a , __a : Any = edge edges.remove((tail, head, weight) ) for edge in edges: __a , __a , __a : Optional[Any] = edge __a : Any = union_find.find(_UpperCAmelCase ) __a : Optional[int] = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __a : Any = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __a : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __a , __a , __a : Optional[int] = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) __a : List[Any] = num_components - 1 __a : Optional[Any] = Graph.build(edges=_UpperCAmelCase ) return mst
52
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
1
"""simple docstring""" def __A ( a_ :int = 10**12) -> int: __a : List[Any] = 1 __a : List[str] = 0 __a : int = 1 __a : int = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'{solution() = }')
52
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
1
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
1
"""simple docstring""" def __A ( a_ :int) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''') # get the generated string sequence __a : Optional[int] = gray_code_sequence_string(a_) # # convert them to integers for i in range(len(a_)): __a : Tuple = int(sequence[i] , 2) return sequence def __A ( a_ :int) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __a : str = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __a : List[Any] = gray_code_sequence_string(bit_count - 1) __a : Any = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2): __a : str = '''0''' + smaller_sequence[i] sequence.append(a_) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2)): __a : List[Any] = '''1''' + smaller_sequence[i] sequence.append(a_) return sequence if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''LayoutLMv2FeatureExtractor'''] A = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
1
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print('''\n'''.join(upper_files) + '''\n''') A = [file for file in filepaths if ''' ''' in file] if space_files: print(F'{len(space_files)} files contain space characters:') print('''\n'''.join(space_files) + '''\n''') A = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print('''\n'''.join(hyphen_files) + '''\n''') A = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print('''\n'''.join(nodir_files) + '''\n''') A = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
52
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
1
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor''', '''tokenizer'''] __lowerCAmelCase = '''BridgeTowerImageProcessor''' __lowerCAmelCase = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : Optional[Any] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel_values + pixel_mask __a : Optional[int] = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , **_UpperCAmelCase ) encoding.update(_UpperCAmelCase ) return encoding def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): __a : List[str] = self.tokenizer.model_input_names __a : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
52
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
1
"""simple docstring""" import requests A = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def __A ( a_ :str) -> None: # fetching a list of articles in json format __a : Union[str, Any] = requests.get(_NEWS_API + bbc_news_api_key).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1): print(F"""{i}.) {article["title"]}""") if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
52
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A = random.Random() def __A ( a_ :List[str] , a_ :int=1.0 , a_ :Optional[Any]=None , a_ :int=None) -> List[Any]: if rng is None: __a : int = global_rng __a : Optional[Any] = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=16000 , _UpperCAmelCase=True , _UpperCAmelCase=80 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase="hann_window" , _UpperCAmelCase=80 , _UpperCAmelCase=7600 , _UpperCAmelCase=1e-1_0 , _UpperCAmelCase=True , ): __a : Optional[Any] = parent __a : int = batch_size __a : Optional[int] = min_seq_length __a : Any = max_seq_length __a : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Union[str, Any] = feature_size __a : Optional[int] = padding_value __a : int = sampling_rate __a : str = do_normalize __a : int = num_mel_bins __a : Dict = hop_length __a : Dict = win_length __a : Dict = win_function __a : Optional[Any] = fmin __a : Union[str, Any] = fmax __a : Tuple = mel_floor __a : Optional[Any] = return_attention_mask def _lowerCamelCase ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Any = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): if equal_length: __a : int = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Optional[int] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : List[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = SpeechTaFeatureExtractor def _lowerCamelCase ( self ): __a : Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def _lowerCamelCase ( self , _UpperCAmelCase ): self.assertTrue(np.all(np.mean(_UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values __a : Dict = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) # Test batched __a : Any = feat_extract(_UpperCAmelCase , return_tensors='''np''' ).input_values __a : List[Any] = feat_extract(_UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) def _lowerCamelCase ( self ): __a : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Optional[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] __a : Tuple = [None, 1600, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): __a : Union[str, Any] = feat_extract(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='''np''' ) __a : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a : Any = range(800 , 1400 , 200 ) __a : Dict = [floats_list((1, x) )[0] for x in lengths] __a : int = ['''longest''', '''max_length''', '''do_not_pad'''] __a : Any = [None, 1600, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): __a : int = feat_extract(_UpperCAmelCase , max_length=_UpperCAmelCase , padding=_UpperCAmelCase ) __a : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : int = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) __a : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : List[str] = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) __a : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) __a : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Optional[int] = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) __a : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a : Optional[int] = np.random.rand(100 ).astype(np.floataa ) __a : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowerCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Tuple = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size __a : Union[str, Any] = feature_extractor(audio_target=_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __a : Tuple = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values __a : int = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) # Test batched __a : Union[str, Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' ).input_values __a : Union[str, Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __a : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : str = np.asarray(_UpperCAmelCase ) __a : List[str] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' ).input_values __a : str = feature_extractor(_UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target() __a : int = self.feature_extraction_class(**self.feat_extract_dict ) __a : Tuple = feat_extract.model_input_names[0] __a : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) for x, y in zip(_UpperCAmelCase , processed_features[input_name] ) ) ) __a : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_UpperCAmelCase ) __a : List[str] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) __a : Any = processed_features[input_name] if len(batch_features_input.shape ) < 3: __a : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self ): __a : str = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_UpperCAmelCase ) __a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) __a : List[str] = feat_extract.model_input_names[0] __a : Dict = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) __a : List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: __a : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self ): __a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __a : str = self.feat_extract_tester.prepare_inputs_for_target() __a : Tuple = feat_extract.model_input_names[0] __a : Optional[int] = BatchFeature({input_name: speech_inputs} ) __a : int = feat_extract.num_mel_bins # hack! __a : Any = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] __a : Optional[int] = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feat_extract_dict __a : str = True __a : Dict = self.feature_extraction_class(**_UpperCAmelCase ) __a : int = self.feat_extract_tester.prepare_inputs_for_target() __a : Optional[Any] = [len(_UpperCAmelCase ) for x in speech_inputs] __a : Any = feat_extract.model_input_names[0] __a : Dict = BatchFeature({input_name: speech_inputs} ) __a : Any = feat_extract.num_mel_bins # hack! __a : Tuple = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Any = self.feat_extract_dict __a : Dict = True __a : List[str] = self.feature_extraction_class(**_UpperCAmelCase ) __a : str = self.feat_extract_tester.prepare_inputs_for_target() __a : Optional[int] = [len(_UpperCAmelCase ) for x in speech_inputs] __a : Tuple = feat_extract.model_input_names[0] __a : Optional[Any] = BatchFeature({input_name: speech_inputs} ) __a : Tuple = min(_UpperCAmelCase ) __a : str = feat_extract.num_mel_bins # hack! __a : Dict = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _lowerCamelCase ( self , _UpperCAmelCase ): from datasets import load_dataset __a : Dict = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : Tuple = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): # fmt: off __a : List[Any] = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on __a : Union[str, Any] = self._load_datasamples(1 ) __a : str = SpeechTaFeatureExtractor() __a : List[str] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _UpperCAmelCase , atol=1e-6 ) ) def _lowerCamelCase ( self ): # fmt: off __a : Tuple = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on __a : Dict = self._load_datasamples(1 ) __a : Any = SpeechTaFeatureExtractor() __a : List[Any] = feature_extractor(audio_target=_UpperCAmelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _UpperCAmelCase , atol=1e-4 ) )
52
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''SpeechT5FeatureExtractor''' __lowerCAmelCase = '''SpeechT5Tokenizer''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : Tuple = kwargs.pop('''audio''' , _UpperCAmelCase ) __a : List[Any] = kwargs.pop('''text''' , _UpperCAmelCase ) __a : List[Any] = kwargs.pop('''text_target''' , _UpperCAmelCase ) __a : Tuple = kwargs.pop('''audio_target''' , _UpperCAmelCase ) __a : List[str] = kwargs.pop('''sampling_rate''' , _UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: __a : Dict = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) elif text is not None: __a : Union[str, Any] = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) else: __a : str = None if audio_target is not None: __a : Optional[int] = self.feature_extractor(audio_target=_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) __a : Any = targets['''input_values'''] elif text_target is not None: __a : int = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) __a : Optional[Any] = targets['''input_ids'''] else: __a : List[Any] = None if inputs is None: return targets if targets is not None: __a : Dict = labels __a : List[Any] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __a : List[str] = decoder_attention_mask return inputs def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : List[str] = kwargs.pop('''input_values''' , _UpperCAmelCase ) __a : Optional[Any] = kwargs.pop('''input_ids''' , _UpperCAmelCase ) __a : Dict = kwargs.pop('''labels''' , _UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: __a : str = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif input_ids is not None: __a : str = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) else: __a : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and "input_ids" in labels[0]): __a : str = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) __a : str = targets['''input_ids'''] else: __a : Optional[Any] = self.feature_extractor.feature_size __a : Tuple = self.feature_extractor.num_mel_bins __a : str = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) __a : List[str] = feature_size_hack __a : int = targets['''input_values'''] else: __a : Tuple = None if inputs is None: return targets if targets is not None: __a : List[Any] = labels __a : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __a : Any = decoder_attention_mask return inputs def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
1
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowercase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Union[str, Any] = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) __a : Union[str, Any] = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) __a : List[Any] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): for example in examples: __a : Dict = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'''score''': ANY(_UpperCAmelCase ), '''label''': ANY(_UpperCAmelCase )}, {'''score''': ANY(_UpperCAmelCase ), '''label''': ANY(_UpperCAmelCase )}, ] , ) @require_torch def _lowerCamelCase ( self ): __a : str = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' __a : List[str] = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) __a : Tuple = pipeline( '''video-classification''' , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) __a : List[str] = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) __a : List[Any] = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}] , ) __a : List[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], ] , ) @require_tf def _lowerCamelCase ( self ): pass
52
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
1
