code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE (UpperCAmelCase_ ): _UpperCamelCase : Dict = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _UpperCamelCase : Dict = Features({'text': Value('string' )} ) _UpperCamelCase : Union[str, Any] = Features({'summary': Value('string' )} ) _UpperCamelCase : List[str] = 'text' _UpperCamelCase : int = 'summary' @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Optional[Any]: """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
235
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 32 def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Accelerator , lowerCAmelCase: int = 16 ) -> int: _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) _UpperCAmelCase : str = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase: Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : int = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase: str ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[Any] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : str = 8 else: _UpperCAmelCase : List[Any] = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="longest" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) # Instantiate dataloaders. _UpperCAmelCase : List[str] = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE_ = mocked_dataloaders # noqa: F811 def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: Any ) -> Any: if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE_ ) == "1": _UpperCAmelCase : Optional[Any] = 2 # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Optional[int] = config["lr"] _UpperCAmelCase : List[str] = int(config["num_epochs"] ) _UpperCAmelCase : Union[str, Any] = int(config["seed"] ) _UpperCAmelCase : str = int(config["batch_size"] ) _UpperCAmelCase : List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Any = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : int = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase , _UpperCAmelCase : Any = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : str = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : Dict = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler _UpperCAmelCase : List[str] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : int = model(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[int] = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _UpperCAmelCase : str = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase : Tuple = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _UpperCAmelCase : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCAmelCase : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) _UpperCAmelCase : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: _UpperCAmelCase : Dict = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _UpperCAmelCase : Tuple = parser.parse_args() _UpperCAmelCase : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
300
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __snake_case ( __A : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = StableDiffusionLatentUpscalePipeline _SCREAMING_SNAKE_CASE : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } _SCREAMING_SNAKE_CASE : List[str] = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} _SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE : str = frozenset([] ) _SCREAMING_SNAKE_CASE : Optional[Any] = True @property def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[str] = 4 SCREAMING_SNAKE_CASE : Optional[Any] = (16, 16) SCREAMING_SNAKE_CASE : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a__ ) return image def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=a__ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=a__ , only_cross_attention=a__ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) SCREAMING_SNAKE_CASE : Dict = EulerDiscreteScheduler(prediction_type='sample' ) SCREAMING_SNAKE_CASE : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='quick_gelu' , projection_dim=512 , ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(a__ ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : str = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _lowerCAmelCase ( self : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any]=0 ) -> Dict: """simple docstring""" if str(a__ ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(a__ ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=a__ ).manual_seed(a__ ) SCREAMING_SNAKE_CASE : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'cpu' SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**a__ ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) SCREAMING_SNAKE_CASE : Optional[Any] = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1E-3 ) def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**a__ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Any = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE : Dict = getattr(a__ , scheduler_enum.name ) SCREAMING_SNAKE_CASE : Tuple = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**a__ )[0] outputs.append(a__ ) assert check_same_shape(a__ ) @require_torch_gpu @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) SCREAMING_SNAKE_CASE : Any = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) SCREAMING_SNAKE_CASE : Optional[Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' SCREAMING_SNAKE_CASE : Optional[int] = pipe(a__ , generator=a__ , output_type='latent' ).images SCREAMING_SNAKE_CASE : List[Any] = upscaler( prompt=a__ , image=a__ , num_inference_steps=20 , guidance_scale=0 , generator=a__ , output_type='np' , ).images[0] SCREAMING_SNAKE_CASE : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) SCREAMING_SNAKE_CASE : Any = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' SCREAMING_SNAKE_CASE : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) SCREAMING_SNAKE_CASE : str = upscaler( prompt=a__ , image=a__ , num_inference_steps=20 , guidance_scale=0 , generator=a__ , output_type='np' , ).images[0] SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
265
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
51
0
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Optional[Any]: lowerCamelCase__ : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[Any] , UpperCAmelCase : int ) -> Any: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = hidden_states.shape lowerCamelCase__ : int = jax.image.resize( a__ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Any = self.conv(a__ ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[Any] ) -> Tuple: lowerCamelCase__ : int = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , UpperCAmelCase : Dict ) -> Dict: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : int = self.conv(a__ ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : str = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : List[Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : Any = nn.Conv( a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : List[Any] = nn.Dense(a__ , dtype=self.dtype ) lowerCamelCase__ : int = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[str] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : List[str] = nn.Conv( a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : List[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : str = None if use_nin_shortcut: lowerCamelCase__ : Optional[Any] = nn.Conv( a__ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Dict=True ) -> List[Any]: lowerCamelCase__ : Tuple = hidden_states lowerCamelCase__ : List[Any] = self.norma(a__ ) lowerCamelCase__ : Union[str, Any] = nn.swish(a__ ) lowerCamelCase__ : Tuple = self.conva(a__ ) lowerCamelCase__ : Any = self.time_emb_proj(nn.swish(a__ ) ) lowerCamelCase__ : int = jnp.expand_dims(jnp.expand_dims(a__ , 1 ) , 1 ) lowerCamelCase__ : Optional[int] = hidden_states + temb lowerCamelCase__ : List[str] = self.norma(a__ ) lowerCamelCase__ : Optional[int] = nn.swish(a__ ) lowerCamelCase__ : List[Any] = self.dropout(a__ , a__ ) lowerCamelCase__ : Optional[Any] = self.conva(a__ ) if self.conv_shortcut is not None: lowerCamelCase__ : str = self.conv_shortcut(a__ ) return hidden_states + residual
295
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
51
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( UpperCAmelCase_ ): UpperCamelCase_ : Optional[Any] = (EulerDiscreteScheduler,) UpperCamelCase_ : Union[str, Any] = 10 def _SCREAMING_SNAKE_CASE ( self : str , **snake_case__ : Tuple ): lowerCAmelCase__ = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**a__ ) return config def _SCREAMING_SNAKE_CASE ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def _SCREAMING_SNAKE_CASE ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ = scheduler.scale_model_input(a__ , a__ ) lowerCAmelCase__ = model(a__ , a__ ) lowerCAmelCase__ = scheduler.step(a__ , a__ , a__ , generator=a__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(a__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCAmelCase__ = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ = scheduler.scale_model_input(a__ , a__ ) lowerCAmelCase__ = model(a__ , a__ ) lowerCAmelCase__ = scheduler.step(a__ , a__ , a__ , generator=a__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(a__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2_676E-06 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase__ = sample.to(a__ ) for t in scheduler.timesteps: lowerCAmelCase__ = scheduler.scale_model_input(a__ , a__ ) lowerCAmelCase__ = model(a__ , a__ ) lowerCAmelCase__ = scheduler.step(a__ , a__ , a__ , generator=a__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(a__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase__ = sample.to(a__ ) for t in scheduler.timesteps: lowerCAmelCase__ = scheduler.scale_model_input(a__ , a__ ) lowerCAmelCase__ = model(a__ , a__ ) lowerCAmelCase__ = scheduler.step(a__ , a__ , a__ , generator=a__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(a__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
644
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=False, UpperCAmelCase=True ) ->List[str]: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : str = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __magic_name__ : Dict = cached_file(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, force_download=not use_cached_models ) __magic_name__ : List[Any] = config_class.from_json_file(SCREAMING_SNAKE_CASE_ ) __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True print(F'''Building TensorFlow model from configuration: {config}''' ) __magic_name__ : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __magic_name__ : int = cached_file( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __magic_name__ : Optional[int] = load_pytorch_checkpoint_in_tfa_model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if compare_with_pt_model: __magic_name__ : str = tf_model(tf_model.dummy_inputs, training=SCREAMING_SNAKE_CASE_ ) # build the network __magic_name__ : List[str] = torch.load(SCREAMING_SNAKE_CASE_, map_location='''cpu''' ) __magic_name__ : Any = pt_model_class.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE_, config=SCREAMING_SNAKE_CASE_, state_dict=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __magic_name__ : Union[str, Any] = pt_model(**pt_model.dummy_inputs ) __magic_name__ : List[Any] = pto[0].numpy() __magic_name__ : List[str] = tfo[0].numpy() __magic_name__ : int = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(SCREAMING_SNAKE_CASE_, save_format='''h5''' ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=None, UpperCAmelCase=None, UpperCAmelCase=False, UpperCAmelCase=False, UpperCAmelCase=False, UpperCAmelCase=False, ) ->Tuple: """simple docstring""" if args_model_type is None: __magic_name__ : int = list(MODEL_CLASSES.keys() ) else: __magic_name__ : Tuple = [args_model_type] for j, model_type in enumerate(SCREAMING_SNAKE_CASE_, start=1 ): print('''=''' * 100 ) print(F''' Converting model type {j}/{len(SCREAMING_SNAKE_CASE_ )}: {model_type}''' ) print('''=''' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __magic_name__ : Any = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __magic_name__ : str = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), start=1 ): print('''-''' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __magic_name__ : Any = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(SCREAMING_SNAKE_CASE_ )}: {model_shortcut_name} - model_type {model_type}''' ) print('''-''' * 100 ) if config_shortcut_name in aws_config_map: __magic_name__ : Optional[int] = cached_file(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, force_download=not use_cached_models ) else: __magic_name__ : Optional[int] = config_shortcut_name if model_shortcut_name in aws_model_maps: __magic_name__ : Any = cached_file(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, force_download=not use_cached_models ) else: __magic_name__ : int = model_shortcut_name if os.path.isfile(SCREAMING_SNAKE_CASE_ ): __magic_name__ : List[Any] = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=SCREAMING_SNAKE_CASE_, pytorch_checkpoint_path=SCREAMING_SNAKE_CASE_, config_file=SCREAMING_SNAKE_CASE_, tf_dump_path=os.path.join(SCREAMING_SNAKE_CASE_, model_shortcut_name + '''-tf_model.h5''' ), compare_with_pt_model=SCREAMING_SNAKE_CASE_, ) if remove_cached_files: os.remove(SCREAMING_SNAKE_CASE_ ) os.remove(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( f"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
154
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ ) def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(a__ ) if do_resize: UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: UpperCAmelCase = self.center_crop(a__ , size=a__ ) if do_rescale: UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ ) UpperCAmelCase = to_channel_dimension_format(a__ , a__ ) return image def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(a__ ) UpperCAmelCase = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=a__ , tensor_type=a__ )
51
0
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __UpperCamelCase ( ) ->int: raise RuntimeError('''CUDA out of memory.''' ) class _lowercase ( nn.Module ): def __init__( self ) -> Optional[Any]: super().__init__() snake_case = nn.Linear(3 , 4 ) snake_case = nn.BatchNormad(4 ) snake_case = nn.Linear(4 , 5 ) def UpperCamelCase ( self , A__ ) -> List[str]: return self.lineara(self.batchnorm(self.lineara(a__ ) ) ) class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self ) -> Any: snake_case = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(A__ ): nonlocal batch_sizes batch_sizes.append(a__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(a__ , [1_28, 64, 32, 16, 8] ) def UpperCamelCase ( self ) -> Any: snake_case = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(A__ , A__ ): nonlocal batch_sizes batch_sizes.append(a__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga snake_case , snake_case = mock_training_loop_function('''hello''' ) self.assertListEqual(a__ , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def UpperCamelCase ( self ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(A__ ): pass with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def UpperCamelCase ( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def UpperCamelCase ( self ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(A__ , A__ , A__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(a__ ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def UpperCamelCase ( self ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A__ ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = torch.cuda.memory_allocated() snake_case = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , a__ ) snake_case = release_memory(a__ ) self.assertEqual(torch.cuda.memory_allocated() , a__ )
342
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ): super(a__ , self ).__init__() UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ ) UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 ) UpperCAmelCase = torch.nn.Softmax(dim=1 ) def __snake_case ( self : List[Any] , **a__ : Tuple ): return self.bert(**a__ ).last_hidden_state def __snake_case ( self : int , a__ : List[str] ): return token_embeddings.sum(2 , keepdim=a__ ) def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ): return self.softmax(T * self.cos(a__ , a__ ) ) def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ): UpperCAmelCase = W_supports['''sizes'''].tolist() UpperCAmelCase = W_supports['''start_token_id'''].item() UpperCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = W_supports['''input_ids'''] == start_token_id UpperCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(a__ ): if i == 0: UpperCAmelCase = 0 else: UpperCAmelCase = support_sizes[i - 1] UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase = torch.vstack((p_starts, p_start) ) UpperCAmelCase = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase = p_start UpperCAmelCase = p_end return p_starts, p_ends
51
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : int = StableUnCLIPPipeline UpperCamelCase_ : List[str] = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCamelCase_ : Dict = False def _A ( self : str ): SCREAMING_SNAKE_CASE : str = 32 SCREAMING_SNAKE_CASE : Optional[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = StableUnCLIPImageNormalizer(embedding_dim=a__ ) SCREAMING_SNAKE_CASE : List[str] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoencoderKL() SCREAMING_SNAKE_CASE : Any = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _A ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]=0 ): if str(a__ ).startswith("mps" ): SCREAMING_SNAKE_CASE : Any = torch.manual_seed(a__ ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=a__ ).manual_seed(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Dict = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) SCREAMING_SNAKE_CASE : Dict = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe("anime turle" , generator=a__ , output_type="np" ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def _A ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : Any = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Optional[int] = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
62
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =(EulerDiscreteScheduler,) _lowerCamelCase =10 def __snake_case ( self : str , **a__ : Tuple ): UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def __snake_case ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __snake_case ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def __snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
51
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowercase : """simple docstring""" _UpperCAmelCase = LEDConfig _UpperCAmelCase = {} _UpperCAmelCase = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=4 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE_ : int = is_training SCREAMING_SNAKE_CASE_ : List[Any] = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = eos_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = pad_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = bos_token_id SCREAMING_SNAKE_CASE_ : List[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after SCREAMING_SNAKE_CASE_ : int = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests SCREAMING_SNAKE_CASE_ : Optional[int] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_led_inputs_dict(a__ , a__ , a__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = global_attention_mask return config, inputs_dict def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = TFLEDModel(config=a__ ).get_decoder() SCREAMING_SNAKE_CASE_ : Optional[int] = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids[:1, :] SCREAMING_SNAKE_CASE_ : Tuple = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE_ : Optional[int] = 1 # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model(a__ , attention_mask=a__ , use_cache=a__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE_ : List[Any] = model(a__ , attention_mask=a__ )[0] SCREAMING_SNAKE_CASE_ : Any = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ : List[str] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1E-3 ) def a__ ( A__, A__, A__, A__=None, A__=None, A__=None, A__=None, ): if attention_mask is None: SCREAMING_SNAKE_CASE_ : Tuple = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowercase (UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFLEDModelTester(self ) SCREAMING_SNAKE_CASE_ : str = ConfigTester(self , config_class=a__ ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = tf.zeros_like(inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE_ : Tuple = 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Any = self.model_tester.seq_length SCREAMING_SNAKE_CASE_ : Any = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : str = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = [t.numpy() for t in outputs.encoder_attentions] SCREAMING_SNAKE_CASE_ : str = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(a__ ) SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(a__ , a__ ) ) SCREAMING_SNAKE_CASE_ : int = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE_ : str = model_class(a__ ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : str = model_class(a__ ) SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Dict = model_class(a__ ) SCREAMING_SNAKE_CASE_ : Tuple = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" pass def a__ ( A__ ): return tf.constant(SCREAMING_SNAKE_CASE_, dtype=tf.intaa ) lowerCAmelCase__ : int =1e-4 @slow @require_tf class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here SCREAMING_SNAKE_CASE_ : Union[str, Any] = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) SCREAMING_SNAKE_CASE_ : Dict = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_led_inputs_dict(model.config , a__ , a__ ) SCREAMING_SNAKE_CASE_ : int = model(**a__ )[0] SCREAMING_SNAKE_CASE_ : Dict = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , a__ ) # change to expected output here SCREAMING_SNAKE_CASE_ : Optional[int] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here SCREAMING_SNAKE_CASE_ : str = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) SCREAMING_SNAKE_CASE_ : List[Any] = prepare_led_inputs_dict(model.config , a__ , a__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(**a__ )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here SCREAMING_SNAKE_CASE_ : List[Any] = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1E-3 , rtol=1E-3 )
101
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( metadata={"help": "The csv file to plot."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowerCamelCase =list_field( default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : Optional[int] ): UpperCAmelCase = args UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCAmelCase = csv.DictReader(a__ ) for row in reader: UpperCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCAmelCase = float(row['''result'''] ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = plt.subplots() UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCAmelCase = self.result_dict[model_name]['''result'''] ((UpperCAmelCase), (UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , ) else: UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase), (UpperCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )] plt.scatter( a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a__ , a__ , '''--''' ) title_str += f" {label_model_name} vs." UpperCAmelCase = title_str[:-4] UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(a__ ) plt.xlabel(a__ ) plt.ylabel(a__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
51
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =MgpstrTokenizer SCREAMING_SNAKE_CASE_ : int =False SCREAMING_SNAKE_CASE_ : Optional[Any] ={} SCREAMING_SNAKE_CASE_ : List[str] =False def _lowerCamelCase ( self : str ): super().setUp() # fmt: off __UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __UpperCamelCase = dict(zip(a__ , range(len(a__ ) ) ) ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a__ ) + '\n' ) def _lowerCamelCase ( self : Optional[Any] , **__A : Dict ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **a__ ) def _lowerCamelCase ( self : List[str] , __A : Dict ): __UpperCamelCase = 'tester' __UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def _lowerCamelCase ( self : Any ): pass def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.get_tokenizers(do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __UpperCamelCase = tokenizer.encode([special_token] , add_special_tokens=a__ ) self.assertEqual(len(a__ ) , 1 ) __UpperCamelCase = tokenizer.decode(a__ , skip_special_tokens=a__ ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase , __UpperCamelCase = self.get_input_output_texts(a__ ) __UpperCamelCase = tokenizer.tokenize(a__ ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(a__ ) __UpperCamelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertNotEqual(len(a__ ) , 0 ) __UpperCamelCase = tokenizer.decode(a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(text_a.replace(' ' , '' ) , a__ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def _lowerCamelCase ( self : Any ): pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def _lowerCamelCase ( self : Tuple ): pass
399
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file: try: UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = True elif task_name.startswith('''voc_''' ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = '''pascal-voc-id2label.json''' UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int: """simple docstring""" if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''mobilevitv2.''' UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _UpperCAmelCase : '''simple docstring''' a__ =4_2 a__ =None a__ =None _lowerCAmelCase :str = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase_ (UpperCamelCase__ : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(UpperCamelCase__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(UpperCamelCase__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE_ ) != count_coins(SCREAMING_SNAKE_CASE_ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(UpperCamelCase__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase : List[str] = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase : str = get_distrib(node.right ) _UpperCAmelCase : Optional[Any] = 1 - left_distrib_excess _UpperCAmelCase : int = 1 - right_distrib_excess _UpperCAmelCase : str = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase : List[str] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return get_distrib(SCREAMING_SNAKE_CASE_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
506
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Dict: """simple docstring""" lowercase__ = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowercase__ = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house lowercase__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ = model(a__ )['last_hidden_state'].detach() self.assertEqual(output.shape , a__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , a__ , atol=1E-3 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Any: """simple docstring""" lowercase__ = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowercase__ = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house lowercase__ = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ = model(a__ )['last_hidden_state'].detach() self.assertEqual(output.shape , a__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , a__ , atol=1E-3 ) )
235
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> int: _UpperCAmelCase : Union[str, Any] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'{test_file} instead.' ) _UpperCAmelCase : Any = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) _UpperCAmelCase : Optional[int] = components[:-1] + [test_fn.replace(".py" , "" )] _UpperCAmelCase : Any = ".".join(SCREAMING_SNAKE_CASE_ ) return test_module_path def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Optional[int]: _UpperCAmelCase : List[str] = get_module_path(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Any = importlib.import_module(SCREAMING_SNAKE_CASE_ ) return test_module def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> int: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Optional[int] = get_test_module(SCREAMING_SNAKE_CASE_ ) for attr in dir(SCREAMING_SNAKE_CASE_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCAmelCase : x.__name__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Dict: _UpperCAmelCase : str = [] _UpperCAmelCase : Any = get_test_module(SCREAMING_SNAKE_CASE_ ) for attr in dir(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCAmelCase : Any = getattr(SCREAMING_SNAKE_CASE_ , "all_model_classes" , [] ) if len(SCREAMING_SNAKE_CASE_ ) > 0: test_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCAmelCase : x.__name__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] ) -> Dict: _UpperCAmelCase : Union[str, Any] = get_test_classes(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : List[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCAmelCase : x.__name__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] ) -> List[str]: _UpperCAmelCase : List[str] = test_class() if hasattr(SCREAMING_SNAKE_CASE_ , "setUp" ): test.setUp() _UpperCAmelCase : Optional[Any] = None if hasattr(SCREAMING_SNAKE_CASE_ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCAmelCase : List[Any] = test.model_tester.__class__ return model_tester def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Any ) -> Optional[int]: _UpperCAmelCase : List[Any] = get_test_classes(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCAmelCase : x.__name__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Any ) -> Optional[Any]: _UpperCAmelCase : Dict = get_test_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Union[str, Any] = [] for test_class in test_classes: _UpperCAmelCase : Dict = get_model_tester_from_test_class(SCREAMING_SNAKE_CASE_ ) if tester_class is not None: tester_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCAmelCase : x.__name__ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> int: _UpperCAmelCase : Any = get_test_classes(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Dict = {test_class: get_model_tester_from_test_class(SCREAMING_SNAKE_CASE_ ) for test_class in test_classes} return test_tester_mapping def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Dict: _UpperCAmelCase : str = get_model_classes(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Tuple = { model_class: get_test_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in model_classes } return model_test_mapping def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Any: _UpperCAmelCase : Optional[int] = get_model_classes(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : str = { model_class: get_tester_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in model_classes } return model_to_tester_mapping def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> int: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return o elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return o.__name__ elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): return [to_json(SCREAMING_SNAKE_CASE_ ) for x in o] elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {to_json(SCREAMING_SNAKE_CASE_ ): to_json(SCREAMING_SNAKE_CASE_ ) for k, v in o.items()} else: return o
