code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> bool: UpperCamelCase : List[str] = len(snake_case__ ) UpperCamelCase : Any = len(snake_case__ ) UpperCamelCase : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCamelCase : List[str] = True for i in range(snake_case__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCamelCase : Tuple = True if a[i].islower(): UpperCamelCase : str = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
40
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
0
'''simple docstring''' def _A ( A__ , A__ , A__ ): """simple docstring""" if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __lowercase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowercase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger A_ = get_logger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ = None ) -> str: '''simple docstring''' lowerCamelCase_ = ( os.path.join(SCREAMING_SNAKE_CASE_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowerCamelCase_ = Extractor def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowerCamelCase_ = os.path.abspath(SCREAMING_SNAKE_CASE_ ) return os.path.join(self.extract_dir , hash_url_to_filename(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(SCREAMING_SNAKE_CASE_ ) and not (os.path.isdir(SCREAMING_SNAKE_CASE_ ) and os.listdir(SCREAMING_SNAKE_CASE_ )) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> str: '''simple docstring''' lowerCamelCase_ = self.extractor.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) if not extractor_format: return input_path lowerCamelCase_ = self._get_output_path(SCREAMING_SNAKE_CASE_ ) if self._do_extract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.extractor.extract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output_path class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @classmethod @abstractmethod def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' ... class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = [] @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as f: return f.read(SCREAMING_SNAKE_CASE_ ) @classmethod def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = b"" ) -> bool: '''simple docstring''' if not magic_number: lowerCamelCase_ = max(len(SCREAMING_SNAKE_CASE_ ) for cls_magic_number in cls.magic_numbers ) try: lowerCamelCase_ = cls.read_magic_number(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except OSError: return False return any(magic_number.startswith(SCREAMING_SNAKE_CASE_ ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @classmethod def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> bool: '''simple docstring''' return tarfile.is_tarfile(SCREAMING_SNAKE_CASE_ ) @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' def resolved(SCREAMING_SNAKE_CASE_ ) -> str: return os.path.realpath(os.path.abspath(SCREAMING_SNAKE_CASE_ ) ) def badpath(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ).startswith(SCREAMING_SNAKE_CASE_ ) def badlink(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: # Links are interpreted relative to the directory containing the link lowerCamelCase_ = resolved(os.path.join(SCREAMING_SNAKE_CASE_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = resolved(SCREAMING_SNAKE_CASE_ ) for finfo in members: if badpath(finfo.name , SCREAMING_SNAKE_CASE_ ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tarfile.open(SCREAMING_SNAKE_CASE_ ) tar_file.extractall(SCREAMING_SNAKE_CASE_ , members=TarExtractor.safemembers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) tar_file.close() class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = [b'\x1F\x8B'] @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' with gzip.open(SCREAMING_SNAKE_CASE_ , 'rb' ) as gzip_file: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = b"" ) -> bool: '''simple docstring''' if super().is_extractable(SCREAMING_SNAKE_CASE_ , magic_number=SCREAMING_SNAKE_CASE_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as fp: lowerCamelCase_ = _EndRecData(SCREAMING_SNAKE_CASE_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowerCamelCase_ = fp.read(SCREAMING_SNAKE_CASE_ ) # CD is where we expect it to be if len(SCREAMING_SNAKE_CASE_ ) == sizeCentralDir: lowerCamelCase_ = struct.unpack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ , 'r' ) as zip_file: zip_file.extractall(SCREAMING_SNAKE_CASE_ ) zip_file.close() class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' with lzma.open(SCREAMING_SNAKE_CASE_ ) as compressed_file: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = rarfile.RarFile(SCREAMING_SNAKE_CASE_ ) rf.extractall(SCREAMING_SNAKE_CASE_ ) rf.close() class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = [b'\x28\xb5\x2F\xFD'] @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd lowerCamelCase_ = zstd.ZstdDecompressor() with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as