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins A = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def __A ( a_ :Dict , a_ :Optional[Any]) -> Optional[Any]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit''']): continue item.add_marker(pytest.mark.unit) def __A ( a_ :Dict) -> Union[str, Any]: config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''') @pytest.fixture(autouse=a_) def __A ( a_ :Union[str, Any] , a_ :int) -> Any: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __a : List[str] = tmp_path_factory.getbasetemp() / '''cache''' __a : Union[str, Any] = test_hf_cache_home / '''datasets''' __a : Tuple = test_hf_cache_home / '''metrics''' __a : Tuple = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(a_)) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(a_)) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(a_)) __a : List[str] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(a_)) __a : str = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(a_)) @pytest.fixture(autouse=a_ , scope='''session''') def __A ( ) -> Optional[int]: datasets.disable_progress_bar() @pytest.fixture(autouse=a_) def __A ( a_ :int) -> Any: # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , a_) @pytest.fixture def __A ( a_ :Optional[int]) -> Optional[int]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , a_)
52
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
1
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ProphetNetTokenizer __lowerCAmelCase = False def _lowerCamelCase ( self ): super().setUp() __a : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = '''UNwant\u00E9d,running''' __a : List[Any] = '''unwanted, running''' return input_text, output_text def _lowerCamelCase ( self ): __a : Optional[Any] = self.tokenizer_class(self.vocab_file ) __a : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def _lowerCamelCase ( self ): __a : Any = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _lowerCamelCase ( self ): __a : Optional[int] = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self ): __a : List[Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _lowerCamelCase ( self ): __a : Optional[Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self ): __a : int = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self ): __a : List[Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self ): __a : Union[str, Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self ): __a : List[Any] = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self ): __a : Any = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _lowerCamelCase ( self ): __a : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a : str = {} for i, token in enumerate(_UpperCAmelCase ): __a : Tuple = i __a : Dict = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def _lowerCamelCase ( self ): __a : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) __a : Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __a : List[Any] = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __a : List[str] = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _lowerCamelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _lowerCamelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _lowerCamelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def _lowerCamelCase ( self ): __a : Tuple = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) __a : List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=_UpperCAmelCase ) __a : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_UpperCAmelCase ) __a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __a : List[str] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def __A ( a_ :str) -> List[Any]: def decorator(a_ :List[Any]): __a : List[str] = getattr(a_ , '''handle_key''' , []) handle += [key] setattr(a_ , '''handle_key''' , a_) return func return decorator def __A ( *a_ :List[str]) -> Optional[int]: def decorator(a_ :int): __a : Tuple = getattr(a_ , '''handle_key''' , []) handle += keys setattr(a_ , '''handle_key''' , a_) return func return decorator class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __new__( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = super().__new__(cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not hasattr(_UpperCAmelCase , '''key_handler''' ): setattr(_UpperCAmelCase , '''key_handler''' , {} ) setattr(_UpperCAmelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __a : Dict = getattr(_UpperCAmelCase , '''handle_key''' , [] ) for key in handled_keys: __a : Union[str, Any] = value return new_cls @staticmethod def _lowerCamelCase ( cls ): __a : Dict = get_character() if char != KEYMAP["undefined"]: __a : str = ord(_UpperCAmelCase ) __a : Tuple = cls.key_handler.get(_UpperCAmelCase ) if handler: __a : Union[str, Any] = char return handler(cls ) else: return None def __A ( cls :Union[str, Any]) -> str: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy())
52
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
1
"""simple docstring""" import random def __A ( a_ :int , a_ :float , a_ :bool = False) -> dict: __a : dict = {i: [] for i in range(a_)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_): for j in range(i + 1 , a_): if random.random() < probability: graph[i].append(a_) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_) return graph def __A ( a_ :int) -> dict: return { i: [j for j in range(a_) if i != j] for i in range(a_) } if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
1
"""simple docstring""" import baseaa def __A ( a_ :str) -> bytes: return baseaa.baaencode(string.encode('''utf-8''')) def __A ( a_ :bytes) -> str: return baseaa.baadecode(a_).decode('''utf-8''') if __name__ == "__main__": A = '''Hello World!''' A = baseaa_encode(test) print(encoded) A = baseaa_decode(encoded) print(decoded)
52
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
1
"""simple docstring""" def __A ( a_ :str , a_ :str) -> str: __a : int = len(a_) __a : int = len(a_) __a : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __a : list = [] for char_count in range(a_): if char_count < first_str_length: output_list.append(first_str[char_count]) if char_count < second_str_length: output_list.append(second_str[char_count]) return "".join(a_) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
52
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
1
"""simple docstring""" from datetime import datetime import requests def __A ( a_ :str) -> bytes: __a : int = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __a : Optional[Any] = requests.get(base_url + url).json()[0]['''urls'''][0]['''src'''] return requests.get(a_).content if __name__ == "__main__": A = input('''Enter Video/IGTV url: ''').strip() A = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F'Done. Video saved to disk as {file_name}.')
52
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
1
"""simple docstring""" A = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
52
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
1
"""simple docstring""" import argparse A = '''docs/source/_static/js/custom.js''' def __A ( a_ :Tuple) -> Union[str, Any]: with open(a_ , encoding='''utf-8''' , newline='''\n''') as f: __a : Union[str, Any] = f.readlines() __a : List[Any] = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion ='''): index += 1 __a : Optional[Any] = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith('''const versionMapping = {'''): index += 1 # We go until the end while not lines[index].startswith('''}'''): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(a_ , '''w''' , encoding='''utf-8''' , newline='''\n''') as f: f.writelines(a_) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') A = parser.parse_args() update_custom_js(args.version)
52
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
1