300
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def _lowerCAmelCase ( self : List[Any] , _SCREAMING_SNAKE_CASE : str ) -> Dict: """simple docstring""" with open(a__ , encoding='utf-8' ) as input_file: SCREAMING_SNAKE_CASE : int = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) SCREAMING_SNAKE_CASE : List[str] = input_file.read() SCREAMING_SNAKE_CASE : List[str] = regexp.search(a__ ) return match def _lowerCAmelCase ( self : Any , _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" with open(a__ , encoding='utf-8' ) as input_file: SCREAMING_SNAKE_CASE : str = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) SCREAMING_SNAKE_CASE : str = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` SCREAMING_SNAKE_CASE : Optional[int] = regexp.finditer(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = Path('./datasets' ) SCREAMING_SNAKE_CASE : Union[str, Any] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(a__ ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Path('./datasets' ) SCREAMING_SNAKE_CASE : List[str] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(a__ ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
265
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) if "model" in sd.keys(): lowerCamelCase__ : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['model'] # pop unnecessary weights lowerCamelCase__ : Optional[int] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[Any] = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowerCamelCase__ : List[Any] = sd.pop(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Union[str, Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowerCamelCase__ : Tuple = sd[key] # We split QKV in separate Q,K,V lowerCamelCase__ : Union[str, Any] = key.replace('.qkv_proj.' , '.q_proj.' ) lowerCamelCase__ : List[str] = key.replace('.qkv_proj.' , '.k_proj.' ) lowerCamelCase__ : Optional[int] = key.replace('.qkv_proj.' , '.v_proj.' ) lowerCamelCase__ : Tuple = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = torch.split(SCREAMING_SNAKE_CASE_ , depth // 3 , dim=0 ) lowerCamelCase__ : List[Any] = q lowerCamelCase__ : str = k lowerCamelCase__ : str = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ) -> int: lowerCamelCase__ : int = load_checkpoint(SCREAMING_SNAKE_CASE_ ) if config is not None: lowerCamelCase__ : List[Any] = OPTConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase__ : Any = OPTConfig() lowerCamelCase__ : str = OPTModel(SCREAMING_SNAKE_CASE_ ).half().eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check results Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") _UpperCAmelCase : int = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
295
'''simple docstring''' from math import factorial def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int: """simple docstring""" return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
51
0
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
644
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class A__ ( unittest.TestCase ): def lowercase ( self ) -> int: """simple docstring""" __magic_name__ : List[str] = inspect.getfile(accelerate.test_utils ) __magic_name__ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __magic_name__ : Union[str, Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowercase ( self ) -> Any: """simple docstring""" __magic_name__ : Optional[int] = F'''\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '''.split() __magic_name__ : int = [sys.executable] + distributed_args execute_subprocess_async(a__ , env=os.environ.copy() )
154
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
0
'''simple docstring''' class _lowercase : def __init__( self , A__ , A__ ) -> Union[str, Any]: snake_case = name snake_case = val def __str__( self ) -> Union[str, Any]: return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , A__ ) -> Union[str, Any]: return self.val < other.val class _lowercase : def __init__( self , A__ ) -> str: snake_case = {} snake_case = {} snake_case = self.build_heap(a__ ) def __getitem__( self , A__ ) -> Union[str, Any]: return self.get_value(a__ ) def UpperCamelCase ( self , A__ ) -> List[Any]: return (idx - 1) // 2 def UpperCamelCase ( self , A__ ) -> int: return idx * 2 + 1 def UpperCamelCase ( self , A__ ) -> Optional[Any]: return idx * 2 + 2 def UpperCamelCase ( self , A__ ) -> List[str]: return self.heap_dict[key] def UpperCamelCase ( self , A__ ) -> Dict: snake_case = len(a__ ) - 1 snake_case = self.get_parent_idx(a__ ) for idx, i in enumerate(a__ ): snake_case = idx snake_case = i.val for i in range(a__ , -1 , -1 ): self.sift_down(a__ , a__ ) return array def UpperCamelCase ( self , A__ , A__ ) -> Any: while True: snake_case = self.get_left_child_idx(a__ ) # noqa: E741 snake_case = self.get_right_child_idx(a__ ) snake_case = idx if l < len(a__ ) and array[l] < array[idx]: snake_case = l if r < len(a__ ) and array[r] < array[smallest]: snake_case = r if smallest != idx: snake_case , snake_case = array[smallest], array[idx] ( ( snake_case ) , ( snake_case ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case = smallest else: break def UpperCamelCase ( self , A__ ) -> List[Any]: snake_case = self.get_parent_idx(a__ ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case , snake_case = self.heap[idx], self.heap[p] snake_case , snake_case = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case = p snake_case = self.get_parent_idx(a__ ) def UpperCamelCase ( self ) -> Dict: return self.heap[0] def UpperCamelCase ( self ) -> Any: snake_case , snake_case = self.heap[-1], self.heap[0] snake_case , snake_case = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def UpperCamelCase ( self , A__ ) -> Optional[int]: self.heap.append(a__ ) snake_case = len(self.heap ) - 1 snake_case = node.val self.sift_up(len(self.heap ) - 1 ) def UpperCamelCase ( self ) -> Union[str, Any]: return len(self.heap ) == 0 def UpperCamelCase ( self , A__ , A__ ) -> List[Any]: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case = new_value snake_case = new_value self.sift_up(self.idx_of_element[node] ) _lowercase = Node('R', -1) _lowercase = Node('B', 6) _lowercase = Node('A', 3) _lowercase = Node('X', 1) _lowercase = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowercase = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
342
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
0
from math import pow def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase , ): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count SCREAMING_SNAKE_CASE : int = int(pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = backtrack( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , current_number + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = backtrack( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , current_number + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return current_sum, solutions_count def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
62
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =XGLMTokenizer _lowerCamelCase =XGLMTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(a__ ) , 1008 ) def __snake_case ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __snake_case ( self : Optional[Any] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ ) UpperCAmelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def __snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : int ): UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : Any ): # fmt: off UpperCAmelCase = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
51
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase__ : Union[str, Any] =TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase__ : Tuple =TaTokenizerFast lowerCAmelCase__ : Optional[Any] ={'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] =[ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple =['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] =['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase__ : List[Any] =_LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class snake_case ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE_ : Any =Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =Features({"labels": ClassLabel} ) SCREAMING_SNAKE_CASE_ : Optional[Any] ="text" SCREAMING_SNAKE_CASE_ : List[Any] ="labels" def _lowerCamelCase ( self : str , __A : str ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , a__ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __UpperCamelCase = copy.deepcopy(self ) __UpperCamelCase = self.label_schema.copy() __UpperCamelCase = features[self.label_column] __UpperCamelCase = label_schema return task_template @property def _lowerCamelCase ( self : Dict ): return { self.text_column: "text", self.label_column: "labels", }
399
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a__ : List[Any] = logging.get_logger(__name__) a__ : int = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off a__ : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a__ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="whisper" _lowerCamelCase =["past_key_values"] _lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ): UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @property def __snake_case ( self : List[str] ): UpperCAmelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ): UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) UpperCAmelCase = encoder_inputs['''input_features'''].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) UpperCAmelCase = encoder_inputs.pop('''input_features''' ) UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __snake_case ( self : Dict ): return 1e-3
51
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase :Any = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[Any] = ['OwlViTFeatureExtractor'] _lowerCAmelCase :Dict = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
506
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =LEDConfig _lowerCamelCase ={} _lowerCamelCase ="gelu" def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ ) UpperCAmelCase = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ): UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(a__ , attention_mask=a__ )[0] UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1e-3 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ ) def __snake_case ( self : int ): self.config_tester.run_common_tests() def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a__ : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a__ : int ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __snake_case ( self : Any ): pass def __snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) a__ : int = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 ) def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
51
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = 'sshleifer/mar_enro_6_3_student' class SCREAMING_SNAKE_CASE (UpperCAmelCase_ ): def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[str]: """simple docstring""" super().setUp() lowercase__ = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=a__ , ) lowercase__ = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[str]: """simple docstring""" MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[Any]: """simple docstring""" lowercase__ = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script lowercase__ = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() lowercase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(a__ , str(a__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase__ = f"""\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase__ = ['finetune.py'] + bash_script.split() + args with patch.object(a__ , 'argv' , a__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(a__ ) lowercase__ = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) lowercase__ = parser.parse_args() lowercase__ = main(a__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics['val'][0] lowercase__ = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , a__ ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(a__ ) lowercase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowercase__ = os.path.join(args.output_dir , a__ ) lowercase__ = torch.load(a__ , map_location='cpu' ) lowercase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE (UpperCAmelCase_ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" lowercase__ = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" lowercase__ = { '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script lowercase__ = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) lowercase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) lowercase__ = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(a__ , str(a__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = bash_script.replace('--fp16' , '' ) lowercase__ = 6 lowercase__ = ( ['distillation.py'] + bash_script.split() + [ f"""--output_dir={output_dir}""", '--gpus=1', '--learning_rate=1e-3', f"""--num_train_epochs={epochs}""", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(a__ , 'argv' , a__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(a__ ) lowercase__ = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) lowercase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase__ = distill_main(a__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics['val'][0] lowercase__ = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(a__ ) lowercase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowercase__ = os.path.join(args.output_dir , a__ ) lowercase__ = torch.load(a__ , map_location='cpu' ) lowercase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
235
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE_ = 'src/transformers' # Matches is_xxx_available() SCREAMING_SNAKE_CASE_ = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE_ = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE_ = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE_ = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE_ = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE_ = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE_ = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE_ = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE_ = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: SCREAMING_SNAKE_CASE_ = re.compile(R'^\s*try:') # Catches a line with else: SCREAMING_SNAKE_CASE_ = re.compile(R'^\s*else:') def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> str: if _re_test_backend.search(SCREAMING_SNAKE_CASE_ ) is None: return None _UpperCAmelCase : List[Any] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE_ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> int: with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase : Union[str, Any] = f.readlines() _UpperCAmelCase : Optional[Any] = 0 while line_index < len(SCREAMING_SNAKE_CASE_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE_ ): return None # First grab the objects without a specific backend in _import_structure _UpperCAmelCase : List[Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: _UpperCAmelCase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase : Any = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ).groups()[0] _UpperCAmelCase : int = re.findall("\[([^\]]+)\]" , SCREAMING_SNAKE_CASE_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue _UpperCAmelCase : Optional[int] = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: _UpperCAmelCase : Optional[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 _UpperCAmelCase : Tuple = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. _UpperCAmelCase : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): _UpperCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ) is not None: _UpperCAmelCase : str = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(", " ) _UpperCAmelCase : Optional[Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ) is not None: _UpperCAmelCase : Union[str, Any] = _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(", " ) _UpperCAmelCase : List[Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 _UpperCAmelCase : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _UpperCAmelCase : int = [] while ( line_index < len(SCREAMING_SNAKE_CASE_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): _UpperCAmelCase : Optional[Any] = lines[line_index] _UpperCAmelCase : Optional[int] = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 _UpperCAmelCase : Optional[Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE_ ): # If the line is an if is_backend_available, we grab all objects associated. _UpperCAmelCase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): _UpperCAmelCase : Optional[int] = lines[line_index] _UpperCAmelCase : Any = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 _UpperCAmelCase : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Dict ) -> Dict: def find_duplicates(lowerCAmelCase: Any ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _UpperCAmelCase : str = [] for key in import_dict_objects.keys(): _UpperCAmelCase : Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) _UpperCAmelCase : str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _UpperCAmelCase : Optional[Any] = "base imports" if key == "none" else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE_ ): if "__init__.py" in files: _UpperCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , "__init__.py" ) _UpperCAmelCase : int = parse_init(SCREAMING_SNAKE_CASE_ ) if objects is not None: _UpperCAmelCase : List[str] = analyze_results(*SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: _UpperCAmelCase : str = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("\n".join(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError("\n\n".join(SCREAMING_SNAKE_CASE_ ) ) def __SCREAMING_SNAKE_CASE ( ) -> int: _UpperCAmelCase : int = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(SCREAMING_SNAKE_CASE_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE_ ) / folder).glob("*.py" ) ) ) == 0: continue _UpperCAmelCase : Optional[Any] = str((Path(SCREAMING_SNAKE_CASE_ ) / folder).relative_to(SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase : Union[str, Any] = short_path.replace(os.path.sep , "." ) submodules.append(SCREAMING_SNAKE_CASE_ ) for fname in files: if fname == "__init__.py": continue _UpperCAmelCase : Tuple = str((Path(SCREAMING_SNAKE_CASE_ ) / fname).relative_to(SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase : List[str] = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE_ ) return submodules SCREAMING_SNAKE_CASE_ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def __SCREAMING_SNAKE_CASE ( ) -> Any: _UpperCAmelCase : Optional[Any] = importlib.util.spec_from_file_location( "transformers" , os.path.join(SCREAMING_SNAKE_CASE_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _UpperCAmelCase : Optional[Any] = spec.loader.load_module() _UpperCAmelCase : List[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE_ ) > 0: _UpperCAmelCase : Any = "\n".join(F'- {module}' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F'{list_of_modules}\n' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
300
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
0
"""simple docstring""" def __snake_case ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] A_ : str = generate_large_matrix() A_ : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __snake_case ( __A : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE_ ) == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for col in zip(*SCREAMING_SNAKE_CASE_ ) ) def __snake_case ( __A : list[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Any = len(SCREAMING_SNAKE_CASE_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : Tuple = (left + right) // 2 SCREAMING_SNAKE_CASE : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1 else: SCREAMING_SNAKE_CASE : List[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE_ ) def __snake_case ( __A : list[list[int]] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): SCREAMING_SNAKE_CASE : Optional[Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE_ ) * len(grid[0] )) - total def __snake_case ( __A : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __snake_case ( __A : list[list[int]] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE_ ): if number < 0: total += len(SCREAMING_SNAKE_CASE_ ) - i break return total def __snake_case ( ) -> None: '''simple docstring''' from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE : int = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Optional[int] = timeit(F"""{func}(grid=grid)""" , setup=SCREAMING_SNAKE_CASE_ , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
265
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
51
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Any = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class lowerCAmelCase ( UpperCAmelCase_ ): UpperCAmelCase__ = """table-transformer""" UpperCAmelCase__ = ["""past_key_values"""] UpperCAmelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , UpperCAmelCase : Any=True , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=100 , UpperCAmelCase : Optional[int]=6 , UpperCAmelCase : List[Any]=2048 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Dict=6 , UpperCAmelCase : Any=2048 , UpperCAmelCase : List[Any]=8 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int="relu" , UpperCAmelCase : str=256 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : str=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : Union[str, Any]=1.0 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Any="sine" , UpperCAmelCase : Optional[int]="resnet50" , UpperCAmelCase : Dict=True , UpperCAmelCase : Dict=False , UpperCAmelCase : str=1 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : Dict=1 , UpperCAmelCase : str=5 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Optional[Any]=0.1 , **UpperCAmelCase : Optional[int] , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCamelCase__ : str = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(a__ , a__ ): lowerCamelCase__ : Optional[int] = backbone_config.get('model_type' ) lowerCamelCase__ : Any = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : Union[str, Any] = config_class.from_dict(a__ ) # set timm attributes to None lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = None, None, None lowerCamelCase__ : List[Any] = use_timm_backbone lowerCamelCase__ : Union[str, Any] = backbone_config lowerCamelCase__ : int = num_channels lowerCamelCase__ : List[Any] = num_queries lowerCamelCase__ : List[str] = d_model lowerCamelCase__ : Union[str, Any] = encoder_ffn_dim lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : str = encoder_attention_heads lowerCamelCase__ : Optional[int] = decoder_ffn_dim lowerCamelCase__ : List[str] = decoder_layers lowerCamelCase__ : int = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : Optional[int] = attention_dropout lowerCamelCase__ : Tuple = activation_dropout lowerCamelCase__ : List[Any] = activation_function lowerCamelCase__ : Tuple = init_std lowerCamelCase__ : str = init_xavier_std lowerCamelCase__ : int = encoder_layerdrop lowerCamelCase__ : Union[str, Any] = decoder_layerdrop lowerCamelCase__ : Union[str, Any] = encoder_layers lowerCamelCase__ : List[str] = auxiliary_loss lowerCamelCase__ : List[Any] = position_embedding_type lowerCamelCase__ : List[str] = backbone lowerCamelCase__ : Union[str, Any] = use_pretrained_backbone lowerCamelCase__ : str = dilation # Hungarian matcher lowerCamelCase__ : Dict = class_cost lowerCamelCase__ : Optional[int] = bbox_cost lowerCamelCase__ : str = giou_cost # Loss coefficients lowerCamelCase__ : List[Any] = mask_loss_coefficient lowerCamelCase__ : Tuple = dice_loss_coefficient lowerCamelCase__ : Dict = bbox_loss_coefficient lowerCamelCase__ : Optional[int] = giou_loss_coefficient lowerCamelCase__ : Optional[int] = eos_coefficient super().__init__(is_encoder_decoder=a__ , **a__ ) @property def A_ ( self : Dict ) -> str: return self.encoder_attention_heads @property def A_ ( self : Any ) -> Optional[int]: return self.d_model class lowerCAmelCase ( UpperCAmelCase_ ): UpperCAmelCase__ = version.parse("""1.11""" ) @property def A_ ( self : Tuple ) -> int: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def A_ ( self : int ) -> Optional[int]: return 1e-5 @property def A_ ( self : Tuple ) -> Union[str, Any]: return 12
295
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
51
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : int = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
644
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
154
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ ) def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(a__ ) if do_resize: UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: UpperCAmelCase = self.center_crop(a__ , size=a__ ) if do_rescale: UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ ) UpperCAmelCase = to_channel_dimension_format(a__ , a__ ) return image def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(a__ ) UpperCAmelCase = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=a__ , tensor_type=a__ )
51
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowercase ( UpperCAmelCase_ , unittest.TestCase ): _UpperCAmelCase = DDIMPipeline _UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } _UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def UpperCamelCase ( self ) -> int: torch.manual_seed(0 ) snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) snake_case = DDIMScheduler() snake_case = {'''unet''': unet, '''scheduler''': scheduler} return components def UpperCamelCase ( self , A__ , A__=0 ) -> List[str]: if str(a__ ).startswith('''mps''' ): snake_case = torch.manual_seed(a__ ) else: snake_case = torch.Generator(device=a__ ).manual_seed(a__ ) snake_case = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self ) -> Dict: snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case = self.get_dummy_inputs(a__ ) snake_case = pipe(**a__ ).images snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) snake_case = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def UpperCamelCase ( self ) -> int: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCamelCase ( self ) -> List[Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCamelCase ( self ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCamelCase ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self ) -> Dict: snake_case = '''google/ddpm-cifar10-32''' snake_case = UNetaDModel.from_pretrained(a__ ) snake_case = DDIMScheduler() snake_case = DDIMPipeline(unet=a__ , scheduler=a__ ) ddim.to(a__ ) ddim.set_progress_bar_config(disable=a__ ) snake_case = torch.manual_seed(0 ) snake_case = ddim(generator=a__ , eta=0.0 , output_type='''numpy''' ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> Optional[Any]: snake_case = '''google/ddpm-ema-bedroom-256''' snake_case = UNetaDModel.from_pretrained(a__ ) snake_case = DDIMScheduler.from_pretrained(a__ ) snake_case = DDIMPipeline(unet=a__ , scheduler=a__ ) ddpm.to(a__ ) ddpm.set_progress_bar_config(disable=a__ ) snake_case = torch.manual_seed(0 ) snake_case = ddpm(generator=a__ , output_type='''numpy''' ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
342
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ): super(a__ , self ).__init__() UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ ) UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 ) UpperCAmelCase = torch.nn.Softmax(dim=1 ) def __snake_case ( self : List[Any] , **a__ : Tuple ): return self.bert(**a__ ).last_hidden_state def __snake_case ( self : int , a__ : List[str] ): return token_embeddings.sum(2 , keepdim=a__ ) def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ): return self.softmax(T * self.cos(a__ , a__ ) ) def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ): UpperCAmelCase = W_supports['''sizes'''].tolist() UpperCAmelCase = W_supports['''start_token_id'''].item() UpperCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = W_supports['''input_ids'''] == start_token_id UpperCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(a__ ): if i == 0: UpperCAmelCase = 0 else: UpperCAmelCase = support_sizes[i - 1] UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase = torch.vstack((p_starts, p_start) ) UpperCAmelCase = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase = p_start UpperCAmelCase = p_end return p_starts, p_ends
51
0