ifh, open(SCREAMING_SNAKE_CASE_ , 'wb' ) as ofh: dctx.copy_stream(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = [b'\x42\x5A\x68'] @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' with bza.open(SCREAMING_SNAKE_CASE_ , 'rb' ) as compressed_file: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE_ , 'r' ) as archive: archive.extractall(SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = [b'\x04\x22\x4D\x18'] @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(SCREAMING_SNAKE_CASE_ , 'rb' ) as compressed_file: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCamelCase( cls ) -> Union[str, Any]: '''simple docstring''' return max( len(SCREAMING_SNAKE_CASE_ ) for extractor in cls.extractors.values() if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def UpperCamelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(SCREAMING_SNAKE_CASE_ , magic_number_length=SCREAMING_SNAKE_CASE_ ) except OSError: return b"" @classmethod def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> bool: '''simple docstring''' warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = cls.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ ) -> str: # <Added version="2.4.0"/> '''simple docstring''' lowerCamelCase_ = cls._get_magic_number_max_length() lowerCamelCase_ = cls._read_magic_number(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(SCREAMING_SNAKE_CASE_ , magic_number=SCREAMING_SNAKE_CASE_ ): return extractor_format @classmethod def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(SCREAMING_SNAKE_CASE_ ) , exist_ok=SCREAMING_SNAKE_CASE_ ) # Prevent parallel extractions lowerCamelCase_ = str(Path(SCREAMING_SNAKE_CASE_ ).with_suffix('.lock' ) ) with FileLock(SCREAMING_SNAKE_CASE_ ): shutil.rmtree(SCREAMING_SNAKE_CASE_ , ignore_errors=SCREAMING_SNAKE_CASE_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = extractor if extractor != 'deprecated' else extractor_format else: lowerCamelCase_ = cls.extractors[extractor_format] return extractor.extract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=SCREAMING_SNAKE_CASE_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(SCREAMING_SNAKE_CASE_ ): return extractor.extract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
42
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''gpt_bigcode''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : Union[str, Any] = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: List[Any] , UpperCamelCase_: Tuple=50_257 , UpperCamelCase_: List[Any]=1_024 , UpperCamelCase_: str=768 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: str=None , UpperCamelCase_: List[str]="gelu_pytorch_tanh" , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Tuple=1E-5 , UpperCamelCase_: int=0.02 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=50_256 , UpperCamelCase_: List[Any]=50_256 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: int=True , UpperCamelCase_: Union[str, Any]=True , **UpperCamelCase_: Any , ) -> str: """simple docstring""" lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = n_inner lowercase__ = activation_function lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = scale_attn_weights lowercase__ = use_cache lowercase__ = attention_softmax_in_fpaa lowercase__ = scale_attention_softmax_in_fpaa lowercase__ = multi_query lowercase__ = bos_token_id lowercase__ = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
43
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : Dict,__A : Optional[int]=1_3,__A : Optional[Any]=3_0,__A : Any=2,__A : Any=3,__A : List[Any]=True,__A : List[str]=True,__A : List[str]=3_2,__A : List[str]=2,__A : List[Any]=4,__A : int=3_7,__A : Any="gelu",__A : Optional[Any]=0.1,__A : List[Any]=0.1,__A : Optional[int]=1_0,__A : Optional[int]=0.02,__A : Any=3,__A : Optional[Any]=None,): _lowerCamelCase : Any = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Dict = image_size _lowerCamelCase : Union[str, Any] = patch_size _lowerCamelCase : str = num_channels _lowerCamelCase : int = is_training _lowerCamelCase : int = use_labels _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Optional[Any] = num_patches + 1 def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Dict = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Tuple ): return ViTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=__A,initializer_range=self.initializer_range,) def lowerCamelCase_ ( self : Any,__A : Any,__A : Dict,__A : Any ): _lowerCamelCase : int = TFViTModel(config=__A ) _lowerCamelCase : Dict = model(__A,training=__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _lowerCamelCase : Dict = self.image_size // 2 _lowerCamelCase : Any = pixel_values[:, :, :image_size, :image_size] _lowerCamelCase : int = model(__A,interpolate_pos_encoding=__A,training=__A ) _lowerCamelCase : int = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Union[str, Any],__A : Any,__A : List[str],__A : Optional[Any] ): _lowerCamelCase : Optional[int] = self.type_sequence_label_size _lowerCamelCase : Dict = TFViTForImageClassification(__A ) _lowerCamelCase : Any = model(__A,labels=__A,training=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _lowerCamelCase : Union[str, Any] = self.image_size // 2 _lowerCamelCase : int = pixel_values[:, :, :image_size, :image_size] _lowerCamelCase : Any = model(__A,interpolate_pos_encoding=__A,training=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : List[Any] = 1 _lowerCamelCase : Dict = TFViTForImageClassification(__A ) _lowerCamelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Any = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = config_and_inputs _lowerCamelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCAmelCase_ = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[str] = TFViTModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self,config_class=__A,has_text_modality=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCamelCase_ ( self : Union[str, Any] ): pass def lowerCamelCase_ ( self : Dict ): _lowerCamelCase , _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__A ) _lowerCamelCase : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[int] = [*signature.parameters.keys()] _lowerCamelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__A ) def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Tuple ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="tf" ) # forward pass _lowerCamelCase : Any = model(**__A ) # verify the logits _lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : Optional[int] = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3],__A,atol=1e-4 )
44
'''simple docstring''' from math import factorial def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int: """simple docstring""" return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
51
0
def A ( lowercase__ : int , lowercase__ : int ) -> int: UpperCamelCase__ :List[str] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): UpperCamelCase__ :Any = n - k # Calculate C(n,k) for i in range(lowercase__ ): result *= n - i result //= i + 1 return result def A ( lowercase__ : int ) -> int: return binomial_coefficient(2 * node_count , lowercase__ ) // (node_count + 1) def A ( lowercase__ : int ) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""" ) UpperCamelCase__ :Union[str, Any] = 1 for i in range(1 , n + 1 ): result *= i return result def A ( lowercase__ : int ) -> int: return catalan_number(lowercase__ ) * factorial(lowercase__ ) if __name__ == "__main__": UpperCamelCase = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
45
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class A_ ( nn.Module ): def __init__( self: int ,__lowerCAmelCase: int ,__lowerCAmelCase: int ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any]=0.0 ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: str = "geglu" ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: str = "layer_norm" ,__lowerCAmelCase: bool = False ,): '''simple docstring''' super().__init__() _lowerCamelCase : int = only_cross_attention _lowerCamelCase : Tuple = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _lowerCamelCase : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _lowerCamelCase : Tuple = AdaLayerNorm(__lowerCAmelCase ,__lowerCAmelCase ) elif self.use_ada_layer_norm_zero: _lowerCamelCase : Union[str, Any] = AdaLayerNormZero(__lowerCAmelCase ,__lowerCAmelCase ) else: _lowerCamelCase : Dict = nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Attention( query_dim=__lowerCAmelCase ,heads=__lowerCAmelCase ,dim_head=__lowerCAmelCase ,dropout=__lowerCAmelCase ,bias=__lowerCAmelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=__lowerCAmelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _lowerCamelCase : int = ( AdaLayerNorm(__lowerCAmelCase ,__lowerCAmelCase ) if self.use_ada_layer_norm else nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = Attention( query_dim=__lowerCAmelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=__lowerCAmelCase ,dim_head=__lowerCAmelCase ,dropout=__lowerCAmelCase ,bias=__lowerCAmelCase ,upcast_attention=__lowerCAmelCase ,) # is self-attn if encoder_hidden_states is none else: _lowerCamelCase : Tuple = None _lowerCamelCase : Any = None # 3. Feed-forward _lowerCamelCase : Tuple = nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ) _lowerCamelCase : Any = FeedForward(__lowerCAmelCase ,dropout=__lowerCAmelCase ,activation_fn=__lowerCAmelCase ,final_dropout=__lowerCAmelCase ) # let chunk size default to None _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = 0 def _lowercase ( self: int ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Any = chunk_size _lowerCamelCase : Dict = dim def _lowercase ( self: Tuple ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[torch.FloatTensor] = None ,__lowerCAmelCase: Optional[torch.FloatTensor] = None ,__lowerCAmelCase: Optional[torch.FloatTensor] = None ,__lowerCAmelCase: Optional[torch.LongTensor] = None ,__lowerCAmelCase: Dict[str, Any] = None ,__lowerCAmelCase: Optional[torch.LongTensor] = None ,): '''simple docstring''' if self.use_ada_layer_norm: _lowerCamelCase : List[str] = self.norma(__lowerCAmelCase ,__lowerCAmelCase ) elif self.use_ada_layer_norm_zero: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.norma( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,hidden_dtype=hidden_states.dtype ) else: _lowerCamelCase : List[str] = self.norma(__lowerCAmelCase ) _lowerCamelCase : Any = cross_attention_kwargs if cross_attention_kwargs is not None else {} _lowerCamelCase : str = self.attna( __lowerCAmelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=__lowerCAmelCase ,**__lowerCAmelCase ,) if self.use_ada_layer_norm_zero: _lowerCamelCase : List[Any] = gate_msa.unsqueeze(1 ) * attn_output _lowerCamelCase : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _lowerCamelCase : Optional[int] = ( self.norma(__lowerCAmelCase ,__lowerCAmelCase ) if self.use_ada_layer_norm else self.norma(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = self.attna( __lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : List[Any] = attn_output + hidden_states # 3. Feed-forward _lowerCamelCase : int = self.norma(__lowerCAmelCase ) if self.use_ada_layer_norm_zero: _lowerCamelCase : Optional[Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) _lowerCamelCase : List[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _lowerCamelCase : Union[str, Any] = torch.cat( [self.ff(__lowerCAmelCase ) for hid_slice in norm_hidden_states.chunk(__lowerCAmelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: _lowerCamelCase : Any = self.ff(__lowerCAmelCase ) if self.use_ada_layer_norm_zero: _lowerCamelCase : Optional[int] = gate_mlp.unsqueeze(1 ) * ff_output _lowerCamelCase : int = ff_output + hidden_states return hidden_states class A_ ( nn.Module ): def __init__( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: int = 4 ,__lowerCAmelCase: float = 0.0 ,__lowerCAmelCase: str = "geglu" ,__lowerCAmelCase: bool = False ,): '''simple docstring''' super().__init__() _lowerCamelCase : Dict = int(dim * mult ) _lowerCamelCase : str = dim_out if dim_out is not None else dim if activation_fn == "gelu": _lowerCamelCase : str = GELU(__lowerCAmelCase ,__lowerCAmelCase ) if activation_fn == "gelu-approximate": _lowerCamelCase : Any = GELU(__lowerCAmelCase ,__lowerCAmelCase ,approximate="tanh" ) elif activation_fn == "geglu": _lowerCamelCase : Union[str, Any] = GEGLU(__lowerCAmelCase ,__lowerCAmelCase ) elif activation_fn == "geglu-approximate": _lowerCamelCase : Optional[int] = ApproximateGELU(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = nn.ModuleList([] ) # project in self.net.append(__lowerCAmelCase ) # project dropout self.net.append(nn.Dropout(__lowerCAmelCase ) ) # project out self.net.append(nn.Linear(__lowerCAmelCase ,__lowerCAmelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowerCAmelCase ) ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: int ): '''simple docstring''' for module in self.net: _lowerCamelCase : int = module(__lowerCAmelCase ) return hidden_states class A_ ( nn.Module ): def __init__( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: int ,__lowerCAmelCase: str = "none" ): '''simple docstring''' super().__init__() _lowerCamelCase : Dict = nn.Linear(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = approximate def _lowercase ( self: Optional[int] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__lowerCAmelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def _lowercase ( self: Dict ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.proj(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.gelu(__lowerCAmelCase ) return hidden_states class A_ ( nn.Module ): def __init__( self: str ,__lowerCAmelCase: int ,__lowerCAmelCase: int ): '''simple docstring''' super().__init__() _lowerCamelCase : Dict = nn.Linear(__lowerCAmelCase ,dim_out * 2 ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__lowerCAmelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.proj(__lowerCAmelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(__lowerCAmelCase ) class A_ ( nn.Module ): def __init__( self: Tuple ,__lowerCAmelCase: int ,__lowerCAmelCase: int ): '''simple docstring''' super().__init__() _lowerCamelCase : Optional[Any] = nn.Linear(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.proj(__lowerCAmelCase ) return x * torch.sigmoid(1.7_02 * x ) class A_ ( nn.Module ): def __init__( self: Optional[int] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' super().