"""simple docstring""" import argparse import os import re A = '''src/diffusers''' # Pattern that looks at the indentation in a line. A = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. A = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. A = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A = re.compile(r'''\[([^\]]+)\]''') def __A ( a_ :Optional[Any]) -> Optional[Any]: __a : Dict = _re_indent.search(a_) return "" if search is None else search.groups()[0] def __A ( a_ :List[str] , a_ :int="" , a_ :int=None , a_ :Dict=None) -> List[Any]: __a : Optional[int] = 0 __a : List[Any] = code.split('''\n''') if start_prompt is not None: while not lines[index].startswith(a_): index += 1 __a : int = ['''\n'''.join(lines[:index])] else: __a : Optional[int] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __a : Optional[Any] = [lines[index]] index += 1 while index < len(a_) and (end_prompt is None or not lines[index].startswith(a_)): if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: if len(a_) > 0 and get_indent(current_block[-1]).startswith(indent_level + ''' '''): current_block.append(lines[index]) blocks.append('''\n'''.join(a_)) if index < len(a_) - 1: __a : List[str] = [lines[index + 1]] index += 1 else: __a : str = [] else: blocks.append('''\n'''.join(a_)) __a : Optional[Any] = [lines[index]] else: current_block.append(lines[index]) index += 1 # Adds current block if it's nonempty. if len(a_) > 0: blocks.append('''\n'''.join(a_)) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a_): blocks.append('''\n'''.join(lines[index:])) return blocks def __A ( a_ :int) -> str: def _inner(a_ :Optional[int]): return key(a_).lower().replace('''_''' , '''''') return _inner def __A ( a_ :Dict , a_ :str=None) -> Tuple: # If no key is provided, we use a noop. def noop(a_ :int): return x if key is None: __a : int = noop # Constants are all uppercase, they go first. __a : List[str] = [obj for obj in objects if key(a_).isupper()] # Classes are not all uppercase but start with a capital, they go second. __a : Optional[int] = [obj for obj in objects if key(a_)[0].isupper() and not key(a_).isupper()] # Functions begin with a lowercase, they go last. __a : Tuple = [obj for obj in objects if not key(a_)[0].isupper()] __a : List[Any] = ignore_underscore(a_) return sorted(a_ , key=a_) + sorted(a_ , key=a_) + sorted(a_ , key=a_) def __A ( a_ :str) -> Tuple: # This inner function sort imports between [ ]. def _replace(a_ :str): __a : Optional[int] = match.groups()[0] if "," not in imports: return F"""[{imports}]""" __a : Tuple = [part.strip().replace('''"''' , '''''') for part in imports.split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __a : Dict = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(a_)]) + "]" __a : Optional[Any] = import_statement.split('''\n''') if len(a_) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __a : Union[str, Any] = 2 if lines[1].strip() == '''[''' else 1 __a : List[str] = [(i, _re_strip_line.search(a_).groups()[0]) for i, line in enumerate(lines[idx:-idx])] __a : Union[str, Any] = sort_objects(a_ , key=lambda a_: x[1]) __a : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) elif len(a_) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1]) is not None: __a : Optional[int] = _re_bracket_content.sub(_replace , lines[1]) else: __a : Dict = [part.strip().replace('''"''' , '''''') for part in lines[1].split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __a : Union[str, Any] = keys[:-1] __a : Union[str, Any] = get_indent(lines[1]) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(a_)]) return "\n".join(a_) else: # Finally we have to deal with imports fitting on one line __a : List[str] = _re_bracket_content.sub(_replace , a_) return import_statement def __A ( a_ :List[Any] , a_ :Optional[Any]=True) -> List[Any]: with open(a_ , '''r''') as f: __a : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __a : Any = split_code_in_indented_blocks( a_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''') # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a_) - 1): # Check if the block contains some `_import_structure`s thingy to sort. __a : List[str] = main_blocks[block_idx] __a : str = block.split('''\n''') # Get to the start of the imports. __a : Optional[int] = 0 while line_idx < len(a_) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __a : Union[str, Any] = len(a_) else: line_idx += 1 if line_idx >= len(a_): continue # Ignore beginning and last line: they don't contain anything. __a : str = '''\n'''.join(block_lines[line_idx:-1]) __a : Union[str, Any] = get_indent(block_lines[1]) # Slit the internal block into blocks of indent level 1. __a : Any = split_code_in_indented_blocks(a_ , indent_level=a_) # We have two categories of import key: list or _import_structure[key].append/extend __a : Dict = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __a : List[str] = [(pattern.search(a_).groups()[0] if pattern.search(a_) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __a : Dict = [(i, key) for i, key in enumerate(a_) if key is not None] __a : Optional[Any] = [x[0] for x in sorted(a_ , key=lambda a_: x[1])] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __a : Tuple = 0 __a : List[str] = [] for i in range(len(a_)): if keys[i] is None: reordered_blocks.append(internal_blocks[i]) else: __a : Union[str, Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]]) reordered_blocks.append(a_) count += 1 # And we put our main block back together with its first and last line. __a : int = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]]) if code != "\n".join(a_): if check_only: return True else: print(F"""Overwriting {file}.""") with open(a_ , '''w''') as f: f.write('''\n'''.join(a_)) def __A ( a_ :int=True) -> Optional[int]: __a : Any = [] for root, _, files in os.walk(a_): if "__init__.py" in files: __a : Optional[int] = sort_imports(os.path.join(a_ , '''__init__.py''') , check_only=a_) if result: __a : Optional[int] = [os.path.join(a_ , '''__init__.py''')] if len(a_) > 0: raise ValueError(F"""Would overwrite {len(a_)} files, run `make style`.""") if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') A = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
52
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A = TypeVar('''KEY''') A = TypeVar('''VAL''') @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __lowercase ( Generic[KEY, VAL] ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __lowercase ( _Item ): '''simple docstring''' def __init__( self ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __bool__( self ): return False A = _DeletedItem() class __lowercase ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self , _UpperCAmelCase = 8 , _UpperCAmelCase = 0.7_5 ): __a : Union[str, Any] = initial_block_size __a : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __a : Optional[Any] = capacity_factor __a : Union[str, Any] = 0 def _lowerCamelCase ( self , _UpperCAmelCase ): return hash(_UpperCAmelCase ) % len(self._buckets ) def _lowerCamelCase ( self , _UpperCAmelCase ): return (ind + 1) % len(self._buckets ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = self._buckets[ind] if not stored: __a : int = _Item(_UpperCAmelCase , _UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __a : Dict = _Item(_UpperCAmelCase , _UpperCAmelCase ) return True else: return False def _lowerCamelCase ( self ): __a : Optional[int] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCAmelCase ) def _lowerCamelCase ( self ): if len(self._buckets ) <= self._initial_block_size: return False __a : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = self._buckets __a : List[Any] = [None] * new_size __a : int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _lowerCamelCase ( self ): self._resize(len(self._buckets ) * 2 ) def _lowerCamelCase ( self ): self._resize(len(self._buckets ) // 2 ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = self._get_bucket_index(_UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __a : Dict = self._get_next_ind(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): for ind in self._iterate_buckets(_UpperCAmelCase ): if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): break def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase ): if self._is_full(): self._size_up() self._add_item(_UpperCAmelCase , _UpperCAmelCase ) def __delitem__( self , _UpperCAmelCase ): for ind in self._iterate_buckets(_UpperCAmelCase ): __a : List[str] = self._buckets[ind] if item is None: raise KeyError(_UpperCAmelCase ) if item is _deleted: continue if item.key == key: __a : Dict = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , _UpperCAmelCase ): for ind in self._iterate_buckets(_UpperCAmelCase ): __a : List[str] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCAmelCase ) def __len__( self ): return self._len def __iter__( self ): yield from (item.key for item in self._buckets if item) def __repr__( self ): __a : List[str] = ''' ,'''.join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
52
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
1
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) A = ['''model.decoder.embed_positions.weights'''] def __A ( a_ :int) -> Optional[int]: if "emb" in name: __a : Union[str, Any] = name.replace('''emb''' , '''model.decoder.embed_tokens''') if "transformer" in name: __a : Optional[Any] = name.replace('''transformer''' , '''model.decoder''') if "cross_attention" in name: __a : Tuple = name.replace('''cross_attention''' , '''encoder_attn''') if "linear1" in name: __a : Any = name.replace('''linear1''' , '''fc1''') if "linear2" in name: __a : Any = name.replace('''linear2''' , '''fc2''') if "norm1" in name: __a : Union[str, Any] = name.replace('''norm1''' , '''self_attn_layer_norm''') if "norm_cross" in name: __a : int = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''') if "norm2" in name: __a : str = name.replace('''norm2''' , '''final_layer_norm''') if "out_norm" in name: __a : Dict = name.replace('''out_norm''' , '''model.decoder.layer_norm''') if "linears" in name: __a : List[str] = name.replace('''linears''' , '''lm_heads''') if "condition_provider.conditioners.description.output_proj" in name: __a : str = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''') return name def __A ( a_ :OrderedDict , a_ :int) -> Tuple[Dict, Dict]: __a : Optional[int] = list(state_dict.keys()) __a : Any = {} for key in keys: __a : Any = state_dict.pop(a_) __a : List[Any] = rename_keys(a_) if "in_proj_weight" in key: # split fused qkv proj __a : List[str] = val[:hidden_size, :] __a : List[str] = val[hidden_size : 2 * hidden_size, :] __a : int = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __a : int = val else: __a : Dict = val return state_dict, enc_dec_proj_state_dict def __A ( a_ :str) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __a : Optional[Any] = 10_24 __a : Tuple = 24 __a : Union[str, Any] = 16 elif checkpoint == "medium": __a : int = 15_36 __a : List[str] = 48 __a : List[str] = 24 elif checkpoint == "large": __a : int = 20_48 __a : Tuple = 48 __a : Optional[Any] = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""") __a : Tuple = MusicgenDecoderConfig( hidden_size=a_ , ffn_dim=hidden_size * 4 , num_hidden_layers=a_ , num_attention_heads=a_ , ) return config @torch.no_grad() def __A ( a_ :Any , a_ :List[Any]=None , a_ :List[Any]=None , a_ :Optional[Any]="cpu") -> str: __a : Dict = MusicGen.get_pretrained(a_ , device=a_) __a : str = decoder_config_from_checkpoint(a_) __a : List[str] = fairseq_model.lm.state_dict() __a , __a : str = rename_state_dict( a_ , hidden_size=decoder_config.hidden_size) __a : Dict = TaEncoderModel.from_pretrained('''t5-base''') __a : Optional[Any] = EncodecModel.from_pretrained('''facebook/encodec_32khz''') __a : Any = MusicgenForCausalLM(a_).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __a , __a : Optional[Any] = decoder.load_state_dict(a_ , strict=a_) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''')) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a_) if len(a_) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""") if len(a_) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""") # init the composite model __a : int = MusicgenForConditionalGeneration(text_encoder=a_ , audio_encoder=a_ , decoder=a_) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a_) # check we can do a forward pass __a : Optional[int] = torch.arange(0 , 8 , dtype=torch.long).reshape(2 , -1) __a : Optional[int] = input_ids.reshape(2 * 4 , -1) with torch.no_grad(): __a : List[str] = model(input_ids=a_ , decoder_input_ids=a_).logits if logits.shape != (8, 1, 20_48): raise ValueError('''Incorrect shape for logits''') # now construct the processor __a : Optional[int] = AutoTokenizer.from_pretrained('''t5-base''') __a : Optional[int] = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''') __a : Optional[Any] = MusicgenProcessor(feature_extractor=a_ , tokenizer=a_) # set the appropriate bos/pad token ids __a : Any = 20_48 __a : Optional[int] = 20_48 # set other default generation config params __a : str = int(30 * audio_encoder.config.frame_rate) __a : Tuple = True __a : List[Any] = 3.0 if pytorch_dump_folder is not None: Path(a_).mkdir(exist_ok=a_) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""") model.save_pretrained(a_) processor.save_pretrained(a_) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""") model.push_to_hub(a_) processor.push_to_hub(a_) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
52
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor A = logging.get_logger(__name__) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
52
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging A = logging.get_logger(__name__) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = CLIPConfig __lowerCAmelCase = ['''CLIPEncoderLayer'''] def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __a : Optional[Any] = CLIPVisionModelWithProjection(config.vision_config ) __a : Union[str, Any] = nn.Linear(config.vision_config.projection_dim , 1 ) __a : List[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.5 , _UpperCAmelCase=0.5 ): __a : int = self.vision_model(_UpperCAmelCase )[0] __a : str = self.p_head(_UpperCAmelCase ) __a : Tuple = nsfw_detected.flatten() __a : str = nsfw_detected > p_threshold __a : Dict = nsfw_detected.tolist() if any(_UpperCAmelCase ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(_UpperCAmelCase ): if nsfw_detected_: __a : str = np.zeros(images[idx].shape ) __a : str = self.w_head(_UpperCAmelCase ) __a : int = watermark_detected.flatten() __a : Any = watermark_detected > w_threshold __a : Optional[int] = watermark_detected.tolist() if any(_UpperCAmelCase ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(_UpperCAmelCase ): if watermark_detected_: __a : Union[str, Any] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
52
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
1
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
1