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Any=[10, 20, 30, 40] , UpperCAmelCase_ : Any=[2, 2, 3, 2] , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : List[Any]=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Any=[2, 3, 4] , UpperCAmelCase_ : int=None , ): SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : str = num_stages SCREAMING_SNAKE_CASE : Any = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = out_features SCREAMING_SNAKE_CASE : Optional[Any] = out_indices SCREAMING_SNAKE_CASE : Tuple = scope def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def _A ( self : Dict ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _A ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : Dict = ConvNextVaModel(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _A ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : str = ConvNextVaForImageClassification(a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : List[Any] = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : int = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : int = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : int = {"pixel_values": pixel_values} return config, inputs_dict def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) UpperCamelCase_ : List[Any] = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : Any = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Any = False UpperCamelCase_ : List[Any] = False def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = ConvNextVaModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def _A ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A ( self : Optional[Any] ): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _A ( self : List[str] ): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _A ( self : Union[str, Any] ): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _A ( self : str ): pass def _A ( self : Optional[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE : Optional[Any] = True if model_class.__name__ in [ *get_values(a__ ), *get_values(a__ ), ]: continue SCREAMING_SNAKE_CASE : List[Any] = model_class(a__ ) model.to(a__ ) model.train() SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(a__ , a__ , return_labels=a__ ) SCREAMING_SNAKE_CASE : List[str] = model(**a__ ).loss loss.backward() def _A ( self : Union[str, Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Union[str, Any] = True if ( model_class.__name__ in [*get_values(a__ ), *get_values(a__ )] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE : Optional[int] = model_class(a__ ) model.to(a__ ) model.gradient_checkpointing_enable() model.train() SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(a__ , a__ , return_labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**a__ ).loss loss.backward() def _A ( self : str ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(a__ ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _A ( self : Any ): def check_hidden_states_output(UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Optional[int] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(a__ , a__ , a__ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def _A ( self : Tuple ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = ConvNextVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : Dict ): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _A ( self : Dict ): SCREAMING_SNAKE_CASE : int = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(a__ ) SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[Any] = preprocessor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**a__ ) # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
62
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =(EulerDiscreteScheduler,) _lowerCamelCase =10 def __snake_case ( self : str , **a__ : Tuple ): UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def __snake_case ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __snake_case ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def __snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
51
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
101
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( metadata={"help": "The csv file to plot."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowerCamelCase =list_field( default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : Optional[int] ): UpperCAmelCase = args UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCAmelCase = csv.DictReader(a__ ) for row in reader: UpperCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCAmelCase = float(row['''result'''] ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = plt.subplots() UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCAmelCase = self.result_dict[model_name]['''result'''] ((UpperCAmelCase), (UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , ) else: UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase), (UpperCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )] plt.scatter( a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a__ , a__ , '''--''' ) title_str += f" {label_model_name} vs." UpperCAmelCase = title_str[:-4] UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(a__ ) plt.xlabel(a__ ) plt.ylabel(a__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
51
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase__ ( __lowercase : Optional[Any] ) -> Any: """simple docstring""" if not is_accelerate_available(): return method __UpperCamelCase = version.parse(accelerate.__version__ ).base_version if version.parse(SCREAMING_SNAKE_CASE_ ) < version.parse('0.17.0' ): return method def wrapper(self : Tuple , *__lowercase : List[Any] , **__lowercase : Any ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return wrapper
399
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file: try: UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = True elif task_name.startswith('''voc_''' ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = '''pascal-voc-id2label.json''' UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int: """simple docstring""" if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''mobilevitv2.''' UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
0
"""simple docstring""" class _UpperCAmelCase : '''simple docstring''' def __init__( self , A ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = val _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Optional[Any] = None def __lowerCAmelCase ( self , A ) -> Any: if self.val: if val < self.val: if self.left is None: _UpperCAmelCase : Dict = Node(a__ ) else: self.left.insert(a__ ) elif val > self.val: if self.right is None: _UpperCAmelCase : Optional[Any] = Node(a__ ) else: self.right.insert(a__ ) else: _UpperCAmelCase : str = val def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): if root: inorder(root.left , SCREAMING_SNAKE_CASE_ ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): if len(SCREAMING_SNAKE_CASE_ ) == 0: return arr _UpperCAmelCase : Optional[Any] = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): root.insert(arr[i] ) # Traverse BST in order. _UpperCAmelCase : Optional[int] = [] inorder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
506
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[list[int]]: lowercase__ = [] if len(SCREAMING_SNAKE_CASE_ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ = nums.pop(0 ) lowercase__ = permute(SCREAMING_SNAKE_CASE_ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE_ ) result.extend(SCREAMING_SNAKE_CASE_ ) nums.append(SCREAMING_SNAKE_CASE_ ) return result def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[int]: def backtrack(_SCREAMING_SNAKE_CASE ): if start == len(SCREAMING_SNAKE_CASE_ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ , lowercase__ = nums[i], nums[start] backtrack(start + 1 ) lowercase__ , lowercase__ = nums[i], nums[start] # backtrack lowercase__ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowercase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
235
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> Optional[int]: print("Loading config file..." ) def flatten_yaml_as_dict(lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[int]="" , lowerCAmelCase: Dict="." ): _UpperCAmelCase : Union[str, Any] = [] for k, v in d.items(): _UpperCAmelCase : List[str] = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : int = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , "r" ) as yaml_file: try: _UpperCAmelCase : str = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) _UpperCAmelCase : Tuple = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Optional[int] ) -> int: _UpperCAmelCase : Dict = MobileViTVaConfig() _UpperCAmelCase : Dict = False # dataset if task_name.startswith("imagenet1k_" ): _UpperCAmelCase : Union[str, Any] = 1000 if int(task_name.strip().split("_" )[-1] ) == 384: _UpperCAmelCase : List[str] = 384 else: _UpperCAmelCase : Any = 256 _UpperCAmelCase : int = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): _UpperCAmelCase : Any = 2_1000 if int(task_name.strip().split("_" )[-1] ) == 384: _UpperCAmelCase : Optional[Any] = 384 else: _UpperCAmelCase : int = 256 _UpperCAmelCase : Tuple = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): _UpperCAmelCase : int = 151 _UpperCAmelCase : Dict = 512 _UpperCAmelCase : Optional[int] = "ade20k-id2label.json" _UpperCAmelCase : Optional[int] = True elif task_name.startswith("voc_" ): _UpperCAmelCase : Optional[int] = 21 _UpperCAmelCase : Optional[Any] = 512 _UpperCAmelCase : List[str] = "pascal-voc-id2label.json" _UpperCAmelCase : int = True # orig_config _UpperCAmelCase : List[str] = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , "model.classification.name" , -1 ) == "mobilevit_v2", "Invalid model" _UpperCAmelCase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE_ , "model.classification.mitv2.width_multiplier" , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , "model.classification.mitv2.attn_norm_layer" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _UpperCAmelCase : int = getattr(SCREAMING_SNAKE_CASE_ , "model.classification.activation.name" , "swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _UpperCAmelCase : Dict = getattr(SCREAMING_SNAKE_CASE_ , "model.segmentation.output_stride" , 16 ) if "_deeplabv3" in task_name: _UpperCAmelCase : List[str] = getattr(SCREAMING_SNAKE_CASE_ , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36] ) _UpperCAmelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE_ , "model.segmentation.deeplabv3.aspp_out_channels" , 512 ) _UpperCAmelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_ , "model.segmentation.deeplabv3.aspp_dropout" , 0.1 ) # id2label _UpperCAmelCase : int = "huggingface/label-files" _UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Any = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _UpperCAmelCase : str = idalabel _UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: int , lowerCAmelCase: List[str] ) -> str: _UpperCAmelCase : Union[str, Any] = dct.pop(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Dict = val def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: str=False ) -> int: if base_model: _UpperCAmelCase : Union[str, Any] = "" else: _UpperCAmelCase : Optional[int] = "mobilevitv2." _UpperCAmelCase : Any = [] for k in state_dict.keys(): if k[:8] == "encoder.": _UpperCAmelCase : Union[str, Any] = k[8:] else: _UpperCAmelCase : Optional[Any] = k if ".block." in k: _UpperCAmelCase : List[Any] = k_new.replace(".block." , "." ) if ".conv." in k: _UpperCAmelCase : Dict = k_new.replace(".conv." , ".convolution." ) if ".norm." in k: _UpperCAmelCase : Dict = k_new.replace(".norm." , ".normalization." ) if "conv_1." in k: _UpperCAmelCase : Optional[Any] = k_new.replace("conv_1." , F'{model_prefix}conv_stem.' ) for i in [1, 2]: if F'layer_{i}.' in k: _UpperCAmelCase : int = k_new.replace(F'layer_{i}.' , F'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: _UpperCAmelCase : int = k_new.replace(".exp_1x1." , ".expand_1x1." ) if ".red_1x1." in k: _UpperCAmelCase : Tuple = k_new.replace(".red_1x1." , ".reduce_1x1." ) for i in [3, 4, 5]: if F'layer_{i}.0.' in k: _UpperCAmelCase : Union[str, Any] = k_new.replace(F'layer_{i}.0.' , F'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if F'layer_{i}.1.local_rep.0.' in k: _UpperCAmelCase : int = k_new.replace(F'layer_{i}.1.local_rep.0.' , F'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if F'layer_{i}.1.local_rep.1.' in k: _UpperCAmelCase : Any = k_new.replace(F'layer_{i}.1.local_rep.1.' , F'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: _UpperCAmelCase : Union[str, Any] = [0, 1] elif i == 4: _UpperCAmelCase : Any = [0, 1, 2, 3] elif i == 5: _UpperCAmelCase : List[Any] = [0, 1, 2] for j in j_in: if F'layer_{i}.1.global_rep.{j}.' in k: _UpperCAmelCase : Dict = k_new.replace( F'layer_{i}.1.global_rep.{j}.' , F'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if F'layer_{i}.1.global_rep.{j+1}.' in k: _UpperCAmelCase : Any = k_new.replace( F'layer_{i}.1.global_rep.{j+1}.' , F'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if F'layer_{i}.1.conv_proj.' in k: _UpperCAmelCase : Dict = k_new.replace(F'layer_{i}.1.conv_proj.' , F'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: _UpperCAmelCase : Union[str, Any] = k_new.replace("pre_norm_attn.0." , "layernorm_before." ) if "pre_norm_attn.1." in k: _UpperCAmelCase : Optional[Any] = k_new.replace("pre_norm_attn.1." , "attention." ) if "pre_norm_ffn.0." in k: _UpperCAmelCase : Union[str, Any] = k_new.replace("pre_norm_ffn.0." , "layernorm_after." ) if "pre_norm_ffn.1." in k: _UpperCAmelCase : Optional[int] = k_new.replace("pre_norm_ffn.1." , "ffn.conv1." ) if "pre_norm_ffn.3." in k: _UpperCAmelCase : Tuple = k_new.replace("pre_norm_ffn.3." , "ffn.conv2." ) if "classifier.1." in k: _UpperCAmelCase : Any = k_new.replace("classifier.1." , "classifier." ) if "seg_head." in k: _UpperCAmelCase : List[str] = k_new.replace("seg_head." , "segmentation_head." ) if ".aspp_layer." in k: _UpperCAmelCase : List[str] = k_new.replace(".aspp_layer." , "." ) if ".aspp_pool." in k: _UpperCAmelCase : List[Any] = k_new.replace(".aspp_pool." , "." ) rename_keys.append((k, k_new) ) return rename_keys def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> int: _UpperCAmelCase : str = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: _UpperCAmelCase : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _UpperCAmelCase : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: List[str] , lowerCAmelCase: str , lowerCAmelCase: Optional[Any] ) -> Tuple: _UpperCAmelCase : str = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict _UpperCAmelCase : List[str] = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): _UpperCAmelCase : Any = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() _UpperCAmelCase : Optional[int] = False else: _UpperCAmelCase : Optional[Any] = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() _UpperCAmelCase : Dict = False # remove and rename some keys of load the original model _UpperCAmelCase : List[str] = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[Any] = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _UpperCAmelCase : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _UpperCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _UpperCAmelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith("imagenet" ): _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase : Optional[int] = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant _UpperCAmelCase : str = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
300
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def __snake_case ( __A : int = 1000000 , __A : int = 10 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = defaultdict(SCREAMING_SNAKE_CASE_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: SCREAMING_SNAKE_CASE : List[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: SCREAMING_SNAKE_CASE : Tuple = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'''{solution() = }''')
265
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 4 ) -> list[list[int]]: lowerCamelCase__ : List[Any] = abs(SCREAMING_SNAKE_CASE_ ) or 4 return [[1 + x + y * row_size for x in range(SCREAMING_SNAKE_CASE_ )] for y in range(SCREAMING_SNAKE_CASE_ )] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: return reverse_row(transpose(SCREAMING_SNAKE_CASE_ ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: return reverse_row(reverse_column(SCREAMING_SNAKE_CASE_ ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: return reverse_column(transpose(SCREAMING_SNAKE_CASE_ ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : List[Any] = [list(SCREAMING_SNAKE_CASE_ ) for x in zip(*SCREAMING_SNAKE_CASE_ )] return matrix def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : int = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : int = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: for i in matrix: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _UpperCAmelCase : str = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) _UpperCAmelCase : List[str] = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) _UpperCAmelCase : Union[str, Any] = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
295
'''simple docstring''' from math import factorial def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int: """simple docstring""" return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
51
0
"""simple docstring""" import argparse import json from tqdm import tqdm def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=SCREAMING_SNAKE_CASE_ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=SCREAMING_SNAKE_CASE_ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=SCREAMING_SNAKE_CASE_ , help="""where to store parsed gold_data_path file""" , ) lowerCAmelCase__ = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: lowerCAmelCase__ = json.load(SCREAMING_SNAKE_CASE_ ) for dpr_record in tqdm(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ = dpr_record["""question"""] lowerCAmelCase__ = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(SCREAMING_SNAKE_CASE_ ) + """\n""" ) if __name__ == "__main__": main()
644
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class A__ ( UpperCAmelCase_ ): lowerCamelCase__ : Optional[Any] =field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase__ : str =Features({"image": Image()} ) lowerCamelCase__ : Union[str, Any] =Features({"labels": ClassLabel} ) lowerCamelCase__ : str ="image" lowerCamelCase__ : int ="labels" def lowercase ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , a__ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) __magic_name__ : str = copy.deepcopy(self ) __magic_name__ : Dict = self.label_schema.copy() __magic_name__ : Union[str, Any] = features[self.label_column] __magic_name__ : Optional[Any] = label_schema return task_template @property def lowercase ( self ) -> str: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
154
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
342
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = 4_2 class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : List[Any] , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase_ : Tuple[int] = (64,) , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "silu" , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : float = 0.18_215 , UpperCAmelCase_ : str = "group" , ): super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE : int = Encoder( in_channels=a__ , out_channels=a__ , down_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , act_fn=a__ , norm_num_groups=a__ , double_z=a__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE : List[str] = nn.Convad(a__ , a__ , 1 ) SCREAMING_SNAKE_CASE : List[str] = VectorQuantizer(a__ , a__ , beta=0.25 , remap=a__ , sane_index_shape=a__ ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Convad(a__ , a__ , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE : List[Any] = Decoder( in_channels=a__ , out_channels=a__ , up_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , act_fn=a__ , norm_num_groups=a__ , norm_type=a__ , ) @apply_forward_hook def _A ( self : Tuple , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True ): SCREAMING_SNAKE_CASE : int = self.encoder(a__ ) SCREAMING_SNAKE_CASE : Dict = self.quant_conv(a__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=a__ ) @apply_forward_hook def _A ( self : str , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True ): # also go through quantization layer if not force_not_quantize: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.quantize(a__ ) else: SCREAMING_SNAKE_CASE : int = h SCREAMING_SNAKE_CASE : List[str] = self.post_quant_conv(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.decoder(a__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) def _A ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True ): SCREAMING_SNAKE_CASE : List[Any] = sample SCREAMING_SNAKE_CASE : Optional[Any] = self.encode(a__ ).latents SCREAMING_SNAKE_CASE : Optional[int] = self.decode(a__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=a__ )
62
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =XGLMTokenizer _lowerCamelCase =XGLMTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(a__ ) , 1008 ) def __snake_case ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __snake_case ( self : Optional[Any] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ ) UpperCAmelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def __snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : int ): UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : Any ): # fmt: off UpperCAmelCase = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
51
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __lowercase (UpperCAmelCase_ ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : Dict = batch_size SCREAMING_SNAKE_CASE_ : int = seq_length SCREAMING_SNAKE_CASE_ : int = is_training SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = num_labels SCREAMING_SNAKE_CASE_ : Any = num_choices SCREAMING_SNAKE_CASE_ : Optional[Any] = scope def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = DistilBertModel(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(a__ , a__ ) SCREAMING_SNAKE_CASE_ : Any = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = DistilBertForMaskedLM(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = DistilBertForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( a__ , attention_mask=a__ , start_positions=a__ , end_positions=a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : List[Any] = DistilBertForSequenceClassification(a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = DistilBertForTokenClassification(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.num_choices SCREAMING_SNAKE_CASE_ : Any = DistilBertForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[int] = model( a__ , attention_mask=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : int = config_and_inputs SCREAMING_SNAKE_CASE_ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _UpperCAmelCase = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ConfigTester(self , config_class=a__ , dim=3_7 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Any = DistilBertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(config=a__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self._prepare_for_class(a__ , a__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.jit.trace( a__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a__ , os.path.join(a__ , 'traced_model.pt' ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.jit.load(os.path.join(a__ , 'traced_model.pt' ) , map_location=a__ ) loaded(inputs_dict['input_ids'].to(a__ ) , inputs_dict['attention_mask'].to(a__ ) ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = DistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : int = model(a__ , attention_mask=a__ )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a__ , atol=1E-4 ) )
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : int ): __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = SamImageProcessor() __UpperCamelCase = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : str , **__A : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def _lowerCamelCase ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : Any ): __UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) __UpperCamelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = SamProcessor(image_processor=a__ ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(a__ , return_tensors='np' ) __UpperCamelCase = processor(images=a__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = SamProcessor(image_processor=a__ ) __UpperCamelCase = [torch.ones((1, 3, 5, 5) )] __UpperCamelCase = [[1_7_6_4, 2_6_4_6]] __UpperCamelCase = [[6_8_3, 1_0_2_4]] __UpperCamelCase = processor.post_process_masks(a__ , a__ , a__ ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __UpperCamelCase = processor.post_process_masks( a__ , torch.tensor(a__ ) , torch.tensor(a__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np __UpperCamelCase = [np.ones((1, 3, 5, 5) )] __UpperCamelCase = processor.post_process_masks(a__ , np.array(a__ ) , np.array(a__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __UpperCamelCase = [[1, 0], [0, 1]] with self.assertRaises(a__ ): __UpperCamelCase = processor.post_process_masks(a__ , np.array(a__ ) , np.array(a__ ) ) @require_vision @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = SamImageProcessor() __UpperCamelCase = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : Optional[int] , **__A : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def _lowerCamelCase ( self : int ): shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : int ): __UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self : str ): __UpperCamelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) __UpperCamelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = SamProcessor(image_processor=a__ ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(a__ , return_tensors='np' ) __UpperCamelCase = processor(images=a__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = SamProcessor(image_processor=a__ ) __UpperCamelCase = [tf.ones((1, 3, 5, 5) )] __UpperCamelCase = [[1_7_6_4, 2_6_4_6]] __UpperCamelCase = [[6_8_3, 1_0_2_4]] __UpperCamelCase = processor.post_process_masks(a__ , a__ , a__ , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __UpperCamelCase = processor.post_process_masks( a__ , tf.convert_to_tensor(a__ ) , tf.convert_to_tensor(a__ ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np __UpperCamelCase = [np.ones((1, 3, 5, 5) )] __UpperCamelCase = processor.post_process_masks( a__ , np.array(a__ ) , np.array(a__ ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __UpperCamelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __UpperCamelCase = processor.post_process_masks( a__ , np.array(a__ ) , np.array(a__ ) , return_tensors='tf' ) @require_vision @require_torchvision class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = SamImageProcessor() __UpperCamelCase = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : Union[str, Any] , **__A : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def _lowerCamelCase ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = SamProcessor(image_processor=a__ ) __UpperCamelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __UpperCamelCase = [tf.convert_to_tensor(a__ )] __UpperCamelCase = [torch.tensor(a__ )] __UpperCamelCase = [[1_7_6_4, 2_6_4_6]] __UpperCamelCase = [[6_8_3, 1_0_2_4]] __UpperCamelCase = processor.post_process_masks( a__ , a__ , a__ , return_tensors='tf' ) __UpperCamelCase = processor.post_process_masks( a__ , a__ , a__ , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = SamProcessor(image_processor=a__ ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(a__ , return_tensors='pt' )['pixel_values'].numpy() __UpperCamelCase = processor(images=a__ , return_tensors='pt' )['pixel_values'].numpy() __UpperCamelCase = image_processor(a__ , return_tensors='tf' )['pixel_values'].numpy() __UpperCamelCase = processor(images=a__ , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(a__ , a__ ) ) self.assertTrue(np.allclose(a__ , a__ ) ) self.assertTrue(np.allclose(a__ , a__ ) )
399
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a__ : List[Any] = logging.get_logger(__name__) a__ : int = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off a__ : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a__ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="whisper" _lowerCamelCase =["past_key_values"] _lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ): UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @property def __snake_case ( self : List[str] ): UpperCAmelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ): UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) UpperCAmelCase = encoder_inputs['''input_features'''].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) UpperCAmelCase = encoder_inputs.pop('''input_features''' ) UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __snake_case ( self : Dict ): return 1e-3
51
0
"""simple docstring""" from math import loga def lowerCamelCase_ (UpperCamelCase__ : int ): if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
506
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =LEDConfig _lowerCamelCase ={} _lowerCamelCase ="gelu" def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ ) UpperCAmelCase = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ): UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(a__ , attention_mask=a__ )[0] UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1e-3 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ ) def __snake_case ( self : int ): self.config_tester.run_common_tests() def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a__ : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a__ : int ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __snake_case ( self : Any ): pass def __snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) a__ : int = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 ) def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
51
0
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE_ ) ) == len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
235
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> YolosConfig: _UpperCAmelCase : Optional[int] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _UpperCAmelCase : Dict = 192 _UpperCAmelCase : Tuple = 768 _UpperCAmelCase : Any = 12 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Any = [800, 1333] _UpperCAmelCase : Union[str, Any] = False elif yolos_name == "yolos_s_dWr": _UpperCAmelCase : int = 330 _UpperCAmelCase : Any = 14 _UpperCAmelCase : List[str] = 6 _UpperCAmelCase : Optional[int] = 1320 elif "yolos_s" in yolos_name: _UpperCAmelCase : str = 384 _UpperCAmelCase : Optional[Any] = 1536 _UpperCAmelCase : List[Any] = 12 _UpperCAmelCase : Optional[int] = 6 elif "yolos_b" in yolos_name: _UpperCAmelCase : Union[str, Any] = [800, 1344] _UpperCAmelCase : Optional[Any] = 91 _UpperCAmelCase : Any = "huggingface/label-files" _UpperCAmelCase : Optional[int] = "coco-detection-id2label.json" _UpperCAmelCase : Dict = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Union[str, Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Dict = idalabel _UpperCAmelCase : str = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: dict , lowerCAmelCase: YolosConfig , lowerCAmelCase: bool = False ) -> str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : Union[str, Any] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _UpperCAmelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : List[Any] = in_proj_weight[-config.hidden_size :, :] _UpperCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> str: if "backbone" in name: _UpperCAmelCase : List[str] = name.replace("backbone" , "vit" ) if "cls_token" in name: _UpperCAmelCase : Any = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: _UpperCAmelCase : Tuple = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: _UpperCAmelCase : Optional[Any] = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: _UpperCAmelCase : List[str] = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _UpperCAmelCase : Optional[Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: _UpperCAmelCase : List[Any] = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: _UpperCAmelCase : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _UpperCAmelCase : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: _UpperCAmelCase : List[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : Dict = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _UpperCAmelCase : int = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : str = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: _UpperCAmelCase : str = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: _UpperCAmelCase : Optional[Any] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: _UpperCAmelCase : List[str] = name.replace("vit.norm" , "vit.layernorm" ) return name def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: dict , lowerCAmelCase: YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): _UpperCAmelCase : Any = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: _UpperCAmelCase : Dict = key.split("." ) _UpperCAmelCase : List[Any] = int(key_split[2] ) _UpperCAmelCase : List[str] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _UpperCAmelCase : Optional[int] = val[:dim, :] _UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] _UpperCAmelCase : List[Any] = val[-dim:, :] else: _UpperCAmelCase : Any = val[:dim] _UpperCAmelCase : Tuple = val[dim : dim * 2] _UpperCAmelCase : List[Any] = val[-dim:] else: _UpperCAmelCase : Optional[int] = val return orig_state_dict def __SCREAMING_SNAKE_CASE ( ) -> torch.Tensor: _UpperCAmelCase : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: bool = False ) -> str: _UpperCAmelCase : Tuple = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict _UpperCAmelCase : str = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model"] # load 🤗 model _UpperCAmelCase : Union[str, Any] = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase : int = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor _UpperCAmelCase : str = 800 if yolos_name != "yolos_ti" else 512 _UpperCAmelCase : Optional[Any] = YolosImageProcessor(format="coco_detection" , size=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _UpperCAmelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase , _UpperCAmelCase : List[str] = outputs.logits, outputs.pred_boxes _UpperCAmelCase , _UpperCAmelCase : str = None, None if yolos_name == "yolos_ti": _UpperCAmelCase : Tuple = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) _UpperCAmelCase : List[Any] = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": _UpperCAmelCase : Optional[Any] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) _UpperCAmelCase : str = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": _UpperCAmelCase : Dict = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) _UpperCAmelCase : int = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": _UpperCAmelCase : Optional[Any] = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) _UpperCAmelCase : Any = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": _UpperCAmelCase : int = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) _UpperCAmelCase : Optional[int] = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: _UpperCAmelCase : Dict = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) _UpperCAmelCase : Optional[int] = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="hustvl" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="hustvl" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
300
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
0
"""simple docstring""" import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __snake_case ( __A : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = botoa.client('iam' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=SCREAMING_SNAKE_CASE_ , AssumeRolePolicyDocument=json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 ) ) SCREAMING_SNAKE_CASE : Optional[Any] = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=SCREAMING_SNAKE_CASE_ , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def __snake_case ( __A : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = botoa.client('iam' ) return iam_client.get_role(RoleName=SCREAMING_SNAKE_CASE_ )["Role"]["Arn"] def __snake_case ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE : List[Any] = None if credentials_configuration == 0: SCREAMING_SNAKE_CASE : Optional[Any] = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) SCREAMING_SNAKE_CASE : Any = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) SCREAMING_SNAKE_CASE : List[Any] = _ask_field('AWS Access Key ID: ' ) SCREAMING_SNAKE_CASE : Any = aws_access_key_id SCREAMING_SNAKE_CASE : Optional[Any] = _ask_field('AWS Secret Access Key: ' ) SCREAMING_SNAKE_CASE : List[Any] = aws_secret_access_key SCREAMING_SNAKE_CASE : str = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) SCREAMING_SNAKE_CASE : Dict = aws_region SCREAMING_SNAKE_CASE : List[str] = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , SCREAMING_SNAKE_CASE_ , ) if role_management == 0: SCREAMING_SNAKE_CASE : str = _ask_field('Enter your IAM role name: ' ) else: SCREAMING_SNAKE_CASE : Tuple = 'accelerate_sagemaker_execution_role' print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Optional[int] = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) SCREAMING_SNAKE_CASE : Dict = None if is_custom_docker_image: SCREAMING_SNAKE_CASE : Optional[Any] = _ask_field('Enter your Docker image: ' , lambda __A : str(SCREAMING_SNAKE_CASE_ ).lower() ) SCREAMING_SNAKE_CASE : Dict = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) SCREAMING_SNAKE_CASE : int = None if is_sagemaker_inputs_enabled: SCREAMING_SNAKE_CASE : Optional[Any] = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda __A : str(SCREAMING_SNAKE_CASE_ ).lower() , ) SCREAMING_SNAKE_CASE : Any = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) SCREAMING_SNAKE_CASE : Tuple = None if is_sagemaker_metrics_enabled: SCREAMING_SNAKE_CASE : int = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda __A : str(SCREAMING_SNAKE_CASE_ ).lower() , ) SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : int = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) if use_dynamo: SCREAMING_SNAKE_CASE : Dict = 'dynamo_' SCREAMING_SNAKE_CASE : List[Any] = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) if use_custom_options: SCREAMING_SNAKE_CASE : Optional[Any] = _ask_options( 'Which mode do you want to use?' , SCREAMING_SNAKE_CASE_ , lambda __A : TORCH_DYNAMO_MODES[int(SCREAMING_SNAKE_CASE_ )] , default='default' , ) SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) SCREAMING_SNAKE_CASE : Optional[Any] = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=SCREAMING_SNAKE_CASE_ , error_message='Please enter yes or no.' , ) SCREAMING_SNAKE_CASE : str = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: SCREAMING_SNAKE_CASE : Tuple = _ask_options( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lambda __A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(SCREAMING_SNAKE_CASE_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field(SCREAMING_SNAKE_CASE_ , lambda __A : str(SCREAMING_SNAKE_CASE_ ).lower() , default='ml.p3.2xlarge' ) SCREAMING_SNAKE_CASE : str = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): SCREAMING_SNAKE_CASE : Tuple = _ask_field( 'How many machines do you want use? [1]: ' , SCREAMING_SNAKE_CASE_ , default=1 , ) SCREAMING_SNAKE_CASE : Dict = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=SCREAMING_SNAKE_CASE_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=SCREAMING_SNAKE_CASE_ , use_cpu=SCREAMING_SNAKE_CASE_ , dynamo_config=SCREAMING_SNAKE_CASE_ , eca_instance_type=SCREAMING_SNAKE_CASE_ , profile=SCREAMING_SNAKE_CASE_ , region=SCREAMING_SNAKE_CASE_ , iam_role_name=SCREAMING_SNAKE_CASE_ , mixed_precision=SCREAMING_SNAKE_CASE_ , num_machines=SCREAMING_SNAKE_CASE_ , sagemaker_inputs_file=SCREAMING_SNAKE_CASE_ , sagemaker_metrics_file=SCREAMING_SNAKE_CASE_ , )
265
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
51
0
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : str ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Tuple = TFAutoModel.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Tuple = AutoModel.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def A_ ( self : Optional[Any] ) -> Dict: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCamelCase__ : List[Any] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : List[Any] = TFAutoModelForPreTraining.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Any = AutoModelForPreTraining.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def A_ ( self : Dict ) -> List[Any]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Dict = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(a__ , from_pt=a__ ) lowerCamelCase__ , lowerCamelCase__ : str = TFAutoModelForCausalLM.from_pretrained( a__ , output_loading_info=a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(a__ , from_tf=a__ ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = AutoModelForCausalLM.from_pretrained( a__ , output_loading_info=a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def A_ ( self : Any ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[Any] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Optional[int] = TFAutoModelWithLMHead.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def A_ ( self : Optional[int] ) -> str: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(a__ , from_pt=a__ ) lowerCamelCase__ , lowerCamelCase__ : Tuple = TFAutoModelForMaskedLM.from_pretrained( a__ , output_loading_info=a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Optional[Any] = AutoModelForMaskedLM.from_pretrained(a__ , from_tf=a__ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = AutoModelForMaskedLM.from_pretrained( a__ , output_loading_info=a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def A_ ( self : List[str] ) -> Any: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Dict = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a__ , from_pt=a__ ) lowerCamelCase__ , lowerCamelCase__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( a__ , output_loading_info=a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : str = AutoModelForSeqaSeqLM.from_pretrained(a__ , from_tf=a__ ) lowerCamelCase__ , lowerCamelCase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained( a__ , output_loading_info=a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def A_ ( self : Tuple ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCamelCase__ : str = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : int = AutoModelForSequenceClassification.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def A_ ( self : List[Any] ) -> List[str]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) lowerCamelCase__ : List[Any] = AutoModelForQuestionAnswering.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) def A_ ( self : List[Any] ) -> int: lowerCamelCase__ : Tuple = TFAutoModelWithLMHead.from_pretrained(a__ , from_pt=a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 14410 ) lowerCamelCase__ : int = AutoModelWithLMHead.from_pretrained(a__ , from_tf=a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 14410 ) def A_ ( self : Tuple ) -> str: lowerCamelCase__ : Any = TFAutoModelWithLMHead.from_pretrained(a__ , from_pt=a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 14410 ) lowerCamelCase__ : List[Any] = AutoModelWithLMHead.from_pretrained(a__ , from_tf=a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 14410 )
295
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
51
0
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a_ : def __init__( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Tuple=13 , snake_case__ : Optional[int]=10 , snake_case__ : Any=3 , snake_case__ : Tuple=2 , snake_case__ : Tuple=2 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=True , snake_case__ : Dict=True , snake_case__ : int=32 , snake_case__ : List[str]=5 , snake_case__ : Union[str, Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : Tuple="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Tuple=10 , snake_case__ : Dict=0.02 , snake_case__ : Dict=0.9 , snake_case__ : int=None , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = patch_size lowerCAmelCase__ = tubelet_size lowerCAmelCase__ = num_frames lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = mask_ratio lowerCAmelCase__ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCAmelCase__ = int(mask_ratio * self.seq_length ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Any ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Dict ): lowerCAmelCase__ = VideoMAEModel(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : int ): lowerCAmelCase__ = VideoMAEForPreTraining(a__ ) model.to(a__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCAmelCase__ = torch.ones((self.num_masks,) ) lowerCAmelCase__ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCAmelCase__ = mask.expand(self.batch_size , -1 ).bool() lowerCAmelCase__ = model(a__ , a__ ) # model only returns predictions for masked patches lowerCAmelCase__ = mask.sum().item() lowerCAmelCase__ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) UpperCamelCase_ : Tuple = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) UpperCamelCase_ : int = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Any = False UpperCamelCase_ : Dict = False def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = VideoMAEModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : int=False ): lowerCAmelCase__ = copy.deepcopy(a__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCAmelCase__ = torch.ones((self.model_tester.num_masks,) ) lowerCAmelCase__ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCAmelCase__ = mask.expand(self.model_tester.batch_size , -1 ).bool() lowerCAmelCase__ = bool_masked_pos.to(a__ ) if return_labels: if model_class in [ *get_values(a__ ), ]: lowerCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(a__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) @slow def _SCREAMING_SNAKE_CASE ( self : int ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = VideoMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): if not self.has_attentions: pass else: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: lowerCAmelCase__ = self.model_tester.seq_length - self.model_tester.num_masks lowerCAmelCase__ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a__ , a__ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a__ , a__ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase__ = len(a__ ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + 1 , len(a__ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _SCREAMING_SNAKE_CASE ( self : int ): def check_hidden_states_output(snake_case__ : int , snake_case__ : str , snake_case__ : Dict ): lowerCAmelCase__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a__ , a__ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a__ ) , a__ ) lowerCAmelCase__ = self.model_tester.seq_length - self.model_tester.num_masks lowerCAmelCase__ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(a__ , a__ , a__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): pass def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) lowerCAmelCase__ = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( a__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_video() lowerCAmelCase__ = image_processor(a__ , return_tensors="""pt""" ).to(a__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**a__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , a__ ) lowerCAmelCase__ = torch.tensor([0.3669, -0.0688, -0.2421] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(a__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_video() lowerCAmelCase__ = image_processor(a__ , return_tensors="""pt""" ).to(a__ ) # add boolean mask, indicating which patches to mask lowerCAmelCase__ = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) lowerCAmelCase__ = torch.load(a__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**a__ ) # verify the logits lowerCAmelCase__ = torch.Size([1, 1408, 1536] ) lowerCAmelCase__ = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=a__ ) self.assertEqual(outputs.logits.shape , a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCAmelCase__ = torch.tensor([0.5142] , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCAmelCase__ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=a__ ).to( a__ ) with torch.no_grad(): lowerCAmelCase__ = model(**a__ ) lowerCAmelCase__ = torch.tensor(torch.tensor([0.6469] ) , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1E-4 ) )
644
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
0
from collections import defaultdict class A__ : def __init__( self , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" __magic_name__ : str = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __magic_name__ : Tuple = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(a__ ) ) ] __magic_name__ : str = defaultdict(a__ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __magic_name__ : Dict = (1 << len(a__ )) - 1 def lowercase ( self , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __magic_name__ : int = self.count_ways_until(a__ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __magic_name__ : int = total_ways_util return self.dp[mask][task_no] def lowercase ( self , lowerCamelCase ) -> Dict: """simple docstring""" for i in range(len(a__ ) ): for j in task_performed[i]: self.task[j].append(a__ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowercase_ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowercase_ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
154
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ ) def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(a__ ) if do_resize: UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: UpperCAmelCase = self.center_crop(a__ , size=a__ ) if do_rescale: UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ ) UpperCAmelCase = to_channel_dimension_format(a__ , a__ ) return image def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(a__ ) UpperCAmelCase = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=a__ , tensor_type=a__ )
51
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
342
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ): super(a__ , self ).__init__() UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ ) UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 ) UpperCAmelCase = torch.nn.Softmax(dim=1 ) def __snake_case ( self : List[Any] , **a__ : Tuple ): return self.bert(**a__ ).last_hidden_state def __snake_case ( self : int , a__ : List[str] ): return token_embeddings.sum(2 , keepdim=a__ ) def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ): return self.softmax(T * self.cos(a__ , a__ ) ) def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ): UpperCAmelCase = W_supports['''sizes'''].tolist() UpperCAmelCase = W_supports['''start_token_id'''].item() UpperCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = W_supports['''input_ids'''] == start_token_id UpperCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(a__ ): if i == 0: UpperCAmelCase = 0 else: UpperCAmelCase = support_sizes[i - 1] UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase = torch.vstack((p_starts, p_start) ) UpperCAmelCase = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase = p_start UpperCAmelCase = p_end return p_starts, p_ends
51
0
from __future__ import annotations snake_case = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : dict[str, list[str]] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : str = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Optional[int] = source_vertex def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[Any] = {self.source_vertex} SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : str = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE : Dict = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) SCREAMING_SNAKE_CASE : Tuple = vertex queue.append(a__ ) def _A ( self : Any , UpperCAmelCase_ : str ): if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE : Union[str, Any] = self.parent.get(a__ ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE : int = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f'''->{target_vertex}''' if __name__ == "__main__": snake_case = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
62
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =(EulerDiscreteScheduler,) _lowerCamelCase =10 def __snake_case ( self : str , **a__ : Tuple ): UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def __snake_case ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __snake_case ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def __snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
51
0
def a__ ( A__, A__, A__, A__=None ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = True, True SCREAMING_SNAKE_CASE_ : Union[str, Any] = dfs(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return path def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : str = -1 for i in range(SCREAMING_SNAKE_CASE_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Any = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = check_circuit_or_path(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 if check == 2: SCREAMING_SNAKE_CASE_ : List[str] = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dfs(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) def a__ ( ): SCREAMING_SNAKE_CASE_ : Tuple = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE_ : Optional[Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE_ : int = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE_ : int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE_ : Dict = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE_ : str = 1_0 check_euler(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
101
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( metadata={"help": "The csv file to plot."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowerCamelCase =list_field( default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : Optional[int] ): UpperCAmelCase = args UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCAmelCase = csv.DictReader(a__ ) for row in reader: UpperCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCAmelCase = float(row['''result'''] ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = plt.subplots() UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCAmelCase = self.result_dict[model_name]['''result'''] ((UpperCAmelCase), (UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , ) else: UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase), (UpperCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )] plt.scatter( a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a__ , a__ , '''--''' ) title_str += f" {label_model_name} vs." UpperCAmelCase = title_str[:-4] UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(a__ ) plt.xlabel(a__ ) plt.ylabel(a__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
51
0
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase__ ( __lowercase : Any ) -> int: """simple docstring""" __UpperCamelCase = args.pruning_method __UpperCamelCase = args.threshold __UpperCamelCase = args.model_name_or_path.rstrip('/' ) __UpperCamelCase = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) __UpperCamelCase = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , 'pytorch_model.bin' ) ) __UpperCamelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __UpperCamelCase = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __UpperCamelCase = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: __UpperCamelCase = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __UpperCamelCase = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __UpperCamelCase = name[:-6] __UpperCamelCase = model[F'''{prefix_}mask_scores'''] __UpperCamelCase = TopKBinarizer.apply(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __UpperCamelCase = name[:-6] __UpperCamelCase = model[F'''{prefix_}mask_scores'''] __UpperCamelCase = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __UpperCamelCase = name[:-6] __UpperCamelCase = model[F'''{prefix_}mask_scores'''] __UpperCamelCase , __UpperCamelCase = -0.1, 1.1 __UpperCamelCase = torch.sigmoid(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = s * (r - l) + l __UpperCamelCase = s_bar.clamp(min=0.0 , max=1.0 ) __UpperCamelCase = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: __UpperCamelCase = os.path.join( os.path.dirname(SCREAMING_SNAKE_CASE_ ) , F'''bertarized_{os.path.basename(SCREAMING_SNAKE_CASE_ )}''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): shutil.copytree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": a__ : List[str] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) a__ : List[Any] =parser.parse_args() main(args)
399
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file: try: UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = True elif task_name.startswith('''voc_''' ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = '''pascal-voc-id2label.json''' UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int: """simple docstring""" if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''mobilevitv2.''' UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCamelCase_ (): _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=SCREAMING_SNAKE_CASE_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=SCREAMING_SNAKE_CASE_ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=SCREAMING_SNAKE_CASE_ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=SCREAMING_SNAKE_CASE_ , default=0 , help='''cuda_id.''' , ) _UpperCAmelCase : str = parser.parse_args() return args def lowerCamelCase_ (UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict ): if not len(SCREAMING_SNAKE_CASE_ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = imgs[0].size _UpperCAmelCase : int = Image.new('''RGB''' , size=(cols * w, rows * h) ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = grid.size for i, img in enumerate(SCREAMING_SNAKE_CASE_ ): grid.paste(SCREAMING_SNAKE_CASE_ , box=(i % cols * w, i // cols * h) ) return grid def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]="robotic cat with wings" , UpperCamelCase__ : int=7.5 , UpperCamelCase__ : Optional[int]=50 , UpperCamelCase__ : int=1 , UpperCamelCase__ : Tuple=42 , ): _UpperCAmelCase : List[str] = torch.Generator(pipeline.device ).manual_seed(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Tuple = pipeline( SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , ).images _UpperCAmelCase : Union[str, Any] = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase : str = image_grid(SCREAMING_SNAKE_CASE_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCAmelCase :Union[str, Any] = parse_args() # Load models and create wrapper for stable diffusion _lowerCAmelCase :List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') _lowerCAmelCase :str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') _lowerCAmelCase :Any = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') _lowerCAmelCase :int = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') _lowerCAmelCase :Union[str, Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCAmelCase :Tuple = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): _lowerCAmelCase :Optional[int] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: _lowerCAmelCase :Optional[int] = unet.to(torch.device('cuda', args.cuda_id)) _lowerCAmelCase :Dict = pipeline.to(unet.device) _lowerCAmelCase :Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) _lowerCAmelCase :Optional[Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
506
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE (UpperCAmelCase_ ): def __init__( self : Optional[int] , *a : List[Any] , a : Tuple=None , a : List[str]=None , **a : Any )-> Dict: """simple docstring""" super().__init__(*a__ , **a__ ) lowercase__ = eval_examples lowercase__ = post_process_function def SCREAMING_SNAKE_CASE_ ( self : Any , a : Any=None , a : Optional[Any]=None , a : Dict=None , a : str = "eval" )-> Optional[int]: """simple docstring""" lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(a__ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( a__ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(a__ , a__ , output.predictions ) lowercase__ = self.compute_metrics(a__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(a__ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(a__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , a__ ) return metrics def SCREAMING_SNAKE_CASE_ ( self : str , a : Optional[int] , a : List[Any] , a : List[str]=None , a : str = "test" )-> int: """simple docstring""" lowercase__ = self.get_test_dataloader(a__ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase__ = time.time() try: lowercase__ = eval_loop( a__ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(a__ , a__ , output.predictions , 'predict' ) lowercase__ = self.compute_metrics(a__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowercase__ = metrics.pop(a__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a__ )
235
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
0
SCREAMING_SNAKE_CASE_ = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' SCREAMING_SNAKE_CASE_ = [{'type': 'code', 'content': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
300