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __A ( a_ :Tuple , a_ :str , a_ :str , a_ :Path , a_ :str = None , a_ :str = None , a_ :str = None , ) -> List[Any]: if config_name_or_path is None: __a : Optional[int] = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: __a : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __a : Dict = question_encoder_name_or_path __a : Union[str, Any] = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. __a : Optional[int] = RagConfig.from_pretrained(a_) __a : List[str] = AutoConfig.from_pretrained(a_) __a : Any = AutoConfig.from_pretrained(a_) __a : Any = gen_config __a : Tuple = question_encoder_config __a : List[Any] = model_class.from_pretrained_question_encoder_generator( a_ , a_ , config=a_) rag_model.save_pretrained(a_) # Sanity check. model_class.from_pretrained(a_) # Save tokenizers. __a : str = AutoTokenizer.from_pretrained(a_) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''') __a : Optional[Any] = AutoTokenizer.from_pretrained(a_) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''') if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) A = parser.parse_args() A = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
52
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
1
"""simple docstring""" def __A ( a_ :int) -> int: __a : str = abs(a_) __a : Any = 0 while n > 0: res += n % 10 n //= 10 return res def __A ( a_ :int) -> int: __a : int = abs(a_) return n if n < 10 else n % 10 + sum_of_digits(n // 10) def __A ( a_ :int) -> int: return sum(int(a_) for c in str(abs(a_))) def __A ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(a_ :Callable , a_ :int) -> None: __a : Any = F"""{func.__name__}({value})""" __a : str = timeit(F"""__main__.{call}""" , setup='''import __main__''') print(F"""{call:56} = {func(a_)} -- {timing:.4f} seconds""") for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(a_ , a_) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __A ( a_ :int) -> Union[str, Any]: random.seed(a_) np.random.seed(a_) torch.manual_seed(a_) torch.cuda.manual_seed_all(a_) # ^^ safe to call this function even if cuda is not available class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 0.9_9_9_9 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 0 , _UpperCAmelCase = False , _UpperCAmelCase = 1.0 , _UpperCAmelCase = 2 / 3 , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): if isinstance(_UpperCAmelCase , torch.nn.Module ): __a : Optional[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) __a : List[Any] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __a : List[Any] = True if kwargs.get('''max_value''' , _UpperCAmelCase ) is not None: __a : int = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) __a : Optional[int] = kwargs['''max_value'''] if kwargs.get('''min_value''' , _UpperCAmelCase ) is not None: __a : Tuple = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) __a : Dict = kwargs['''min_value'''] __a : Union[str, Any] = list(_UpperCAmelCase ) __a : Optional[Any] = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , _UpperCAmelCase ) is not None: __a : Dict = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) self.to(device=kwargs['''device'''] ) __a : Union[str, Any] = None __a : Dict = decay __a : Tuple = min_decay __a : List[Any] = update_after_step __a : Any = use_ema_warmup __a : int = inv_gamma __a : int = power __a : Optional[Any] = 0 __a : Any = None # set in `step()` __a : Tuple = model_cls __a : Union[str, Any] = model_config @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : Optional[int] = model_cls.load_config(_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase ) __a : Any = model_cls.from_pretrained(_UpperCAmelCase ) __a : int = cls(model.parameters() , model_cls=_UpperCAmelCase , model_config=model.config ) ema_model.load_state_dict(_UpperCAmelCase ) return ema_model def _lowerCamelCase ( self , _UpperCAmelCase ): if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) __a : Tuple = self.model_cls.from_config(self.model_config ) __a : Any = self.state_dict() state_dict.pop('''shadow_params''' , _UpperCAmelCase ) model.register_to_config(**_UpperCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Tuple = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __a : Union[str, Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: __a : Tuple = (1 + step) / (10 + step) __a : Any = min(_UpperCAmelCase , self.decay ) # make sure decay is not smaller than min_decay __a : Tuple = max(_UpperCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def _lowerCamelCase ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , torch.nn.Module ): __a : Any = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) __a : Union[str, Any] = parameters.parameters() __a : List[Any] = list(_UpperCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __a : List[str] = self.get_decay(self.optimization_step ) __a : List[str] = decay __a : Dict = 1 - decay __a : int = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __a : Tuple = deepspeed.zero.GatheredParameters(_UpperCAmelCase , modifier_rank=_UpperCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[Any] = list(_UpperCAmelCase ) for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None ): __a : Tuple = [ p.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if p.is_floating_point() else p.to(device=_UpperCAmelCase ) for p in self.shadow_params ] def _lowerCamelCase ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Dict = [param.detach().cpu().clone() for param in parameters] def _lowerCamelCase ( self , _UpperCAmelCase ): if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , _UpperCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. __a : Optional[int] = None def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = copy.deepcopy(_UpperCAmelCase ) __a : Optional[Any] = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) __a : Any = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , _UpperCAmelCase ): raise ValueError('''Invalid min_decay''' ) __a : Optional[int] = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , _UpperCAmelCase ): raise ValueError('''Invalid optimization_step''' ) __a : Union[str, Any] = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , _UpperCAmelCase ): raise ValueError('''Invalid update_after_step''' ) __a : Dict = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _UpperCAmelCase ): raise ValueError('''Invalid use_ema_warmup''' ) __a : Tuple = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) __a : Optional[int] = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) __a : int = state_dict.get('''shadow_params''' , _UpperCAmelCase ) if shadow_params is not None: __a : str = shadow_params if not isinstance(self.shadow_params , _UpperCAmelCase ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(_UpperCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
52
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
1
"""simple docstring""" A = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' A = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
52
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
1