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCAmelCase__ : '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = 42 _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : int = None def __snake_case ( ) -> Node | None: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = Node(1 ) SCREAMING_SNAKE_CASE : Optional[Any] = Node(2 ) SCREAMING_SNAKE_CASE : Dict = Node(3 ) SCREAMING_SNAKE_CASE : str = Node(4 ) SCREAMING_SNAKE_CASE : Any = Node(5 ) return tree def __snake_case ( __A : Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __snake_case ( __A : Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __snake_case ( __A : Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __snake_case ( __A : Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __snake_case ( __A : Node | None ) -> Sequence[Node | None]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [] if root is None: return output SCREAMING_SNAKE_CASE : List[str] = deque([root] ) while process_queue: SCREAMING_SNAKE_CASE : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __snake_case ( __A : Node | None , __A : int ) -> Sequence[Node | None]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = [] def populate_output(__A : Node | None , __A : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def __snake_case ( __A : Node | None , __A : int ) -> Sequence[Node | None]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] def populate_output(__A : Node | None , __A : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def __snake_case ( __A : Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Dict = height(SCREAMING_SNAKE_CASE_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = 1 else: output.append(get_nodes_from_right_to_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 return output def __snake_case ( ) -> None: # Main function for testing. '''simple docstring''' SCREAMING_SNAKE_CASE : int = make_tree() print(F"""In-order Traversal: {inorder(SCREAMING_SNAKE_CASE_ )}""" ) print(F"""Pre-order Traversal: {preorder(SCREAMING_SNAKE_CASE_ )}""" ) print(F"""Post-order Traversal: {postorder(SCREAMING_SNAKE_CASE_ )}""" , '\n' ) print(F"""Height of Tree: {height(SCREAMING_SNAKE_CASE_ )}""" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(SCREAMING_SNAKE_CASE_ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(SCREAMING_SNAKE_CASE_ ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , level=SCREAMING_SNAKE_CASE_ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
265
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase ( UpperCAmelCase_, unittest.TestCase ): UpperCAmelCase__ = RoCBertTokenizer UpperCAmelCase__ = None UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = filter_non_english def A_ ( self : Any ) -> List[str]: super().setUp() lowerCamelCase__ : List[Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] lowerCamelCase__ : List[str] = {} lowerCamelCase__ : Optional[int] = {} for i, value in enumerate(a__ ): lowerCamelCase__ : List[str] = i lowerCamelCase__ : Any = i lowerCamelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) lowerCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(a__ , a__ , ensure_ascii=a__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(a__ , a__ , ensure_ascii=a__ ) def A_ ( self : List[Any] ) -> Any: lowerCamelCase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase__ : List[Any] = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(a__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(a__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(a__ ) , [5, 6, 2, 5, 7, 8] ) def A_ ( self : Optional[int] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def A_ ( self : Optional[int] ) -> Any: lowerCamelCase__ : List[str] = RoCBertBasicTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ : List[str] = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def A_ ( self : Optional[int] ) -> Tuple: lowerCamelCase__ : List[str] = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : Tuple ) -> List[str]: lowerCamelCase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : int ) -> Dict: lowerCamelCase__ : Any = RoCBertBasicTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Optional[Any] ) -> Union[str, Any]: lowerCamelCase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Optional[Any] ) -> Any: lowerCamelCase__ : str = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Optional[int] ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=a__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def A_ ( self : Optional[int] ) -> int: lowerCamelCase__ : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase__ : List[Any] = {} for i, token in enumerate(a__ ): lowerCamelCase__ : Any = i lowerCamelCase__ : List[Any] = RoCBertWordpieceTokenizer(vocab=a__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def A_ ( self : int ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def A_ ( self : Union[str, Any] ) -> Union[str, Any]: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def A_ ( self : Any ) -> str: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def A_ ( self : Optional[int] ) -> Dict: lowerCamelCase__ : List[str] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: lowerCamelCase__ : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(a__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def A_ ( self : int ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) lowerCamelCase__ : int = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase__ : Optional[int] = tokenizer_r.encode_plus( a__ , return_attention_mask=a__ , return_token_type_ids=a__ , return_offsets_mapping=a__ , add_special_tokens=a__ , ) lowerCamelCase__ : List[Any] = tokenizer_r.do_lower_case if hasattr(a__ , 'do_lower_case' ) else False lowerCamelCase__ : Any = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Dict = ['的', '人', '有'] lowerCamelCase__ : Union[str, Any] = ''.join(a__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase__ : Tuple = True lowerCamelCase__ : Dict = self.tokenizer_class.from_pretrained(a__ , **a__ ) lowerCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) lowerCamelCase__ : List[Any] = tokenizer_p.encode(a__ , add_special_tokens=a__ ) lowerCamelCase__ : Union[str, Any] = tokenizer_r.encode(a__ , add_special_tokens=a__ ) lowerCamelCase__ : Dict = tokenizer_r.convert_ids_to_tokens(a__ ) lowerCamelCase__ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(a__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) lowerCamelCase__ : Any = False lowerCamelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) lowerCamelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(a__ , **a__ ) lowerCamelCase__ : Union[str, Any] = tokenizer_r.encode(a__ , add_special_tokens=a__ ) lowerCamelCase__ : Optional[Any] = tokenizer_p.encode(a__ , add_special_tokens=a__ ) lowerCamelCase__ : List[str] = tokenizer_r.convert_ids_to_tokens(a__ ) lowerCamelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(a__ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase__ : Tuple = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(a__ ) ] self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) @slow def A_ ( self : str ) -> Any: lowerCamelCase__ : List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase__ : Tuple = tokenizer.encode('你好' , add_special_tokens=a__ ) lowerCamelCase__ : Union[str, Any] = tokenizer.encode('你是谁' , add_special_tokens=a__ ) lowerCamelCase__ : int = tokenizer.build_inputs_with_special_tokens(a__ ) lowerCamelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A_ ( self : str ) -> Any: lowerCamelCase__ : Tuple = self.get_tokenizers(do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase__ : int = '你好,你是谁' lowerCamelCase__ : Optional[int] = tokenizer.tokenize(a__ ) lowerCamelCase__ : Tuple = tokenizer.convert_tokens_to_ids(a__ ) lowerCamelCase__ : Any = tokenizer.convert_tokens_to_shape_ids(a__ ) lowerCamelCase__ : Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(a__ ) lowerCamelCase__ : Any = tokenizer.prepare_for_model( a__ , a__ , a__ , add_special_tokens=a__ ) lowerCamelCase__ : List[Any] = tokenizer.encode_plus(a__ , add_special_tokens=a__ ) self.assertEqual(a__ , a__ )
295
'''simple docstring''' from math import factorial def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int: """simple docstring""" return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
51
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : UpperCamelCase_ : Optional[Any] = 42 UpperCamelCase_ : str = 42 class a_ : def __init__( self : Union[str, Any] , snake_case__ : int ): lowerCAmelCase__ = [[] for _ in range(a__ )] lowerCAmelCase__ = size def __getitem__( self : Any , snake_case__ : int ): return iter(self._graph[vertex] ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): return self._size def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a__ , a__ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : int , snake_case__ : int ): lowerCAmelCase__ = deque([start_vertex] ) lowerCAmelCase__ = [None] * self.size lowerCAmelCase__ = 0 while queue: lowerCAmelCase__ = queue.popleft() lowerCAmelCase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase__ = current_distance + edge.weight lowerCAmelCase__ = distances[edge.destination_vertex] if ( isinstance(a__ , a__ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
644
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A__ ( UpperCAmelCase_ ): lowerCamelCase__ : int ="MCTCTFeatureExtractor" lowerCamelCase__ : Union[str, Any] ="AutoTokenizer" def __init__( self , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__(a__ , a__ ) __magic_name__ : List[str] = self.feature_extractor __magic_name__ : int = False def __call__( self , *lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*a__ , **a__ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __magic_name__ : Any = kwargs.pop('''raw_speech''' ) else: __magic_name__ : int = kwargs.pop('''audio''' , a__ ) __magic_name__ : int = kwargs.pop('''sampling_rate''' , a__ ) __magic_name__ : Dict = kwargs.pop('''text''' , a__ ) if len(a__ ) > 0: __magic_name__ : int = args[0] __magic_name__ : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __magic_name__ : List[str] = self.feature_extractor(a__ , *a__ , sampling_rate=a__ , **a__ ) if text is not None: __magic_name__ : Any = self.tokenizer(a__ , **a__ ) if text is None: return inputs elif audio is None: return encodings else: __magic_name__ : Optional[int] = encodings['''input_ids'''] return inputs def lowercase ( self , *lowerCamelCase , **lowerCamelCase ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def lowercase ( self , *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*a__ , **a__ ) __magic_name__ : str = kwargs.pop('''input_features''' , a__ ) __magic_name__ : List[str] = kwargs.pop('''labels''' , a__ ) if len(a__ ) > 0: __magic_name__ : int = args[0] __magic_name__ : Optional[int] = args[1:] if input_features is not None: __magic_name__ : Union[str, Any] = self.feature_extractor.pad(a__ , *a__ , **a__ ) if labels is not None: __magic_name__ : Optional[Any] = self.tokenizer.pad(a__ , **a__ ) if labels is None: return input_features elif input_features is None: return labels else: __magic_name__ : Tuple = labels['''input_ids'''] return input_features def lowercase ( self , *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @contextmanager def lowercase ( self ) -> List[Any]: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __magic_name__ : Tuple = True __magic_name__ : Any = self.tokenizer yield __magic_name__ : Optional[Any] = self.feature_extractor __magic_name__ : str = False
154
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( UpperCAmelCase_ ): _UpperCAmelCase = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase = '''CLIPImageProcessor''' _UpperCAmelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , A__=None , A__=None , **A__ ) -> Optional[Any]: snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) snake_case = kwargs.pop('''feature_extractor''' ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self , A__=None , A__=None , A__=None , **A__ ) -> Dict: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: snake_case = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[Any]: return self.tokenizer.batch_decode(*a__ , **a__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> List[str]: return self.tokenizer.decode(*a__ , **a__ ) @property def UpperCamelCase ( self ) -> List[str]: snake_case = self.tokenizer.model_input_names snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase ( self ) -> Any: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def UpperCamelCase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
342
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Dict ): SCREAMING_SNAKE_CASE : int = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(a__ ) ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(a__ ) ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(a__ ) ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(a__ ) ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : str = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(a__ ) ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : str = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] SCREAMING_SNAKE_CASE : Union[str, Any] = "fp16" self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[Any] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] SCREAMING_SNAKE_CASE : str = "fp16" self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def _A ( self : Any ): # pass variant but use the non-variant filenames SCREAMING_SNAKE_CASE : Optional[int] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] SCREAMING_SNAKE_CASE : Any = "fp16" self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : str = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE : Dict = "fp16" self.assertFalse(is_safetensors_compatible(a__ , variant=a__ ) ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : List[str] = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] SCREAMING_SNAKE_CASE : Any = "fp16" self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def _A ( self : str ): # pass variant but use the non-variant filenames SCREAMING_SNAKE_CASE : List[str] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] SCREAMING_SNAKE_CASE : str = "fp16" self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] SCREAMING_SNAKE_CASE : List[str] = "fp16" self.assertFalse(is_safetensors_compatible(a__ , variant=a__ ) )
62
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =XGLMTokenizer _lowerCamelCase =XGLMTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(a__ ) , 1008 ) def __snake_case ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __snake_case ( self : Optional[Any] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ ) UpperCAmelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def __snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : int ): UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : Any ): # fmt: off UpperCAmelCase = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
51
0
def a__ ( A__ ): if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1, len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE_ : List[Any] = grid[0] for row_n in range(1, len(SCREAMING_SNAKE_CASE_ ) ): SCREAMING_SNAKE_CASE_ : int = grid[row_n] SCREAMING_SNAKE_CASE_ : int = fill_row(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Any = grid[row_n] return grid[-1][-1] def a__ ( A__, A__ ): current_row[0] += row_above[0] for cell_n in range(1, len(SCREAMING_SNAKE_CASE_ ) ): current_row[cell_n] += min(current_row[cell_n - 1], row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] =logging.get_logger(__name__) a__ : Optional[int] ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class snake_case ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="megatron-bert" def __init__( self : Dict , __A : Union[str, Any]=2_9_0_5_6 , __A : Dict=1_0_2_4 , __A : str=2_4 , __A : Any=1_6 , __A : Tuple=4_0_9_6 , __A : Optional[int]="gelu" , __A : Tuple=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[Any]=2 , __A : str=0.02 , __A : Optional[int]=1e-12 , __A : Union[str, Any]=0 , __A : Optional[Any]="absolute" , __A : Dict=True , **__A : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache
399
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a__ : List[Any] = logging.get_logger(__name__) a__ : int = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off a__ : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a__ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="whisper" _lowerCamelCase =["past_key_values"] _lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ): UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @property def __snake_case ( self : List[str] ): UpperCAmelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ): UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) UpperCAmelCase = encoder_inputs['''input_features'''].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) UpperCAmelCase = encoder_inputs.pop('''input_features''' ) UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __snake_case ( self : Dict ): return 1e-3
51
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase :int = {'UserAgent': UserAgent().random} def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): _UpperCAmelCase : Union[str, Any] = script.contents[0] _UpperCAmelCase : Any = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCAmelCase : '''simple docstring''' def __init__( self , A ) -> Tuple: _UpperCAmelCase : Union[str, Any] = f'https://www.instagram.com/{username}/' _UpperCAmelCase : List[Any] = self.get_json() def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : List[Any] = requests.get(self.url , headers=a__ ).text _UpperCAmelCase : Tuple = BeautifulSoup(a__ , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> Dict: return f'{self.__class__.__name__}(\'{self.username}\')' def __str__( self ) -> Tuple: return f'{self.fullname} ({self.username}) is {self.biography}' @property def __lowerCAmelCase ( self ) -> List[Any]: return self.user_data["username"] @property def __lowerCAmelCase ( self ) -> Tuple: return self.user_data["full_name"] @property def __lowerCAmelCase ( self ) -> List[str]: return self.user_data["biography"] @property def __lowerCAmelCase ( self ) -> List[Any]: return self.user_data["business_email"] @property def __lowerCAmelCase ( self ) -> Optional[int]: return self.user_data["external_url"] @property def __lowerCAmelCase ( self ) -> str: return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ) -> Dict: return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ) -> Dict: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ) -> Tuple: return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ) -> Union[str, Any]: return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ) -> Optional[int]: return self.user_data["is_private"] def lowerCamelCase_ (UpperCamelCase__ : str = "github" ): import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _UpperCAmelCase : Optional[Any] = InstagramUser(SCREAMING_SNAKE_CASE_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , SCREAMING_SNAKE_CASE_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase :Optional[int] = InstagramUser('github') print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
506
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =LEDConfig _lowerCamelCase ={} _lowerCamelCase ="gelu" def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ ) UpperCAmelCase = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ): UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(a__ , attention_mask=a__ )[0] UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1e-3 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ ) def __snake_case ( self : int ): self.config_tester.run_common_tests() def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a__ : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a__ : int ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __snake_case ( self : Any ): pass def __snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) a__ : int = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 ) def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
51
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert('RGB' ) lowercase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) lowercase__ = transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE_ ) return image def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: if "visual_encoder" in key: lowercase__ = re.sub('visual_encoder*' , 'vision_model.encoder' , SCREAMING_SNAKE_CASE_ ) if "blocks" in key: lowercase__ = re.sub(R'blocks' , 'layers' , SCREAMING_SNAKE_CASE_ ) if "attn" in key: lowercase__ = re.sub(R'attn' , 'self_attn' , SCREAMING_SNAKE_CASE_ ) if "norm1" in key: lowercase__ = re.sub(R'norm1' , 'layer_norm1' , SCREAMING_SNAKE_CASE_ ) if "norm2" in key: lowercase__ = re.sub(R'norm2' , 'layer_norm2' , SCREAMING_SNAKE_CASE_ ) if "encoder.norm" in key: lowercase__ = re.sub(R'encoder.norm' , 'post_layernorm' , SCREAMING_SNAKE_CASE_ ) if "encoder.patch_embed.proj" in key: lowercase__ = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , SCREAMING_SNAKE_CASE_ ) if "encoder.pos_embed" in key: lowercase__ = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , SCREAMING_SNAKE_CASE_ ) if "encoder.cls_token" in key: lowercase__ = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , SCREAMING_SNAKE_CASE_ ) if "self_attn" in key: lowercase__ = re.sub(R'self_attn.proj' , 'self_attn.projection' , SCREAMING_SNAKE_CASE_ ) return key @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: if config_path is not None: lowercase__ = BlipConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: lowercase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase__ = BlipForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval() lowercase__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' lowercase__ = blip_decoder(pretrained=SCREAMING_SNAKE_CASE_ , image_size=384 , vit='base' ) lowercase__ = pt_model.eval() lowercase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = rename_key(SCREAMING_SNAKE_CASE_ ) lowercase__ = value hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) lowercase__ = 384 lowercase__ = load_demo_image(image_size=SCREAMING_SNAKE_CASE_ , device='cpu' ) lowercase__ = BertTokenizer.from_pretrained('bert-base-uncased' ) lowercase__ = tokenizer(['a picture of'] ).input_ids lowercase__ = hf_model.generate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ = hf_model.generate(SCREAMING_SNAKE_CASE_ ) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) lowercase__ = blip_vqa(pretrained=SCREAMING_SNAKE_CASE_ , image_size=SCREAMING_SNAKE_CASE_ , vit='base' ) vqa_model.eval() lowercase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = rename_key(SCREAMING_SNAKE_CASE_ ) lowercase__ = value lowercase__ = BlipForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) hf_vqa_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) lowercase__ = ['How many dogs are in this image?'] lowercase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_ids lowercase__ = hf_vqa_model.generate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) lowercase__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' lowercase__ = blip_itm(pretrained=SCREAMING_SNAKE_CASE_ , image_size=SCREAMING_SNAKE_CASE_ , vit='base' ) itm_model.eval() lowercase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = rename_key(SCREAMING_SNAKE_CASE_ ) lowercase__ = value lowercase__ = BlipForImageTextRetrieval(SCREAMING_SNAKE_CASE_ ) lowercase__ = ['A picture of a woman with a dog sitting in a beach'] lowercase__ = tokenizer( SCREAMING_SNAKE_CASE_ , return_tensors='pt' , padding='max_length' , truncation=SCREAMING_SNAKE_CASE_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) hf_itm_model.eval() lowercase__ = hf_itm_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , use_itm_head=SCREAMING_SNAKE_CASE_ ) lowercase__ = hf_itm_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , use_itm_head=SCREAMING_SNAKE_CASE_ ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowercase_ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
235
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
from manim import * class a ( UpperCAmelCase_ ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : str = [mem.copy() for i in range(6 )] _UpperCAmelCase : List[Any] = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Optional[int] = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Dict = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("CPU" , font_size=24 ) _UpperCAmelCase : Dict = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _UpperCAmelCase : List[Any] = [mem.copy() for i in range(4 )] _UpperCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Any = Text("GPU" , font_size=24 ) _UpperCAmelCase : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Optional[Any] = Text("Model" , font_size=24 ) _UpperCAmelCase : Optional[Any] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _UpperCAmelCase : Optional[Any] = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _UpperCAmelCase : Any = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) cpu_targs.append(a__ ) _UpperCAmelCase : int = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Tuple = Text("Loaded Checkpoint" , font_size=24 ) _UpperCAmelCase : Optional[Any] = Group(a__ , a__ ).arrange(a__ , aligned_edge=a__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _UpperCAmelCase : Dict = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Dict = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _UpperCAmelCase : Any = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _UpperCAmelCase : str = MarkupText( f'Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ ) , Write(a__ ) ) self.play(Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : List[str] = [] for i, rect in enumerate(a__ ): _UpperCAmelCase : Dict = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) first_animations.append(GrowFromCenter(a__ , run_time=1 ) ) _UpperCAmelCase : Union[str, Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(*a__ ) self.wait()
300
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
0
"""simple docstring""" def __snake_case ( __A : int = 50 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
265
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
51
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _UpperCAmelCase : Dict = HfApi() _UpperCAmelCase : List[str] = {} # fmt: off _UpperCAmelCase : Dict = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _UpperCAmelCase : Dict = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _UpperCAmelCase : str = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _UpperCAmelCase : Dict = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _UpperCAmelCase : Any = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _UpperCAmelCase : Optional[int] = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _UpperCAmelCase : Optional[int] = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _UpperCAmelCase : str = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _UpperCAmelCase : Union[str, Any] = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _UpperCAmelCase : int = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _UpperCAmelCase : List[str] = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _UpperCAmelCase : Union[str, Any] = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _UpperCAmelCase : Any = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _UpperCAmelCase : List[Any] = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _UpperCAmelCase : List[Any] = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _UpperCAmelCase : Optional[Any] = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _UpperCAmelCase : Tuple = '/home/patrick/google_checkpoints/' + mod.modelId.split("""/""")[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("""CompVis"""): _UpperCAmelCase : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: _UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _UpperCAmelCase : Tuple = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _UpperCAmelCase : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _UpperCAmelCase : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
295
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
51
0
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class a_ : def __init__( self : Tuple , snake_case__ : Tuple , snake_case__ : Optional[Any]=13 , snake_case__ : Tuple=7 , snake_case__ : Dict=True , snake_case__ : Dict=True , snake_case__ : List[Any]=False , snake_case__ : int=True , snake_case__ : Optional[Any]=99 , snake_case__ : Union[str, Any]=64 , snake_case__ : Optional[int]=5 , snake_case__ : Union[str, Any]=4 , snake_case__ : Any=64 , snake_case__ : Optional[int]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[Any]=512 , snake_case__ : Optional[Any]=16 , snake_case__ : Dict=2 , snake_case__ : int=0.02 , snake_case__ : int=3 , snake_case__ : str=4 , snake_case__ : List[str]=None , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope def _SCREAMING_SNAKE_CASE ( self : List[str] ): return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : str ): lowerCAmelCase__ = MPNetModel(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ = model(a__ , a__ ) lowerCAmelCase__ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = MPNetForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ = model( a__ , attention_mask=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[Any] ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MPNetForSequenceClassification(a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : int , snake_case__ : Any , snake_case__ : str , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : List[Any] ): lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = MPNetForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ = model( a__ , attention_mask=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Any ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MPNetForTokenClassification(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.prepare_config_and_inputs() ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = config_and_inputs lowerCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): UpperCamelCase_ : List[str] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) UpperCamelCase_ : Any = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Dict = True def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = MPNetModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=a__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*a__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*a__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*a__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*a__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*a__ ) @require_torch class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) lowerCAmelCase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase__ = model(a__ )[0] lowerCAmelCase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a__ ) lowerCAmelCase__ = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
644
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
0
import qiskit def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->qiskit.result.counts.Counts: """simple docstring""" __magic_name__ : int = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __magic_name__ : Tuple = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Map the quantum measurement to the classical bits circuit.measure([0], [0] ) # Execute the circuit on the simulator __magic_name__ : str = qiskit.execute(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(f"Total count for various states are: {single_qubit_measure(1, 1)}")
154
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ ) def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(a__ ) if do_resize: UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: UpperCAmelCase = self.center_crop(a__ , size=a__ ) if do_rescale: UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ ) UpperCAmelCase = to_channel_dimension_format(a__ , a__ ) return image def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(a__ ) UpperCAmelCase = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=a__ , tensor_type=a__ )
51
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def __UpperCamelCase ( a : List[str] ) ->List[str]: snake_case = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) snake_case = DetaConfig( backbone_config=SCREAMING_SNAKE_CASE_ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=SCREAMING_SNAKE_CASE_ , with_box_refine=SCREAMING_SNAKE_CASE_ , two_stage=SCREAMING_SNAKE_CASE_ , ) # set labels snake_case = '''huggingface/label-files''' if "o365" in model_name: snake_case = 366 snake_case = '''object365-id2label.json''' else: snake_case = 91 snake_case = '''coco-detection-id2label.json''' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) ) , '''r''' ) ) snake_case = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( a : Optional[int] ) ->Union[str, Any]: snake_case = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def __UpperCamelCase ( a : Tuple , a : Any , a : Optional[Any] ) ->List[Any]: snake_case = dct.pop(SCREAMING_SNAKE_CASE_ ) snake_case = val def __UpperCamelCase ( a : Tuple , a : int ) ->Tuple: snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) snake_case = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[:dim, :] snake_case = in_proj_bias[: dim] snake_case = in_proj_weight[ dim : dim * 2, : ] snake_case = in_proj_bias[ dim : dim * 2 ] snake_case = in_proj_weight[ -dim :, : ] snake_case = in_proj_bias[-dim :] # fmt: on def __UpperCamelCase ( a : int , a : Optional[int] ) ->int: snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention snake_case = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[:hidden_size, :] snake_case = in_proj_bias[:hidden_size] snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] snake_case = in_proj_bias[hidden_size : hidden_size * 2] snake_case = in_proj_weight[-hidden_size:, :] snake_case = in_proj_bias[-hidden_size:] def __UpperCamelCase ( ) ->Optional[Any]: snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( a : Tuple , a : List[str] , a : List[Any] ) ->List[Any]: snake_case = get_deta_config(SCREAMING_SNAKE_CASE_ ) # load original state dict if model_name == "deta-swin-large": snake_case = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": snake_case = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f"""Model name {model_name} not supported""" ) snake_case = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE_ , param.shape ) # rename keys snake_case = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE_ , config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: snake_case = state_dict.pop(SCREAMING_SNAKE_CASE_ ) snake_case = val if "input_proj" in key: snake_case = state_dict.pop(SCREAMING_SNAKE_CASE_ ) snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: snake_case = state_dict.pop(SCREAMING_SNAKE_CASE_ ) snake_case = val # finally, create HuggingFace model and load state dict snake_case = DetaForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(SCREAMING_SNAKE_CASE_ ) # load image processor snake_case = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image snake_case = prepare_img() snake_case = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) snake_case = encoding['''pixel_values'''] snake_case = model(pixel_values.to(SCREAMING_SNAKE_CASE_ ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": snake_case = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) snake_case = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": snake_case = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) snake_case = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(SCREAMING_SNAKE_CASE_ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(SCREAMING_SNAKE_CASE_ ) , atol=1e-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowercase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ): super(a__ , self ).__init__() UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ ) UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 ) UpperCAmelCase = torch.nn.Softmax(dim=1 ) def __snake_case ( self : List[Any] , **a__ : Tuple ): return self.bert(**a__ ).last_hidden_state def __snake_case ( self : int , a__ : List[str] ): return token_embeddings.sum(2 , keepdim=a__ ) def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ): return self.softmax(T * self.cos(a__ , a__ ) ) def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ): UpperCAmelCase = W_supports['''sizes'''].tolist() UpperCAmelCase = W_supports['''start_token_id'''].item() UpperCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = W_supports['''input_ids'''] == start_token_id UpperCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(a__ ): if i == 0: UpperCAmelCase = 0 else: UpperCAmelCase = support_sizes[i - 1] UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase = torch.vstack((p_starts, p_start) ) UpperCAmelCase = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase = p_start UpperCAmelCase = p_end return p_starts, p_ends
51
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib snake_case = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } snake_case = logging.WARNING def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = os.getenv("DATASETS_VERBOSITY" , SCREAMING_SNAKE_CASE_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def lowerCamelCase__ ( ): """simple docstring""" return __name__.split("." )[0] def lowerCamelCase__ ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowerCamelCase__ ( lowercase = None ): """simple docstring""" if name is None: SCREAMING_SNAKE_CASE : Tuple = _get_library_name() return logging.getLogger(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( ): """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase__ ( lowercase ): """simple docstring""" _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( ): """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = False def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): # pylint: disable=unused-argument SCREAMING_SNAKE_CASE : List[str] = args[0] if args else None def __iter__( self : List[str] ): return iter(self._iterator ) def __getattr__( self : Optional[int] , UpperCAmelCase_ : str ): def empty_fn(*UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : int ): return self def __exit__( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): return snake_case = True class SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : Any , *UpperCAmelCase_ : int , UpperCAmelCase_ : Any=False , **UpperCAmelCase_ : Union[str, Any] ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*a__ , **a__ ) else: return EmptyTqdm(*a__ , **a__ ) def _A ( self : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*a__ , **a__ ) def _A ( self : Tuple ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() snake_case = _tqdm_cls() def lowerCamelCase__ ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def lowerCamelCase__ ( ): """simple docstring""" global _tqdm_active SCREAMING_SNAKE_CASE : List[str] = True def lowerCamelCase__ ( ): """simple docstring""" global _tqdm_active SCREAMING_SNAKE_CASE : Optional[Any] = False
62
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =(EulerDiscreteScheduler,) _lowerCamelCase =10 def __snake_case ( self : str , **a__ : Tuple ): UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def __snake_case ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __snake_case ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def __snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
51
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() SCREAMING_SNAKE_CASE_ : Any = dict(zip(a__ , range(len(a__ ) ) ) ) SCREAMING_SNAKE_CASE_ : List[str] = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } SCREAMING_SNAKE_CASE_ : List[Any] = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6_0_0_0, 'return_attention_mask': False, 'do_normalize': True, } SCREAMING_SNAKE_CASE_ : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname , a__ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a__ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a__ ) + '\n' ) # load decoder from hub SCREAMING_SNAKE_CASE_ : Optional[int] = 'hf-internal-testing/ngram-beam-search-decoder' def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(a__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **a__ ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **a__ ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **a__ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_decoder() SCREAMING_SNAKE_CASE_ : Dict = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : str = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , a__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(a__ , 'include' ): WavaVecaProcessorWithLM( tokenizer=a__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = self.get_decoder() SCREAMING_SNAKE_CASE_ : Dict = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) SCREAMING_SNAKE_CASE_ : str = floats_list((3, 1_0_0_0) ) SCREAMING_SNAKE_CASE_ : List[Any] = feature_extractor(a__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : List[Any] = processor(a__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = self.get_decoder() SCREAMING_SNAKE_CASE_ : Dict = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) SCREAMING_SNAKE_CASE_ : int = 'This is a test string' SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=a__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer(a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self , lowerCAmelCase__=(2, 1_0, 1_6) , lowerCAmelCase__=7_7 ): """simple docstring""" np.random.seed(a__ ) return np.random.rand(*a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = self.get_decoder() SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) SCREAMING_SNAKE_CASE_ : str = processor.decode(a__ ) SCREAMING_SNAKE_CASE_ : str = decoder.decode_beams(a__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = self.get_decoder() SCREAMING_SNAKE_CASE_ : Any = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) SCREAMING_SNAKE_CASE_ : Dict = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(a__ ) else: with get_context(a__ ).Pool() as pool: SCREAMING_SNAKE_CASE_ : Optional[Any] = processor.batch_decode(a__ , a__ ) SCREAMING_SNAKE_CASE_ : List[Any] = list(a__ ) with get_context('fork' ).Pool() as p: SCREAMING_SNAKE_CASE_ : Tuple = decoder.decode_beams_batch(a__ , a__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(a__ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(a__ , decoded_processor.logit_score ) self.assertListEqual(a__ , decoded_processor.lm_score ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = self.get_decoder() SCREAMING_SNAKE_CASE_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) SCREAMING_SNAKE_CASE_ : str = self._get_dummy_logits() SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1_5 SCREAMING_SNAKE_CASE_ : Dict = -20.0 SCREAMING_SNAKE_CASE_ : Any = -4.0 SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode( a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , ) SCREAMING_SNAKE_CASE_ : List[str] = decoded_processor_out.text SCREAMING_SNAKE_CASE_ : List[str] = list(a__ ) with get_context('fork' ).Pool() as pool: SCREAMING_SNAKE_CASE_ : str = decoder.decode_beams_batch( a__ , a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , ) SCREAMING_SNAKE_CASE_ : Any = [d[0][0] for d in decoded_decoder_out] SCREAMING_SNAKE_CASE_ : List[Any] = [d[0][2] for d in decoded_decoder_out] SCREAMING_SNAKE_CASE_ : List[str] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(a__ , a__ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , a__ ) self.assertTrue(np.array_equal(a__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , a__ , atol=1E-3 ) ) self.assertTrue(np.array_equal(a__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , a__ , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_decoder() SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self._get_dummy_logits() SCREAMING_SNAKE_CASE_ : Optional[Any] = 2.0 SCREAMING_SNAKE_CASE_ : List[Any] = 5.0 SCREAMING_SNAKE_CASE_ : Tuple = -20.0 SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Any = processor.batch_decode( a__ , alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = decoded_processor_out.text SCREAMING_SNAKE_CASE_ : Any = list(a__ ) decoder.reset_params( alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , ) with get_context('fork' ).Pool() as pool: SCREAMING_SNAKE_CASE_ : Union[str, Any] = decoder.decode_beams_batch( a__ , a__ , ) SCREAMING_SNAKE_CASE_ : Any = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(a__ , a__ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , a__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) SCREAMING_SNAKE_CASE_ : Tuple = processor.decoder.model_container[processor.decoder._model_key] SCREAMING_SNAKE_CASE_ : str = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.listdir(a__ ) SCREAMING_SNAKE_CASE_ : Any = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(a__ , a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = snapshot_download('hf-internal-testing/processor_with_lm' ) SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaProcessorWithLM.from_pretrained(a__ ) SCREAMING_SNAKE_CASE_ : int = processor.decoder.model_container[processor.decoder._model_key] SCREAMING_SNAKE_CASE_ : Any = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.listdir(a__ ) SCREAMING_SNAKE_CASE_ : Tuple = os.listdir(a__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(a__ , a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) SCREAMING_SNAKE_CASE_ : Any = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) SCREAMING_SNAKE_CASE_ : int = floats_list((3, 1_0_0_0) ) SCREAMING_SNAKE_CASE_ : List[str] = processor_wavaveca(a__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : str = processor_auto(a__ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_dummy_logits() SCREAMING_SNAKE_CASE_ : Dict = processor_wavaveca.batch_decode(a__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = processor_auto.batch_decode(a__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_feature_extractor() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_decoder() SCREAMING_SNAKE_CASE_ : str = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [d[key] for d in offsets] return retrieved_list def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self._get_dummy_logits()[0] SCREAMING_SNAKE_CASE_ : int = processor.decode(a__ , output_word_offsets=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self._get_dummy_logits() SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.batch_decode(a__ , output_word_offsets=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(a__ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase__ ( self ): """simple docstring""" import torch SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('common_voice' , 'en' , split='train' , streaming=a__ ) SCREAMING_SNAKE_CASE_ : Dict = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) SCREAMING_SNAKE_CASE_ : Dict = iter(a__ ) SCREAMING_SNAKE_CASE_ : Dict = next(a__ ) SCREAMING_SNAKE_CASE_ : Dict = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train SCREAMING_SNAKE_CASE_ : List[Any] = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = model(a__ ).logits.cpu().numpy() SCREAMING_SNAKE_CASE_ : List[str] = processor.decode(logits[0] , output_word_offsets=a__ ) SCREAMING_SNAKE_CASE_ : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate SCREAMING_SNAKE_CASE_ : Dict = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] SCREAMING_SNAKE_CASE_ : Optional[int] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(a__ , 'word' ) ) , a__ ) self.assertEqual(' '.join(self.get_from_offsets(a__ , 'word' ) ) , output.text ) # output times SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor(self.get_from_offsets(a__ , 'start_time' ) ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(self.get_from_offsets(a__ , 'end_time' ) ) # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) ) self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) )
101
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( metadata={"help": "The csv file to plot."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowerCamelCase =list_field( default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : Optional[int] ): UpperCAmelCase = args UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCAmelCase = csv.DictReader(a__ ) for row in reader: UpperCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCAmelCase = float(row['''result'''] ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = plt.subplots() UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCAmelCase = self.result_dict[model_name]['''result'''] ((UpperCAmelCase), (UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , ) else: UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase), (UpperCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )] plt.scatter( a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a__ , a__ , '''--''' ) title_str += f" {label_model_name} vs." UpperCAmelCase = title_str[:-4] UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(a__ ) plt.xlabel(a__ ) plt.ylabel(a__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
51
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =CTRLTokenizer SCREAMING_SNAKE_CASE_ : int =False SCREAMING_SNAKE_CASE_ : List[Any] =False def _lowerCamelCase ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] __UpperCamelCase = dict(zip(a__ , range(len(a__ ) ) ) ) __UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a__ ) ) def _lowerCamelCase ( self : Union[str, Any] , **__A : int ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **a__ ) def _lowerCamelCase ( self : List[str] , __A : List[Any] ): __UpperCamelCase = 'adapt react readapt apt' __UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def _lowerCamelCase ( self : int ): __UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase = 'adapt react readapt apt' __UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() __UpperCamelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
399
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file: try: UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = True elif task_name.startswith('''voc_''' ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = '''pascal-voc-id2label.json''' UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int: """simple docstring""" if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''mobilevitv2.''' UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowerCAmelCase :Optional[int] = logging.get_logger(__name__) _lowerCAmelCase :Optional[Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) _lowerCAmelCase :Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCamelCase_ (UpperCamelCase__ : str ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase : int = model_type_to_module_name(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : str = importlib.import_module(F'.{module_name}' , '''transformers.models''' ) try: return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE_ , '''__name__''' , SCREAMING_SNAKE_CASE_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return None def lowerCamelCase_ (UpperCamelCase__ : Union[str, os.PathLike] , UpperCamelCase__ : Optional[Union[str, os.PathLike]] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[Dict[str, str]] = None , UpperCamelCase__ : Optional[Union[bool, str]] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Union[str, Any] , ): _UpperCAmelCase : Union[str, Any] = get_file_from_repo( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as reader: return json.load(SCREAMING_SNAKE_CASE_ ) class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Optional[Any]: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(a__ ) def __lowerCAmelCase ( cls , A , **A ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = kwargs.pop('''config''' , a__ ) _UpperCAmelCase : Union[str, Any] = kwargs.pop('''trust_remote_code''' , a__ ) _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase , _UpperCAmelCase : Dict = ImageProcessingMixin.get_image_processor_dict(a__ , **a__ ) _UpperCAmelCase : int = config_dict.get('''image_processor_type''' , a__ ) _UpperCAmelCase : List[Any] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _UpperCAmelCase : Union[str, Any] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCAmelCase : Union[str, Any] = config_dict.pop('''feature_extractor_type''' , a__ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _UpperCAmelCase : Union[str, Any] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _UpperCAmelCase : Union[str, Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _UpperCAmelCase : Optional[int] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a__ , a__ ): _UpperCAmelCase : Dict = AutoConfig.from_pretrained(a__ , **a__ ) # It could be in `config.image_processor_type`` _UpperCAmelCase : Optional[int] = getattr(a__ , '''image_processor_type''' , a__ ) if hasattr(a__ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _UpperCAmelCase : Optional[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _UpperCAmelCase : List[Any] = image_processor_class_from_name(a__ ) _UpperCAmelCase : Tuple = image_processor_auto_map is not None _UpperCAmelCase : Optional[int] = image_processor_class is not None or type(a__ ) in IMAGE_PROCESSOR_MAPPING _UpperCAmelCase : Optional[Any] = resolve_trust_remote_code( a__ , a__ , a__ , a__ ) if has_remote_code and trust_remote_code: _UpperCAmelCase : int = get_class_from_dynamic_module( a__ , a__ , **a__ ) _UpperCAmelCase : List[Any] = kwargs.pop('''code_revision''' , a__ ) if os.path.isdir(a__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a__ , **a__ ) elif image_processor_class is not None: return image_processor_class.from_dict(a__ , **a__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a__ ) in IMAGE_PROCESSOR_MAPPING: _UpperCAmelCase : Tuple = IMAGE_PROCESSOR_MAPPING[type(a__ )] return image_processor_class.from_dict(a__ , **a__ ) raise ValueError( f'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' f'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def __lowerCAmelCase ( A , A ) -> Optional[Any]: IMAGE_PROCESSOR_MAPPING.register(a__ , a__ )
506
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class SCREAMING_SNAKE_CASE (UpperCAmelCase_ ): _UpperCamelCase : Tuple = 'vit_mae' def __init__( self : Any , a : Any=768 , a : List[Any]=12 , a : Union[str, Any]=12 , a : Optional[Any]=3_072 , a : Dict="gelu" , a : List[Any]=0.0 , a : int=0.0 , a : int=0.02 , a : Any=1E-1_2 , a : Any=224 , a : List[str]=16 , a : List[str]=3 , a : Optional[int]=True , a : str=16 , a : Union[str, Any]=512 , a : Dict=8 , a : int=2_048 , a : List[str]=0.75 , a : Dict=False , **a : Optional[int] , )-> List[str]: """simple docstring""" super().__init__(**a__ ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = decoder_num_attention_heads lowercase__ = decoder_hidden_size lowercase__ = decoder_num_hidden_layers lowercase__ = decoder_intermediate_size lowercase__ = mask_ratio lowercase__ = norm_pix_loss
235
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
0
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> List[Any]: _UpperCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) for i in range(length - 1 ): _UpperCAmelCase : Any = i for k in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if collection[k] < collection[least]: _UpperCAmelCase : Tuple = k if least != i: _UpperCAmelCase , _UpperCAmelCase : Tuple = (collection[i], collection[least]) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
300
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = ConsistencyModelPipeline _SCREAMING_SNAKE_CASE : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _SCREAMING_SNAKE_CASE : List[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _SCREAMING_SNAKE_CASE : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _lowerCAmelCase ( self : int , _SCREAMING_SNAKE_CASE : List[Any]=False ) -> List[Any]: """simple docstring""" if class_cond: SCREAMING_SNAKE_CASE : int = self.dummy_cond_unet else: SCREAMING_SNAKE_CASE : str = self.dummy_uncond_unet # Default to CM multistep sampler SCREAMING_SNAKE_CASE : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) SCREAMING_SNAKE_CASE : Dict = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCAmelCase ( self : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str]=0 ) -> Tuple: """simple docstring""" if str(a__ ).startswith('mps' ): SCREAMING_SNAKE_CASE : int = torch.manual_seed(a__ ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Any = ConsistencyModelPipeline(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**a__ ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components(class_cond=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConsistencyModelPipeline(**a__ ) SCREAMING_SNAKE_CASE : Dict = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : List[Any] = pipe(**a__ ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = ConsistencyModelPipeline(**a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[int] = pipe(**a__ ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components(class_cond=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConsistencyModelPipeline(**a__ ) SCREAMING_SNAKE_CASE : int = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = pipe(**a__ ).images assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : str , _SCREAMING_SNAKE_CASE : Optional[Any]=0 , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : Tuple="cpu" , _SCREAMING_SNAKE_CASE : Optional[Any]=torch.floataa , _SCREAMING_SNAKE_CASE : List[Any]=(1, 3, 64, 64) ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.manual_seed(a__ ) SCREAMING_SNAKE_CASE : Dict = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_fixed_latents(seed=a__ , device=a__ , dtype=a__ , shape=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = latents return inputs def _lowerCAmelCase ( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=0 , _SCREAMING_SNAKE_CASE : int="cpu" , _SCREAMING_SNAKE_CASE : Any=torch.floataa , _SCREAMING_SNAKE_CASE : List[str]=(1, 3, 64, 64) ) -> Dict: """simple docstring""" if type(a__ ) == str: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.device(a__ ) SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=a__ ).manual_seed(a__ ) SCREAMING_SNAKE_CASE : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) return latents def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) SCREAMING_SNAKE_CASE : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) SCREAMING_SNAKE_CASE : Dict = ConsistencyModelPipeline(unet=a__ , scheduler=a__ ) pipe.to(torch_device=a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : int = self.get_inputs() SCREAMING_SNAKE_CASE : Tuple = pipe(**a__ ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Dict = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) SCREAMING_SNAKE_CASE : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) SCREAMING_SNAKE_CASE : List[Any] = ConsistencyModelPipeline(unet=a__ , scheduler=a__ ) pipe.to(torch_device=a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : List[Any] = self.get_inputs() SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Any = pipe(**a__ ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) SCREAMING_SNAKE_CASE : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) SCREAMING_SNAKE_CASE : List[str] = ConsistencyModelPipeline(unet=a__ , scheduler=a__ ) pipe.to(torch_device=a__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : Dict = self.get_inputs(get_fixed_latents=a__ , device=a__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a__ , enable_math=a__ , enable_mem_efficient=a__ ): SCREAMING_SNAKE_CASE : List[str] = pipe(**a__ ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) SCREAMING_SNAKE_CASE : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) SCREAMING_SNAKE_CASE : Tuple = ConsistencyModelPipeline(unet=a__ , scheduler=a__ ) pipe.to(torch_device=a__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE : List[str] = self.get_inputs(get_fixed_latents=a__ , device=a__ ) SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a__ , enable_math=a__ , enable_mem_efficient=a__ ): SCREAMING_SNAKE_CASE : List[Any] = pipe(**a__ ).images assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Tuple = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
265