"""simple docstring""" import argparse import os import re import packaging.version A = '''examples/''' A = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } A = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } A = '''README.md''' def __A ( a_ :Union[str, Any] , a_ :List[Any] , a_ :Any) -> Optional[Any]: with open(a_ , '''r''' , encoding='''utf-8''' , newline='''\n''') as f: __a : str = f.read() __a , __a : Any = REPLACE_PATTERNS[pattern] __a : List[str] = replace.replace('''VERSION''' , a_) __a : Dict = re_pattern.sub(a_ , a_) with open(a_ , '''w''' , encoding='''utf-8''' , newline='''\n''') as f: f.write(a_) def __A ( a_ :List[str]) -> Union[str, Any]: for folder, directories, fnames in os.walk(a_): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''') if "legacy" in directories: directories.remove('''legacy''') for fname in fnames: if fname.endswith('''.py'''): update_version_in_file(os.path.join(a_ , a_) , a_ , pattern='''examples''') def __A ( a_ :Union[str, Any] , a_ :Optional[Any]=False) -> Tuple: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a_ , a_ , a_) if not patch: update_version_in_examples(a_) def __A ( ) -> str: __a : Any = '''🤗 Transformers currently provides the following architectures''' __a : Tuple = '''1. Want to contribute a new model?''' with open(a_ , '''r''' , encoding='''utf-8''' , newline='''\n''') as f: __a : List[str] = f.readlines() # Find the start of the list. __a : Union[str, Any] = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 __a : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith('''1.'''): __a : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(a_ , '''w''' , encoding='''utf-8''' , newline='''\n''') as f: f.writelines(a_) def __A ( ) -> Optional[int]: with open(REPLACE_FILES['''init'''] , '''r''') as f: __a : str = f.read() __a : Union[str, Any] = REPLACE_PATTERNS['''init'''][0].search(a_).groups()[0] return packaging.version.parse(a_) def __A ( a_ :Any=False) -> Optional[Any]: __a : Dict = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''') if default_version.is_devrelease: __a : Optional[Any] = default_version.base_version elif patch: __a : List[str] = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __a : Dict = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __a : List[str] = input(F"""Which version are you releasing? [{default_version}]""") if len(a_) == 0: __a : Dict = default_version print(F"""Updating version to {version}.""") global_version_update(a_ , patch=a_) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''') clean_main_ref_in_model_list() def __A ( ) -> List[str]: __a : Optional[Any] = get_version() __a : Union[str, Any] = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __a : List[str] = current_version.base_version # Check with the user we got that right. __a : Optional[Any] = input(F"""Which version are we developing now? [{dev_version}]""") if len(a_) == 0: __a : List[str] = dev_version print(F"""Updating version to {version}.""") global_version_update(a_) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''') clean_main_ref_in_model_list() if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') A = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
52
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = CTRLTokenizer __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Optional[Any] = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __a : List[str] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __a : Dict = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __a : str = {'''unk_token''': '''<unk>'''} __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def _lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Dict = '''adapt react readapt apt''' __a : Tuple = '''adapt react readapt apt''' return input_text, output_text def _lowerCamelCase ( self ): __a : List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : str = '''adapt react readapt apt''' __a : List[str] = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __a : List[str] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = tokens + [tokenizer.unk_token] __a : str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
52
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=99 , _UpperCAmelCase=13 , _UpperCAmelCase=16 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=30 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=None , ): __a : List[str] = parent __a : int = batch_size __a : Dict = decoder_seq_length # For common tests __a : str = self.decoder_seq_length __a : Optional[Any] = is_training __a : str = use_attention_mask __a : int = use_labels __a : Dict = vocab_size __a : Tuple = d_model __a : Any = d_model __a : Optional[Any] = decoder_layers __a : Dict = decoder_layers __a : Union[str, Any] = decoder_ffn_dim __a : Optional[Any] = decoder_attention_heads __a : List[Any] = decoder_attention_heads __a : Optional[Any] = eos_token_id __a : Union[str, Any] = bos_token_id __a : Optional[int] = pad_token_id __a : Optional[int] = decoder_start_token_id __a : List[str] = use_cache __a : Optional[Any] = max_position_embeddings __a : Union[str, Any] = None __a : Dict = decoder_seq_length __a : Optional[int] = 2 __a : Dict = 1 def _lowerCamelCase ( self ): __a : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __a : int = None if self.use_attention_mask: __a : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __a : Any = None if self.use_labels: __a : int = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __a : Dict = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : List[str] = True __a : List[str] = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() __a : int = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __a : List[Any] = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) __a : int = model(_UpperCAmelCase ) __a : List[str] = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) __a : List[Any] = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids __a : Optional[int] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __a : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __a : int = model(_UpperCAmelCase )['''last_hidden_state'''] __a : str = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['''last_hidden_state'''] # select random slice __a : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __a : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.prepare_config_and_inputs() __a , __a , __a , __a : int = config_and_inputs __a : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __lowerCAmelCase = (TrOCRForCausalLM,) if is_torch_available() else () __lowerCAmelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} __lowerCAmelCase = True __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : int = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) __a : Dict = ConfigTester(self , config_class=_UpperCAmelCase ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def _lowerCamelCase ( self ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _lowerCamelCase ( self ): pass
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''glpn''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=[2, 2, 2, 2] , _UpperCAmelCase=[8, 4, 2, 1] , _UpperCAmelCase=[32, 64, 160, 256] , _UpperCAmelCase=[7, 3, 3, 3] , _UpperCAmelCase=[4, 2, 2, 2] , _UpperCAmelCase=[1, 2, 5, 8] , _UpperCAmelCase=[4, 4, 4, 4] , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=64 , _UpperCAmelCase=10 , _UpperCAmelCase=-1 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Union[str, Any] = num_channels __a : Tuple = num_encoder_blocks __a : Optional[int] = depths __a : Dict = sr_ratios __a : str = hidden_sizes __a : List[Any] = patch_sizes __a : int = strides __a : Optional[Any] = mlp_ratios __a : Optional[Any] = num_attention_heads __a : Any = hidden_act __a : Tuple = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : List[Any] = initializer_range __a : Tuple = drop_path_rate __a : Union[str, Any] = layer_norm_eps __a : Any = decoder_hidden_size __a : Union[str, Any] = max_depth __a : Any = head_in_index