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class __lowercase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) __a : Dict = vocab_size __a : Optional[int] = d_embed __a : Union[str, Any] = d_proj __a : Optional[Any] = cutoffs + [vocab_size] __a : Any = [0] + self.cutoffs __a : Union[str, Any] = div_val __a : Union[str, Any] = self.cutoffs[0] __a : List[Any] = len(self.cutoffs ) - 1 __a : Dict = self.shortlist_size + self.n_clusters __a : int = keep_order __a : str = [] __a : Optional[int] = [] def _lowerCamelCase ( self , _UpperCAmelCase ): if self.n_clusters > 0: __a : Union[str, Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=_UpperCAmelCase , name='''cluster_weight''' ) __a : List[str] = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=_UpperCAmelCase , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: __a : Dict = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=_UpperCAmelCase , name=f"""out_projs_._{i}""" , ) self.out_projs.append(_UpperCAmelCase ) else: self.out_projs.append(_UpperCAmelCase ) __a : List[str] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=_UpperCAmelCase , name=f"""out_layers_._{i}_._weight""" , ) __a : Any = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=_UpperCAmelCase , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): __a , __a : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] __a : Union[str, Any] = self.d_embed // (self.div_val**i) __a : List[Any] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=_UpperCAmelCase , name=f"""out_projs_._{i}""" ) self.out_projs.append(_UpperCAmelCase ) __a : List[Any] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=_UpperCAmelCase , name=f"""out_layers_._{i}_._weight""" , ) __a : List[Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=_UpperCAmelCase , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(_UpperCAmelCase ) @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): __a : Any = x if proj is not None: __a : Optional[int] = tf.einsum('''ibd,ed->ibe''' , _UpperCAmelCase , _UpperCAmelCase ) return tf.einsum('''ibd,nd->ibn''' , _UpperCAmelCase , _UpperCAmelCase ) + b @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = shape_list(_UpperCAmelCase ) __a : List[str] = tf.range(lp_size[0] , dtype=target.dtype ) __a : Optional[int] = tf.stack([r, target] , 1 ) return tf.gather_nd(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=True , _UpperCAmelCase=False ): __a : List[str] = 0 if self.n_clusters == 0: __a : Union[str, Any] = self._logit(_UpperCAmelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: __a : str = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_UpperCAmelCase , logits=_UpperCAmelCase ) __a : Dict = tf.nn.log_softmax(_UpperCAmelCase , axis=-1 ) else: __a : Any = shape_list(_UpperCAmelCase ) __a : Optional[Any] = [] __a : Any = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): __a , __a : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: __a : Dict = (target >= l_idx) & (target < r_idx) __a : Any = tf.where(_UpperCAmelCase ) __a : Optional[int] = tf.boolean_mask(_UpperCAmelCase , _UpperCAmelCase ) - l_idx if self.div_val == 1: __a : Tuple = self.out_layers[0][0][l_idx:r_idx] __a : Optional[Any] = self.out_layers[0][1][l_idx:r_idx] else: __a : Union[str, Any] = self.out_layers[i][0] __a : Optional[int] = self.out_layers[i][1] if i == 0: __a : Optional[int] = tf.concat([cur_W, self.cluster_weight] , 0 ) __a : List[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) __a : Union[str, Any] = self._logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.out_projs[0] ) __a : List[str] = tf.nn.log_softmax(_UpperCAmelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: __a : List[Any] = tf.boolean_mask(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = self._gather_logprob(_UpperCAmelCase , _UpperCAmelCase ) else: __a : Any = self._logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.out_projs[i] ) __a : Optional[Any] = tf.nn.log_softmax(_UpperCAmelCase ) __a : List[str] = self.cutoffs[0] + i - 1 # No probability for the head cluster __a : Union[str, Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_UpperCAmelCase ) if target is not None: __a : Union[str, Any] = tf.boolean_mask(_UpperCAmelCase , _UpperCAmelCase ) __a : Optional[Any] = tf.boolean_mask(_UpperCAmelCase , _UpperCAmelCase ) __a : str = self._gather_logprob(_UpperCAmelCase , _UpperCAmelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_UpperCAmelCase , -cur_logprob , shape_list(_UpperCAmelCase ) ) __a : str = tf.concat(_UpperCAmelCase , axis=-1 ) if target is not None: if return_mean: __a : Tuple = tf.reduce_mean(_UpperCAmelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_UpperCAmelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_UpperCAmelCase , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
52
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A = get_logger(__name__) A = Path(__file__).parent / '''model_card_template.md''' A = uuida().hex A = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES A = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __A ( a_ :Union[Dict, str, None] = None) -> str: __a : Union[str, Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items()) elif isinstance(a_ , a_): ua += "; " + user_agent return ua def __A ( a_ :str , a_ :Optional[str] = None , a_ :Optional[str] = None) -> Optional[int]: if token is None: __a : Any = HfFolder.get_token() if organization is None: __a : List[Any] = whoami(a_)['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def __A ( a_ :Union[str, Any] , a_ :List[str]) -> Optional[Any]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''') if hasattr(a_ , '''local_rank''') and args.local_rank not in [-1, 0]: return __a : int = args.hub_token if hasattr(a_ , '''hub_token''') else None __a : Any = get_full_repo_name(a_ , token=a_) __a : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , '''dataset_name''') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , '''gradient_accumulation_steps''') else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta1''') else None , adam_betaa=args.adam_betaa if hasattr(a_ , '''adam_beta2''') else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , '''adam_weight_decay''') else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , '''adam_epsilon''') else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , '''lr_scheduler''') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , '''lr_warmup_steps''') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , '''ema_inv_gamma''') else None , ema_power=args.ema_power if hasattr(a_ , '''ema_power''') else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , '''ema_max_decay''') else None , mixed_precision=args.mixed_precision , ) __a : List[Any] = os.path.join(args.output_dir , '''README.md''') model_card.save(a_) def __A ( a_ :Optional[str] , a_ :Optional[str] = None) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash __a : Any = str(Path(a_).as_posix()) __a : Optional[int] = re.search(R'''snapshots/([^/]+)/''' , a_) if search is None: return None __a : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) A = os.path.join(hf_cache_home, '''diffusers''') def __A ( a_ :Optional[str] = None , a_ :Optional[str] = None) -> None: if new_cache_dir is None: __a : Dict = DIFFUSERS_CACHE if old_cache_dir is None: __a : List[Any] = old_diffusers_cache __a : Union[str, Any] = Path(a_).expanduser() __a : Dict = Path(a_).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*'''): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a : List[Any] = new_cache_dir / old_blob_path.relative_to(a_) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_) os.replace(a_ , a_) try: os.symlink(a_ , a_) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): A = 0 else: with open(cache_version_file) as f: try: A = int(f.read()) except ValueError: A = 0 if cache_version < 1: A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: A = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __A ( a_ :str , a_ :Optional[str] = None) -> str: if variant is not None: __a : Dict = weights_name.split('''.''') __a : List[Any] = splits[:-1] + [variant] + splits[-1:] __a : Tuple = '''.'''.join(a_) return weights_name def __A ( a_ :List[Any] , *, a_ :Union[str, Any] , a_ :Dict , a_ :Union[str, Any] , a_ :Optional[int] , a_ :str , a_ :Any , a_ :str , a_ :Optional[int] , a_ :str , a_ :Tuple , a_ :List[str]=None , ) -> Dict: __a : int = str(a_) if os.path.isfile(a_): return pretrained_model_name_or_path elif os.path.isdir(a_): if os.path.isfile(os.path.join(a_ , a_)): # Load from a PyTorch checkpoint __a : Union[str, Any] = os.path.join(a_ , a_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_)): __a : Optional[Any] = os.path.join(a_ , a_ , a_) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""") else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_).base_version) >= version.parse('''0.20.0''') ): try: __a : Any = hf_hub_download( a_ , filename=_add_variant(a_ , a_) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_)}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual __a : Optional[Any] = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''') except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""") except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""") except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""") except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''') except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""")
52
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''Salesforce/blip-image-captioning-base''' __lowerCAmelCase = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) __lowerCAmelCase = '''image_captioner''' __lowerCAmelCase = AutoModelForVisionaSeq __lowerCAmelCase = ['''image'''] __lowerCAmelCase = ['''text'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.pre_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.model.generate(**_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.pre_processor.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )[0].strip()
52
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __A ( a_ :Dict) -> Tuple: if is_torch_version('''<''' , '''2.0.0''') or not hasattr(a_ , '''_dynamo'''): return False return isinstance(a_ , torch._dynamo.eval_frame.OptimizedModule) def __A ( a_ :Any , a_ :bool = True) -> List[str]: __a : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __a : Tuple = is_compiled_module(a_) if is_compiled: __a : Tuple = model __a : Optional[int] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(a_ , a_): __a : Tuple = model.module if not keep_fpaa_wrapper: __a : Tuple = getattr(a_ , '''forward''') __a : List[str] = model.__dict__.pop('''_original_forward''' , a_) if original_forward is not None: while hasattr(a_ , '''__wrapped__'''): __a : int = forward.__wrapped__ if forward == original_forward: break __a : Tuple = forward if getattr(a_ , '''_converted_to_transformer_engine''' , a_): convert_model(a_ , to_transformer_engine=a_) if is_compiled: __a : str = model __a : List[Any] = compiled_model return model def __A ( ) -> Union[str, Any]: PartialState().wait_for_everyone() def __A ( a_ :List[str] , a_ :List[Any]) -> Union[str, Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(a_ , a_) elif PartialState().local_process_index == 0: torch.save(a_ , a_) @contextmanager def __A ( **a_ :Optional[int]) -> str: for key, value in kwargs.items(): __a : int = str(a_) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __A ( a_ :Any) -> str: if not hasattr(a_ , '''__qualname__''') and not hasattr(a_ , '''__name__'''): __a : int = getattr(a_ , '''__class__''' , a_) if hasattr(a_ , '''__qualname__'''): return obj.__qualname__ if hasattr(a_ , '''__name__'''): return obj.__name__ return str(a_) def __A ( a_ :Any , a_ :Any) -> int: for key, value in source.items(): if isinstance(a_ , a_): __a : Tuple = destination.setdefault(a_ , {}) merge_dicts(a_ , a_) else: __a : Tuple = value return destination def __A ( a_ :int = None) -> bool: if port is None: __a : Dict = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s: return s.connect_ex(('''localhost''', port)) == 0
52
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' __lowerCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) __lowerCAmelCase = '''document_qa''' __lowerCAmelCase = AutoProcessor __lowerCAmelCase = VisionEncoderDecoderModel __lowerCAmelCase = ['''image''', '''text'''] __lowerCAmelCase = ['''text'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __a : List[str] = task_prompt.replace('''{user_input}''' , _UpperCAmelCase ) __a : List[Any] = self.pre_processor.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='''pt''' ).input_ids __a : Union[str, Any] = self.pre_processor(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _lowerCamelCase ( self , _UpperCAmelCase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = self.pre_processor.batch_decode(_UpperCAmelCase )[0] __a : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __a : Any = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __a : Union[str, Any] = re.sub(R'''<.*?>''' , '''''' , _UpperCAmelCase , count=1 ).strip() # remove first task start token __a : Optional[int] = self.pre_processor.tokenajson(_UpperCAmelCase ) return sequence["answer"]
52
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A = logging.getLogger(__name__) def __A ( a_ :Union[str, Any] , a_ :Dict) -> Union[str, Any]: __a : Optional[int] = np.argmax(a_ , axis=1) return np.sum(outputs == labels) def __A ( a_ :Any) -> str: with open(a_ , encoding='''utf_8''') as f: __a : List[Any] = csv.reader(a_) __a : List[str] = [] next(a_) # skip the first line for line in tqdm(a_): output.append((''' '''.join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def __A ( a_ :Dict , a_ :str , a_ :str , a_ :List[Any] , a_ :Tuple , a_ :List[Any]) -> Any: __a : List[str] = [] for dataset in encoded_datasets: __a : List[str] = len(a_) __a : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa) __a : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa) __a : Tuple = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa) __a : Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa) for ( i, (story, conta, conta, mc_label), ) in enumerate(a_): __a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a : Tuple = with_conta __a : int = with_conta __a : List[str] = len(a_) - 1 __a : int = len(a_) - 1 __a : Optional[int] = with_conta __a : Tuple = with_conta __a : List[Any] = mc_label __a : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(a_) for t in all_inputs)) return tensor_datasets def __A ( ) -> Union[str, Any]: __a : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , default='''openai-gpt''' , help='''pretrained model name''') parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''') parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''') parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=a_ , default='''''') parser.add_argument('''--eval_dataset''' , type=a_ , default='''''') parser.add_argument('''--seed''' , type=a_ , default=42) parser.add_argument('''--num_train_epochs''' , type=a_ , default=3) parser.add_argument('''--train_batch_size''' , type=a_ , default=8) parser.add_argument('''--eval_batch_size''' , type=a_ , default=16) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , type=a_ , default=1) parser.add_argument( '''--max_steps''' , default=-1 , type=a_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=a_ , default=6.25e-5) parser.add_argument('''--warmup_steps''' , default=0 , type=a_ , help='''Linear warmup over warmup_steps.''') parser.add_argument('''--lr_schedule''' , type=a_ , default='''warmup_linear''') parser.add_argument('''--weight_decay''' , type=a_ , default=0.0_1) parser.add_argument('''--lm_coef''' , type=a_ , default=0.9) parser.add_argument('''--n_valid''' , type=a_ , default=3_74) parser.add_argument('''--server_ip''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') parser.add_argument('''--server_port''' , type=a_ , default='''''' , help='''Can be used for distant debugging.''') __a : str = parser.parse_args() print(a_) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''') ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a_) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) __a : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') __a : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(a_ , a_)) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a : List[str] = ['''_start_''', '''_delimiter_''', '''_classify_'''] __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(a_) __a : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_) __a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(a_)) model.to(a_) # Load and encode the datasets def tokenize_and_encode(a_ :List[Any]): if isinstance(a_ , a_): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(a_)) elif isinstance(a_ , a_): return obj return [tokenize_and_encode(a_) for o in obj] logger.info('''Encoding dataset...''') __a : Dict = load_rocstories_dataset(args.train_dataset) __a : int = load_rocstories_dataset(args.eval_dataset) __a : Optional[int] = (train_dataset, eval_dataset) __a : List[Any] = tokenize_and_encode(a_) # Compute the max input length for the Transformer __a : List[Any] = model.config.n_positions // 2 - 2 __a : int = max( len(story[:max_length]) + max(len(conta[:max_length]) , len(conta[:max_length])) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset) __a : Union[str, Any] = min(a_ , model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a : Tuple = pre_process_datasets(a_ , a_ , a_ , *a_) __a , __a : Tuple = tensor_datasets[0], tensor_datasets[1] __a : List[str] = TensorDataset(*a_) __a : Optional[Any] = RandomSampler(a_) __a : str = DataLoader(a_ , sampler=a_ , batch_size=args.train_batch_size) __a : List[str] = TensorDataset(*a_) __a : Optional[int] = SequentialSampler(a_) __a : Optional[Any] = DataLoader(a_ , sampler=a_ , batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a : int = args.max_steps __a : Optional[int] = args.max_steps // (len(a_) // args.gradient_accumulation_steps) + 1 else: __a : str = len(a_) // args.gradient_accumulation_steps * args.num_train_epochs __a : List[Any] = list(model.named_parameters()) __a : Optional[int] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] __a : List[str] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], '''weight_decay''': 0.0}, ] __a : int = AdamW(a_ , lr=args.learning_rate , eps=args.adam_epsilon) __a : Union[str, Any] = get_linear_schedule_with_warmup( a_ , num_warmup_steps=args.warmup_steps , num_training_steps=a_) if args.do_train: __a , __a , __a : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs) , desc='''Epoch'''): __a : Dict = 0 __a : Dict = 0 __a : List[str] = tqdm(a_ , desc='''Training''') for step, batch in enumerate(a_): __a : Dict = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : str = batch __a : List[Any] = model(a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(a_ , scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a : Dict = model.module if hasattr(a_ , '''module''') else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a : int = os.path.join(args.output_dir , a_) __a : str = os.path.join(args.output_dir , a_) torch.save(model_to_save.state_dict() , a_) model_to_save.config.to_json_file(a_) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned __a : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) __a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(a_) if args.do_eval: model.eval() __a , __a : List[Any] = 0, 0 __a , __a : Union[str, Any] = 0, 0 for batch in tqdm(a_ , desc='''Evaluating'''): __a : str = tuple(t.to(a_) for t in batch) __a , __a , __a , __a : List[Any] = batch with torch.no_grad(): __a , __a , __a , __a : str = model( a_ , mc_token_ids=a_ , lm_labels=a_ , mc_labels=a_) __a : List[str] = mc_logits.detach().cpu().numpy() __a : Optional[Any] = mc_labels.to('''cpu''').numpy() __a : str = accuracy(a_ , a_) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 __a : Tuple = eval_loss / nb_eval_steps __a : List[str] = eval_accuracy / nb_eval_examples __a : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __a : List[str] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} __a : Dict = os.path.join(args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key in sorted(result.keys()): logger.info(''' %s = %s''' , a_ , str(result[key])) writer.write('''%s = %s\n''' % (key, str(result[key]))) if __name__ == "__main__": main()
52
1
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=[1, 16, 4, 4] , _UpperCAmelCase=None , ): __a : List[Any] = parent __a : List[Any] = batch_size __a : int = image_size __a : List[Any] = patch_size __a : Optional[Any] = num_channels __a : int = is_training __a : str = use_labels __a : int = hidden_size __a : Any = num_hidden_layers __a : Dict = num_attention_heads __a : Any = intermediate_size __a : Dict = hidden_act __a : List[Any] = hidden_dropout_prob __a : Optional[Any] = attention_probs_dropout_prob __a : str = type_sequence_label_size __a : Any = initializer_range __a : List[str] = scope __a : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __a : Any = (self.image_size // 32) ** 2 __a : int = num_patches + 1 def _lowerCamelCase ( self ): __a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : str = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): __a : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCAmelCase , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = ViTHybridModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Union[str, Any] = self.type_sequence_label_size __a : List[str] = ViTHybridForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self ): __a : List[Any] = self.prepare_config_and_inputs() __a , __a , __a : Optional[int] = config_and_inputs __a : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __lowerCAmelCase = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : List[Any] = ViTHybridModelTester(self ) __a : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def _lowerCamelCase ( self ): __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(_UpperCAmelCase ) __a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[int] = [*signature.parameters.keys()] __a : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : int = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: __a : Tuple = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __a : Union[str, Any] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def _lowerCamelCase ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : int = ViTHybridModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __A ( ) -> Tuple: __a : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): __a : Optional[int] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) __a : List[Any] = self.default_image_processor __a : Dict = prepare_img() __a : List[str] = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __a : List[str] = model(**_UpperCAmelCase ) # verify the logits __a : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __a : List[str] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def _lowerCamelCase ( self ): __a : List[Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) __a : List[str] = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) __a : Optional[int] = prepare_img() __a : Union[str, Any] = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) __a : Dict = model(**_UpperCAmelCase ) __a : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes __a : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
52
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
1
"""simple docstring""" import math class __lowercase : '''simple docstring''' def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = 0.0 __a : List[Any] = 0.0 for i in range(len(_UpperCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for i in range(len(_UpperCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __A ( ) -> None: # Training Examples ( m, n ) __a : Dict = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __a : Optional[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __a : List[Any] = SelfOrganizingMap() __a : Dict = 3 __a : Union[str, Any] = 0.5 for _ in range(a_): for j in range(len(a_)): # training sample __a : List[str] = training_samples[j] # Compute the winning vector __a : Optional[Any] = self_organizing_map.get_winner(a_ , a_) # Update the winning vector __a : Optional[int] = self_organizing_map.update(a_ , a_ , a_ , a_) # classify test sample __a : List[str] = [0, 0, 0, 1] __a : str = self_organizing_map.get_winner(a_ , a_) # results print(F"""Clusters that the test sample belongs to : {winner}""") print(F"""Weights that have been trained : {weights}""") # running the main() function if __name__ == "__main__": main()
52
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''levit''' def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 8, 12] , _UpperCAmelCase=[4, 4, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = image_size __a : List[Any] = num_channels __a : Dict = kernel_size __a : Optional[int] = stride __a : Optional[int] = padding __a : Dict = hidden_sizes __a : int = num_attention_heads __a : Optional[int] = depths __a : str = key_dim __a : Union[str, Any] = drop_path_rate __a : Optional[Any] = patch_size __a : Tuple = attention_ratio __a : int = mlp_ratio __a : int = initializer_range __a : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-4
52
1
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __A ( a_ :Optional[int]) -> Tuple: __a : str = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", )) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", )) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", )) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", )) return embed def __A ( a_ :Dict , a_ :Optional[Any]) -> Optional[int]: __a : int = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", )) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", )) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""")) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""")) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""")) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""")) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""")) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""")) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""")) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""")) return attention_weights def __A ( a_ :Tuple) -> str: __a : str = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''')) return token def __A ( ) -> Union[str, Any]: __a : Tuple = [] head.append(('''layernorm.weight''', '''norm.weight''')) head.append(('''layernorm.bias''', '''norm.bias''')) head.append(('''classifier.weight''', '''head.weight''')) head.append(('''classifier.bias''', '''head.bias''')) return head def __A ( a_ :Tuple , a_ :Tuple , a_ :int , a_ :List[str]) -> str: __a : Union[str, Any] = '''imagenet-1k-id2label.json''' __a : Optional[int] = 10_00 __a : str = '''huggingface/label-files''' __a : str = num_labels __a : List[Any] = json.load(open(cached_download(hf_hub_url(a_ , a_ , repo_type='''dataset''')) , '''r''')) __a : Dict = {int(a_): v for k, v in idalabel.items()} __a : Tuple = idalabel __a : str = {v: k for k, v in idalabel.items()} __a : Any = CvtConfig(num_labels=a_ , idalabel=a_ , labelaid=a_) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1)[-1][4:6] == "13": __a : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1)[-1][4:6] == "21": __a : Optional[Any] = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __a : Tuple = [2, 2, 20] __a : List[str] = [3, 12, 16] __a : Optional[Any] = [1_92, 7_68, 10_24] __a : Dict = CvtForImageClassification(a_) __a : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''') __a : List[str] = image_size __a : Optional[int] = torch.load(a_ , map_location=torch.device('''cpu''')) __a : Any = OrderedDict() __a : int = [] for idx in range(len(config.depth)): if config.cls_token[idx]: __a : int = list_of_state_dict + cls_token(a_) __a : Tuple = list_of_state_dict + embeddings(a_) for cnt in range(config.depth[idx]): __a : List[str] = list_of_state_dict + attention(a_ , a_) __a : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(a_) for i in range(len(a_)): __a : List[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(a_) model.save_pretrained(a_) image_processor.save_pretrained(a_) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
52
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Dict = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : List[str] = edge __a : Optional[int] = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Optional[int] = f.read().strip().split('''\n''') __a : Dict = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : Tuple = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
52
1
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __A ( a_ :Optional[int]) -> Optional[Any]: __a : str = 3_84 if "tiny" in model_name: __a : Tuple = [3, 3, 9, 3] __a : Tuple = [96, 1_92, 3_84, 7_68] if "small" in model_name: __a : Any = [3, 3, 27, 3] __a : Union[str, Any] = [96, 1_92, 3_84, 7_68] if "base" in model_name: __a : Dict = [3, 3, 27, 3] __a : List[str] = [1_28, 2_56, 5_12, 10_24] __a : Optional[Any] = 5_12 if "large" in model_name: __a : int = [3, 3, 27, 3] __a : Any = [1_92, 3_84, 7_68, 15_36] __a : Optional[Any] = 7_68 if "xlarge" in model_name: __a : Dict = [3, 3, 27, 3] __a : Optional[Any] = [2_56, 5_12, 10_24, 20_48] __a : Optional[Any] = 10_24 # set label information __a : Optional[int] = 1_50 __a : Dict = '''huggingface/label-files''' __a : int = '''ade20k-id2label.json''' __a : List[str] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : Union[str, Any] = {int(a_): v for k, v in idalabel.items()} __a : Tuple = {v: k for k, v in idalabel.items()} __a : str = ConvNextConfig( depths=a_ , hidden_sizes=a_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4''']) __a : Optional[int] = UperNetConfig( backbone_config=a_ , auxiliary_in_channels=a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ , ) return config def __A ( a_ :Union[str, Any]) -> Tuple: __a : int = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''')) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''')) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''')) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""")) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""")) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""")) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""")) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""")) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""")) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""")) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""")) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""")) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""")) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ]) # fmt: on return rename_keys def __A ( a_ :Dict , a_ :List[Any] , a_ :Union[str, Any]) -> int: __a : List[Any] = dct.pop(a_) __a : List[Any] = val def __A ( a_ :List[str] , a_ :Union[str, Any] , a_ :List[str]) -> List[str]: __a : List[Any] = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } __a : List[str] = model_name_to_url[model_name] __a : Tuple = torch.hub.load_state_dict_from_url(a_ , map_location='''cpu''')['''state_dict'''] __a : Union[str, Any] = get_upernet_config(a_) __a : int = UperNetForSemanticSegmentation(a_) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __a : Optional[Any] = state_dict.pop(a_) if "bn" in key: __a : Union[str, Any] = key.replace('''bn''' , '''batch_norm''') __a : str = val # rename keys __a : int = create_rename_keys(a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) model.load_state_dict(a_) # verify on image __a : List[Any] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __a : List[str] = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') __a : Optional[Any] = SegformerImageProcessor() __a : List[str] = processor(a_ , return_tensors='''pt''').pixel_values with torch.no_grad(): __a : List[Any] = model(a_) if model_name == "upernet-convnext-tiny": __a : List[str] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]]) elif model_name == "upernet-convnext-small": __a : Optional[int] = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]]) elif model_name == "upernet-convnext-base": __a : Union[str, Any] = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]]) elif model_name == "upernet-convnext-large": __a : Optional[Any] = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]]) elif model_name == "upernet-convnext-xlarge": __a : int = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]]) print('''Logits:''' , outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1e-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving processor to {pytorch_dump_folder_path}""") processor.save_pretrained(a_) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""") model.push_to_hub(F"""openmmlab/{model_name}""") processor.push_to_hub(F"""openmmlab/{model_name}""") if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