52
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
1
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __A ( a_ :bytes , a_ :int) -> np.array: __a : str = F"""{sampling_rate}""" __a : Tuple = '''1''' __a : Optional[int] = '''f32le''' __a : Union[str, Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE) as ffmpeg_process: __a : List[str] = ffmpeg_process.communicate(a_) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''') from error __a : List[Any] = output_stream[0] __a : Union[str, Any] = np.frombuffer(a_ , np.floataa) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''') return audio def __A ( a_ :int , a_ :float , a_ :str = "f32le" , ) -> Tuple: __a : int = F"""{sampling_rate}""" __a : List[Any] = '''1''' if format_for_conversion == "s16le": __a : Dict = 2 elif format_for_conversion == "f32le": __a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""") __a : List[Any] = platform.system() if system == "Linux": __a : List[Any] = '''alsa''' __a : str = '''default''' elif system == "Darwin": __a : List[str] = '''avfoundation''' __a : List[str] = ''':0''' elif system == "Windows": __a : Any = '''dshow''' __a : List[str] = '''default''' __a : Dict = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] __a : Union[str, Any] = int(round(sampling_rate * chunk_length_s)) * size_of_sample __a : Optional[int] = _ffmpeg_stream(a_ , a_) for item in iterator: yield item def __A ( a_ :int , a_ :float , a_ :Optional[int] = None , a_ :Optional[Union[Tuple[float, float], float]] = None , a_ :str = "f32le" , ) -> Optional[Any]: if stream_chunk_s is not None: __a : Optional[int] = stream_chunk_s else: __a : Optional[Any] = chunk_length_s __a : Union[str, Any] = ffmpeg_microphone(a_ , a_ , format_for_conversion=a_) if format_for_conversion == "s16le": __a : Tuple = np.intaa __a : Optional[int] = 2 elif format_for_conversion == "f32le": __a : str = np.floataa __a : int = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""") if stride_length_s is None: __a : Tuple = chunk_length_s / 6 __a : Tuple = int(round(sampling_rate * chunk_length_s)) * size_of_sample if isinstance(a_ , (int, float)): __a : Optional[int] = [stride_length_s, stride_length_s] __a : List[Any] = int(round(sampling_rate * stride_length_s[0])) * size_of_sample __a : str = int(round(sampling_rate * stride_length_s[1])) * size_of_sample __a : Dict = datetime.datetime.now() __a : List[Any] = datetime.timedelta(seconds=a_) for item in chunk_bytes_iter(a_ , a_ , stride=(stride_left, stride_right) , stream=a_): # Put everything back in numpy scale __a : int = np.frombuffer(item['''raw'''] , dtype=a_) __a : str = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) __a : List[str] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __A ( a_ :List[Any] , a_ :int , a_ :Tuple[int, int] , a_ :bool = False) -> List[Any]: __a : Dict = b'''''' __a , __a : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""") __a : Any = 0 for raw in iterator: acc += raw if stream and len(a_) < chunk_len: __a : Optional[Any] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a_) >= chunk_len: # We are flushing the accumulator __a : Tuple = (_stride_left, stride_right) __a : Optional[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: __a : Any = False yield item __a : Dict = stride_left __a : Dict = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a_) > stride_left: __a : Union[str, Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: __a : Tuple = False yield item def __A ( a_ :List[str] , a_ :int) -> List[str]: __a : List[Any] = 2**24 # 16Mo try: with subprocess.Popen(a_ , stdout=subprocess.PIPE , bufsize=a_) as ffmpeg_process: while True: __a : Any = ffmpeg_process.stdout.read(a_) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''') from error
52
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
1
"""simple docstring""" from __future__ import annotations A = [True] * 1_000_001 A = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): A = False i += 1 def __A ( a_ :int) -> bool: return seive[n] def __A ( a_ :int) -> bool: return any(digit in '''02468''' for digit in str(a_)) def __A ( a_ :int = 1_00_00_00) -> list[int]: __a : Dict = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2): if is_prime(a_) and not contains_an_even_digit(a_): __a : Union[str, Any] = str(a_) __a : Optional[Any] = [int(str_num[j:] + str_num[:j]) for j in range(len(a_))] if all(is_prime(a_) for i in list_nums): result.append(a_) return result def __A ( ) -> int: return len(find_circular_primes()) if __name__ == "__main__": print(F'{len(find_circular_primes()) = }')
52
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
1
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowercase ( _UpperCamelCase ): '''simple docstring''' @slow @require_torch def _lowerCamelCase ( self ): __a : List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a : Optional[int] = bertabert.config.encoder.vocab_size __a : str = tokenizer.sep_token_id __a : Union[str, Any] = tokenizer.cls_token_id __a : Tuple = 128 __a : Tuple = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a : int = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a : Optional[int] = train_dataset.select(range(32 ) ) __a : Optional[Any] = val_dataset.select(range(16 ) ) __a : List[Any] = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __a : Tuple = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_UpperCAmelCase , max_length=512 ) __a : int = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_UpperCAmelCase , max_length=128 ) __a : int = inputs.input_ids __a : Optional[int] = inputs.attention_mask __a : Tuple = outputs.input_ids __a : str = outputs.input_ids.copy() __a : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a : Tuple = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): __a : int = pred.label_ids __a : int = pred.predictions # all unnecessary tokens are removed __a : Optional[int] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __a : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __a : Any = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __a : str = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a : Optional[int] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a : Optional[Any] = self.get_auto_remove_tmp_dir() __a : int = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='''steps''' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a : Dict = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
52
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 3.0 class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def _lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a : List[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __a : int = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Dict = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A = Accelerator(kwargs_handlers=[ddp_scaler]) A = torch.nn.Linear(100, 200) A = accelerator.prepare(model) # Check the values changed in kwargs A = '''''' A = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
52
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
1