52
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __A ( a_ :Union[str, Any] , a_ :Union[str, Any] , a_ :Optional[Any] , a_ :Optional[int]=5) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''') == 1 __a : Optional[Any] = torch.tensor(tokenizer.encode(a_ , add_special_tokens=a_)).unsqueeze(0) # Batch size 1 __a : Dict = model(a_)[0] # The last hidden-state is the first element of the output tuple __a : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __a : Any = logits[0, masked_index, :] __a : Any = logits.softmax(dim=0) __a , __a : Optional[Any] = prob.topk(k=a_ , dim=0) __a : Optional[int] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(a_))]) __a : List[str] = tokenizer.mask_token __a : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''')): __a : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''') if " {0}".format(a_) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(a_) , a_), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(a_ , a_), values[index].item(), predicted_token, )) return topk_filled_outputs A = CamembertTokenizer.from_pretrained('''camembert-base''') A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() A = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
52
1
"""simple docstring""" def __A ( a_ :Optional[Any]) -> Optional[int]: __a : Any = [] __a : Union[str, Any] = [] __a : Dict = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __a : Optional[Any] = len(a_) if (len(a_) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8) , '''Stack'''.center(a_) , '''Postfix'''.center(a_) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(a_) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(a_) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(a_) == 0: stack.append(a_) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(a_) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(a_) # push x to stack print( x.center(8) , (''''''.join(a_)).ljust(a_) , (''''''.join(a_)).ljust(a_) , sep=''' | ''' , ) # Output in tabular format while len(a_) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( ''' '''.center(8) , (''''''.join(a_)).ljust(a_) , (''''''.join(a_)).ljust(a_) , sep=''' | ''' , ) # Output in tabular format return "".join(a_) # return Postfix as str def __A ( a_ :Optional[int]) -> List[str]: __a : Any = list(infix[::-1]) # reverse the infix equation for i in range(len(a_)): if infix[i] == "(": __a : Optional[int] = ''')''' # change "(" to ")" elif infix[i] == ")": __a : int = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(a_)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A = input('''\nEnter an Infix Equation = ''') # Input an Infix equation A = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
52
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = [10, 20, 30, 40, 50, 60] __a : Union[str, Any] = [2, 4, 6, 8, 10, 12] __a : List[str] = 100 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 210 ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Weight can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''Profit can not be negative.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex(_UpperCAmelCase , '''max_weight must greater than zero.''' ) def _lowerCamelCase ( self ): self.assertRaisesRegex( _UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
52
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __get__( self , _UpperCAmelCase , _UpperCAmelCase=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) __a : Union[str, Any] = '''__cached_''' + self.fget.__name__ __a : Union[str, Any] = getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if cached is None: __a : str = self.fget(_UpperCAmelCase ) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return cached def __A ( a_ :Dict) -> Tuple: __a : List[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""") def __A ( a_ :Any) -> Tuple: if is_torch_fx_proxy(a_): return True if is_torch_available(): import torch if isinstance(a_ , torch.Tensor): return True if is_tf_available(): import tensorflow as tf if isinstance(a_ , tf.Tensor): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(a_ , (jnp.ndarray, Tracer)): return True return isinstance(a_ , np.ndarray) def __A ( a_ :Optional[Any]) -> Any: return isinstance(a_ , np.ndarray) def __A ( a_ :List[str]) -> Dict: return _is_numpy(a_) def __A ( a_ :Tuple) -> str: import torch return isinstance(a_ , torch.Tensor) def __A ( a_ :Tuple) -> Optional[Any]: return False if not is_torch_available() else _is_torch(a_) def __A ( a_ :int) -> List[str]: import torch return isinstance(a_ , torch.device) def __A ( a_ :List[str]) -> Tuple: return False if not is_torch_available() else _is_torch_device(a_) def __A ( a_ :List[Any]) -> List[str]: import torch if isinstance(a_ , a_): if hasattr(a_ , a_): __a : Dict = getattr(a_ , a_) else: return False return isinstance(a_ , torch.dtype) def __A ( a_ :List[str]) -> Any: return False if not is_torch_available() else _is_torch_dtype(a_) def __A ( a_ :Optional[Any]) -> List[str]: import tensorflow as tf return isinstance(a_ , tf.Tensor) def __A ( a_ :int) -> Tuple: return False if not is_tf_available() else _is_tensorflow(a_) def __A ( a_ :int) -> int: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(a_ , '''is_symbolic_tensor'''): return tf.is_symbolic_tensor(a_) return type(a_) == tf.Tensor def __A ( a_ :Any) -> int: return False if not is_tf_available() else _is_tf_symbolic_tensor(a_) def __A ( a_ :List[Any]) -> Union[str, Any]: import jax.numpy as jnp # noqa: F811 return isinstance(a_ , jnp.ndarray) def __A ( a_ :Tuple) -> int: return False if not is_flax_available() else _is_jax(a_) def __A ( a_ :List[Any]) -> Optional[int]: if isinstance(a_ , (dict, UserDict)): return {k: to_py_obj(a_) for k, v in obj.items()} elif isinstance(a_ , (list, tuple)): return [to_py_obj(a_) for o in obj] elif is_tf_tensor(a_): return obj.numpy().tolist() elif is_torch_tensor(a_): return obj.detach().cpu().tolist() elif is_jax_tensor(a_): return np.asarray(a_).tolist() elif isinstance(a_ , (np.ndarray, np.number)): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __A ( a_ :Tuple) -> str: if isinstance(a_ , (dict, UserDict)): return {k: to_numpy(a_) for k, v in obj.items()} elif isinstance(a_ , (list, tuple)): return np.array(a_) elif is_tf_tensor(a_): return obj.numpy() elif is_torch_tensor(a_): return obj.detach().cpu().numpy() elif is_jax_tensor(a_): return np.asarray(a_) else: return obj class __lowercase ( _UpperCamelCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[Any] = fields(self ) # Safety and consistency checks if not len(_UpperCAmelCase ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) __a : Union[str, Any] = getattr(self , class_fields[0].name ) __a : int = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = first_field.items() __a : Any = True else: try: __a : Tuple = iter(_UpperCAmelCase ) __a : str = True except TypeError: __a : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_UpperCAmelCase ): if ( not isinstance(_UpperCAmelCase , (list, tuple) ) or not len(_UpperCAmelCase ) == 2 or not isinstance(element[0] , _UpperCAmelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __a : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: __a : Tuple = element[1] elif first_field is not None: __a : List[str] = first_field else: for field in class_fields: __a : str = getattr(self , field.name ) if v is not None: __a : Tuple = v def __delitem__( self , *_UpperCAmelCase , **_UpperCAmelCase ): raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , _UpperCAmelCase , _UpperCAmelCase ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_UpperCAmelCase , _UpperCAmelCase ) super().__setattr__(_UpperCAmelCase , _UpperCAmelCase ) def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase ): # Will raise a KeyException if needed super().__setitem__(_UpperCAmelCase , _UpperCAmelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): return tuple(self[k] for k in self.keys() ) class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase ): raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''longest''' __lowerCAmelCase = '''max_length''' __lowerCAmelCase = '''do_not_pad''' class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''pt''' __lowerCAmelCase = '''tf''' __lowerCAmelCase = '''np''' __lowerCAmelCase = '''jax''' class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): __a : Union[str, Any] = context_managers __a : Optional[int] = ExitStack() def __enter__( self ): for context_manager in self.context_managers: self.stack.enter_context(_UpperCAmelCase ) def __exit__( self , *_UpperCAmelCase , **_UpperCAmelCase ): self.stack.__exit__(*_UpperCAmelCase , **_UpperCAmelCase ) def __A ( a_ :Any) -> str: __a : Tuple = infer_framework(a_) if framework == "tf": __a : Dict = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": __a : List[Any] = inspect.signature(model_class.forward) # PyTorch models else: __a : Optional[Any] = inspect.signature(model_class.__call__) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __A ( a_ :List[Any]) -> str: __a : Optional[int] = model_class.__name__ __a : List[str] = infer_framework(a_) if framework == "tf": __a : Union[str, Any] = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": __a : Optional[Any] = inspect.signature(model_class.forward) # PyTorch models else: __a : Any = inspect.signature(model_class.__call__) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __A ( a_ :MutableMapping , a_ :str = "" , a_ :str = ".") -> Any: def _flatten_dict(a_ :Tuple , a_ :Optional[Any]="" , a_ :Any="."): for k, v in d.items(): __a : Optional[int] = str(a_) + delimiter + str(a_) if parent_key else k if v and isinstance(a_ , a_): yield from flatten_dict(a_ , a_ , delimiter=a_).items() else: yield key, v return dict(_flatten_dict(a_ , a_ , a_)) @contextmanager def __A ( a_ :Optional[int] , a_ :bool = False) -> List[str]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __A ( a_ :Tuple , a_ :Any=None) -> str: if is_numpy_array(a_): return np.transpose(a_ , axes=a_) elif is_torch_tensor(a_): return array.T if axes is None else array.permute(*a_) elif is_tf_tensor(a_): import tensorflow as tf return tf.transpose(a_ , perm=a_) elif is_jax_tensor(a_): return jnp.transpose(a_ , axes=a_) else: raise ValueError(F"""Type not supported for transpose: {type(a_)}.""") def __A ( a_ :List[str] , a_ :Dict) -> str: if is_numpy_array(a_): return np.reshape(a_ , a_) elif is_torch_tensor(a_): return array.reshape(*a_) elif is_tf_tensor(a_): import tensorflow as tf return tf.reshape(a_ , a_) elif is_jax_tensor(a_): return jnp.reshape(a_ , a_) else: raise ValueError(F"""Type not supported for reshape: {type(a_)}.""") def __A ( a_ :Any , a_ :str=None) -> Any: if is_numpy_array(a_): return np.squeeze(a_ , axis=a_) elif is_torch_tensor(a_): return array.squeeze() if axis is None else array.squeeze(dim=a_) elif is_tf_tensor(a_): import tensorflow as tf return tf.squeeze(a_ , axis=a_) elif is_jax_tensor(a_): return jnp.squeeze(a_ , axis=a_) else: raise ValueError(F"""Type not supported for squeeze: {type(a_)}.""") def __A ( a_ :str , a_ :List[str]) -> Tuple: if is_numpy_array(a_): return np.expand_dims(a_ , a_) elif is_torch_tensor(a_): return array.unsqueeze(dim=a_) elif is_tf_tensor(a_): import tensorflow as tf return tf.expand_dims(a_ , axis=a_) elif is_jax_tensor(a_): return jnp.expand_dims(a_ , axis=a_) else: raise ValueError(F"""Type not supported for expand_dims: {type(a_)}.""") def __A ( a_ :Dict) -> Dict: if is_numpy_array(a_): return np.size(a_) elif is_torch_tensor(a_): return array.numel() elif is_tf_tensor(a_): import tensorflow as tf return tf.size(a_) elif is_jax_tensor(a_): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(a_)}.""") def __A ( a_ :Tuple , a_ :Tuple) -> Optional[Any]: for key, value in auto_map.items(): if isinstance(a_ , (tuple, list)): __a : Dict = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: __a : Optional[int] = F"""{repo_id}--{value}""" return auto_map def __A ( a_ :Tuple) -> int: for base_class in inspect.getmro(a_): __a : Any = base_class.__module__ __a : Dict = base_class.__name__ if module.startswith('''tensorflow''') or module.startswith('''keras''') or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''') or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''') or module.startswith('''jax''') or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""")
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
1
"""simple docstring""" from collections import deque def __A ( a_ :Dict) -> int: __a : int = len(a_) __a : Any = deque() __a : Union[str, Any] = [False for _ in range(a_)] __a : Any = [-1 for _ in range(a_)] __a : Optional[Any] = index_of[:] def strong_connect(a_ :str , a_ :int , a_ :Union[str, Any]): __a : List[str] = index # the number when this node is seen __a : int = index # lowest rank node reachable from here index += 1 stack.append(a_) __a : str = True for w in g[v]: if index_of[w] == -1: __a : Any = strong_connect(a_ , a_ , a_) __a : Optional[int] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __a : Tuple = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __a : Dict = [] __a : Dict = stack.pop() __a : int = False component.append(a_) while w != v: __a : int = stack.pop() __a : List[str] = False component.append(a_) components.append(a_) return index __a : List[str] = [] for v in range(a_): if index_of[v] == -1: strong_connect(a_ , 0 , a_) return components def __A ( a_ :int , a_ :str) -> Dict: __a : Dict = [[] for _ in range(a_)] for u, v in edges: g[u].append(a_) return g if __name__ == "__main__": # Test A = 7 A = [0, 0, 1, 2, 3, 3, 4, 4, 6] A = [1, 3, 2, 0, 1, 4, 5, 6, 5] A = [(u, v) for u, v in zip(source, target)] A = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
52
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
1
"""simple docstring""" from __future__ import annotations def __A ( a_ :str) -> list[int]: return [ord(a_) - 96 for elem in plain] def __A ( a_ :list[int]) -> str: return "".join(chr(elem + 96) for elem in encoded) def __A ( ) -> None: __a : Dict = encode(input('''-> ''').strip().lower()) print('''Encoded: ''' , a_) print('''Decoded:''' , decode(a_)) if __name__ == "__main__": main()
52
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel A = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } A = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def __A ( a_ :Any , a_ :Union[str, Any]=False) -> Any: __a , __a : str = create_model( '''HTSAT-tiny''' , '''roberta''' , a_ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=a_ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def __A ( a_ :Union[str, Any]) -> List[str]: __a : str = {} __a : str = R'''.*sequential.(\d+).*''' __a : Optional[int] = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __a : List[Any] = key.replace(a_ , a_) if re.match(a_ , a_): # replace sequential layers with list __a : str = re.match(a_ , a_).group(1) __a : Union[str, Any] = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(a_)//3}.linear.""") elif re.match(a_ , a_): __a : Tuple = int(re.match(a_ , a_).group(1)) # Because in CLAP they use `nn.Sequential`... __a : Tuple = 1 if projecton_layer == 0 else 2 __a : Optional[Any] = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""") if "audio" and "qkv" in key: # split qkv into query key and value __a : Optional[Any] = value __a : Tuple = mixed_qkv.size(0) // 3 __a : List[str] = mixed_qkv[:qkv_dim] __a : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] __a : Tuple = mixed_qkv[qkv_dim * 2 :] __a : Union[str, Any] = query_layer __a : int = key_layer __a : Tuple = value_layer else: __a : str = value return model_state_dict def __A ( a_ :str , a_ :Optional[int] , a_ :Optional[int] , a_ :Optional[Any]=False) -> List[Any]: __a , __a : List[str] = init_clap(a_ , enable_fusion=a_) clap_model.eval() __a : Optional[Any] = clap_model.state_dict() __a : List[str] = rename_state_dict(a_) __a : Optional[int] = ClapConfig() __a : int = enable_fusion __a : Optional[int] = ClapModel(a_) # ignore the spectrogram embedding layer model.load_state_dict(a_ , strict=a_) model.save_pretrained(a_) transformers_config.save_pretrained(a_) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') A = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
52
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
1
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
1
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __A ( ) -> Dict: __a : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=a_ , default=a_ , required=a_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=a_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=a_ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=a_ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=a_ , default=0 , help='''cuda_id.''' , ) __a : Any = parser.parse_args() return args def __A ( a_ :List[str] , a_ :Dict , a_ :int) -> List[Any]: if not len(a_) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''') __a , __a : Union[str, Any] = imgs[0].size __a : List[str] = Image.new('''RGB''' , size=(cols * w, rows * h)) __a , __a : Optional[int] = grid.size for i, img in enumerate(a_): grid.paste(a_ , box=(i % cols * w, i // cols * h)) return grid def __A ( a_ :int , a_ :Dict="robotic cat with wings" , a_ :Any=7.5 , a_ :Optional[Any]=50 , a_ :Optional[int]=1 , a_ :int=42 , ) -> List[str]: __a : Any = torch.Generator(pipeline.device).manual_seed(a_) __a : Optional[Any] = pipeline( a_ , guidance_scale=a_ , num_inference_steps=a_ , generator=a_ , num_images_per_prompt=a_ , ).images __a : Dict = int(math.sqrt(a_)) __a : Dict = image_grid(a_ , rows=_rows , cols=num_images_per_prompt // _rows) return grid, images A = parse_args() # Load models and create wrapper for stable diffusion A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') A = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) A = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): A = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: A = unet.to(torch.device('''cuda''', args.cuda_id)) A = pipeline.to(unet.device) A , A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) A = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
52
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def __A ( a_ :List[Any]) -> List[str]: __a : Dict = '''huggingface/label-files''' __a : Dict = '''imagenet-1k-id2label.json''' __a : List[str] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : int = {int(a_): v for k, v in idalabel.items()} __a : Optional[int] = {v: k for k, v in idalabel.items()} __a : Any = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __a : int = BitConfig( conv_layer=a_ , num_labels=10_00 , idalabel=a_ , labelaid=a_ , ) return config def __A ( a_ :Optional[int]) -> Optional[int]: if "stem.conv" in name: __a : Any = name.replace('''stem.conv''' , '''bit.embedder.convolution''') if "blocks" in name: __a : List[str] = name.replace('''blocks''' , '''layers''') if "head.fc" in name: __a : List[str] = name.replace('''head.fc''' , '''classifier.1''') if name.startswith('''norm'''): __a : str = '''bit.''' + name if "bit" not in name and "classifier" not in name: __a : str = '''bit.encoder.''' + name return name def __A ( ) -> Optional[Any]: __a : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a : Any = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def __A ( a_ :Optional[int] , a_ :Union[str, Any] , a_ :Union[str, Any]=False) -> Union[str, Any]: __a : List[str] = get_config(a_) # load original model from timm __a : int = create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model __a : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): __a : Tuple = state_dict.pop(a_) __a : Optional[int] = val.squeeze() if '''head''' in key else val # load HuggingFace model __a : List[str] = BitForImageClassification(a_) model.eval() model.load_state_dict(a_) # create image processor __a : Tuple = create_transform(**resolve_data_config({} , model=a_)) __a : Optional[Any] = transform.transforms __a : Union[str, Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } __a : List[str] = BitImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __a : List[str] = prepare_img() __a : Optional[Any] = transform(a_).unsqueeze(0) __a : Union[str, Any] = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): __a : Tuple = model(a_) __a : Any = outputs.logits print('''Logits:''' , logits[0, :3]) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1).item()]) __a : Union[str, Any] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""") model.save_pretrained(a_) processor.save_pretrained(a_) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""") model.push_to_hub(F"""ybelkada/{model_name}""") processor.push_to_hub(F"""ybelkada/{model_name}""") if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) A = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
52
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip A = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __A ( a_ :Optional[Any]) -> Optional[Any]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __A ( a_ :Optional[int] , a_ :Optional[int] , a_ :Optional[Any]) -> int: return max(metric_fn(a_ , a_) for gt in ground_truths) def __A ( a_ :List[str] , a_ :List[str] , a_ :Optional[Any]) -> Dict: __a : List[Any] = [line.strip() for line in open(a_ , '''r''').readlines()] __a : Dict = [] if args.gold_data_mode == "qa": __a : Dict = pd.read_csv(a_ , sep='''\t''' , header=a_) for answer_list in data[1]: __a : List[str] = ast.literal_eval(a_) answers.append(a_) else: __a : Union[str, Any] = [line.strip() for line in open(a_ , '''r''').readlines()] __a : Union[str, Any] = [[reference] for reference in references] __a : Dict = 0 for prediction, ground_truths in zip(a_ , a_): total += 1 em += metric_max_over_ground_truths(a_ , a_ , a_) fa += metric_max_over_ground_truths(a_ , a_ , a_) __a : List[str] = 1_0_0.0 * em / total __a : List[str] = 1_0_0.0 * fa / total logger.info(F"""F1: {fa:.2f}""") logger.info(F"""EM: {em:.2f}""") def __A ( a_ :Union[str, Any] , a_ :List[Any] , a_ :Optional[Any]) -> Optional[int]: __a : Optional[int] = args.k __a : Optional[int] = [line.strip() for line in open(a_ , '''r''').readlines()] __a : Optional[Any] = [line.strip() for line in open(a_ , '''r''').readlines()] __a : Optional[int] = 0 for hypo, reference in zip(a_ , a_): __a : List[str] = set(hypo.split('''\t''')[:k]) __a : Dict = set(reference.split('''\t''')) total += 1 em += len(hypo_provenance & ref_provenance) / k __a : Tuple = 1_0_0.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""") def __A ( a_ :Dict , a_ :Any , a_ :int) -> int: def strip_title(a_ :List[str]): if title.startswith('''"'''): __a : str = title[1:] if title.endswith('''"'''): __a : Dict = title[:-1] return title __a : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ , )['''input_ids'''].to(args.device) __a : Optional[Any] = rag_model.rag.question_encoder(a_) __a : Dict = question_enc_outputs[0] __a : List[str] = rag_model.retriever( a_ , question_enc_pool_output.cpu().detach().to(torch.floataa).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) __a : Optional[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids) __a : Dict = [] for docs in all_docs: __a : Any = [strip_title(a_) for title in docs['''title''']] provenance_strings.append('''\t'''.join(a_)) return provenance_strings def __A ( a_ :Optional[Any] , a_ :str , a_ :str) -> List[str]: with torch.no_grad(): __a : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_) __a : Optional[int] = inputs_dict.input_ids.to(args.device) __a : List[Any] = inputs_dict.attention_mask.to(args.device) __a : List[Any] = rag_model.generate( # rag_model overwrites generate a_ , attention_mask=a_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=a_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __a : Optional[Any] = rag_model.retriever.generator_tokenizer.batch_decode(a_ , skip_special_tokens=a_) if args.print_predictions: for q, a in zip(a_ , a_): logger.info('''Q: {} - A: {}'''.format(a_ , a_)) return answers def __A ( ) -> Union[str, Any]: __a : Dict = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=a_ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=a_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=a_ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=a_ , type=a_ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=a_ , help='''Number of retrieved docs''') parser.add_argument( '''--model_name_or_path''' , default=a_ , type=a_ , required=a_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=a_ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=a_ , help='''k for the precision@k calculation''') parser.add_argument( '''--evaluation_set''' , default=a_ , type=a_ , required=a_ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=a_ , type=a_ , required=a_ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=a_ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=a_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=a_ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=a_ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=a_ , help='''Min length of the generated answers''') parser.add_argument('''--max_length''' , default=50 , type=a_ , help='''Max length of the generated answers''') parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) __a : Optional[Any] = parser.parse_args() __a : Any = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') return args def __A ( a_ :Optional[int]) -> str: __a : Any = {} if args.model_type is None: __a : List[Any] = infer_model_type(args.model_name_or_path) assert args.model_type is not None if args.model_type.startswith('''rag'''): __a : List[str] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration __a : Optional[int] = args.n_docs if args.index_name is not None: __a : Union[str, Any] = args.index_name if args.index_path is not None: __a : Tuple = args.index_path else: __a : Tuple = BartForConditionalGeneration __a : str = ( [f.path for f in os.scandir(args.model_name_or_path) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , a_) __a : Optional[int] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k __a : str = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path)) score_fn(a_ , args.predictions_path , args.gold_data_path) continue logger.info('''***** Running evaluation for {} *****'''.format(a_)) logger.info(''' Batch size = %d''' , args.eval_batch_size) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path)) if args.model_type.startswith('''rag'''): __a : Optional[int] = RagRetriever.from_pretrained(a_ , **a_) __a : Tuple = model_class.from_pretrained(a_ , retriever=a_ , **a_) model.retriever.init_retrieval() else: __a : Dict = model_class.from_pretrained(a_ , **a_) model.to(args.device) with open(args.evaluation_set , '''r''') as eval_file, open(args.predictions_path , '''w''') as preds_file: __a : Any = [] for line in tqdm(a_): questions.append(line.strip()) if len(a_) == args.eval_batch_size: __a : Tuple = evaluate_batch_fn(a_ , a_ , a_) preds_file.write('''\n'''.join(a_) + '''\n''') preds_file.flush() __a : Dict = [] if len(a_) > 0: __a : Optional[Any] = evaluate_batch_fn(a_ , a_ , a_) preds_file.write('''\n'''.join(a_)) preds_file.flush() score_fn(a_ , args.predictions_path , args.gold_data_path) if __name__ == "__main__": A = get_args() main(args)
52
"""simple docstring""" from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a , __a : List[Any] = text, pattern __a , __a : Tuple = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self , _UpperCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ): # searches pattern in text and returns index positions __a : Dict = [] for i in range(self.textLen - self.patLen + 1 ): __a : List[str] = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: __a : Tuple = self.match_in_pattern(self.text[mismatch_index] ) __a : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A = '''ABAABA''' A = '''AB''' A = BoyerMooreSearch(text, pattern) A = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
52
1
"""simple docstring""" from __future__ import annotations from typing import Any def __A ( a_ :list[Any]) -> None: create_state_space_tree(a_ , [] , 0) def __A ( a_ :list[Any] , a_ :list[Any] , a_ :int) -> None: if index == len(a_): print(a_) return create_state_space_tree(a_ , a_ , index + 1) current_subsequence.append(sequence[index]) create_state_space_tree(a_ , a_ , index + 1) current_subsequence.pop() if __name__ == "__main__": A = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
52
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
1