__init__() _lowerCamelCase : Dict = nn.Embedding(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = nn.SiLU() _lowerCamelCase : Dict = nn.Linear(__lowerCAmelCase ,embedding_dim * 2 ) _lowerCamelCase : Dict = nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = self.linear(self.silu(self.emb(__lowerCAmelCase ) ) ) _lowerCamelCase, _lowerCamelCase : Tuple = torch.chunk(__lowerCAmelCase ,2 ) _lowerCamelCase : Tuple = self.norm(__lowerCAmelCase ) * (1 + scale) + shift return x class A_ ( nn.Module ): def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: str ): '''simple docstring''' super().__init__() _lowerCamelCase : Optional[Any] = CombinedTimestepLabelEmbeddings(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[Any] = nn.SiLU() _lowerCamelCase : Union[str, Any] = nn.Linear(__lowerCAmelCase ,6 * embedding_dim ,bias=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = nn.LayerNorm(__lowerCAmelCase ,elementwise_affine=__lowerCAmelCase ,eps=1e-6 ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Tuple=None ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.linear(self.silu(self.emb(__lowerCAmelCase ,__lowerCAmelCase ,hidden_dtype=__lowerCAmelCase ) ) ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = emb.chunk(6 ,dim=1 ) _lowerCamelCase : int = self.norm(__lowerCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class A_ ( nn.Module ): def __init__( self: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: int ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: float = 1e-5 ): '''simple docstring''' super().__init__() _lowerCamelCase : str = num_groups _lowerCamelCase : int = eps if act_fn is None: _lowerCamelCase : List[str] = None else: _lowerCamelCase : List[str] = get_activation(__lowerCAmelCase ) _lowerCamelCase : Dict = nn.Linear(__lowerCAmelCase ,out_dim * 2 ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' if self.act: _lowerCamelCase : Optional[Any] = self.act(__lowerCAmelCase ) _lowerCamelCase : int = self.linear(__lowerCAmelCase ) _lowerCamelCase : int = emb[:, :, None, None] _lowerCamelCase, _lowerCamelCase : List[Any] = emb.chunk(2 ,dim=1 ) _lowerCamelCase : List[str] = F.group_norm(__lowerCAmelCase ,self.num_groups ,eps=self.eps ) _lowerCamelCase : List[str] = x * (1 + scale) + shift return x
46
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = ['''pixel_values'''] def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = size if size is not None else {'shortest_edge': 2_5_6} __a : str = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) __a : int = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __a : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) __a : Dict = do_resize __a : Union[str, Any] = size __a : Any = resample __a : List[Any] = do_center_crop __a : Any = crop_size __a : Tuple = do_rescale __a : Optional[int] = rescale_factor __a : Optional[int] = do_normalize __a : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ): '''simple docstring''' __a : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __a : int = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE__ ) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ): '''simple docstring''' __a : str = get_size_dict(SCREAMING_SNAKE_CASE__ ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Any , ): '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Tuple = do_resize if do_resize is not None else self.do_resize __a : Optional[int] = size if size is not None else self.size __a : int = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) __a : Dict = resample if resample is not None else self.resample __a : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __a : Optional[int] = crop_size if crop_size is not None else self.crop_size __a : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __a : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __a : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __a : Optional[Any] = image_mean if image_mean is not None else self.image_mean __a : List[Any] = image_std if image_std is not None else self.image_std __a : int = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __a : Any = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: __a : Any = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: __a : str = [self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: __a : List[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: __a : Any = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] __a : Tuple = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] __a : int = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
47
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :List[Any] = DiTPipeline snake_case__ :List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case__ :List[Any] = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } snake_case__ :Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case__ :Dict = False def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__magic_name__ , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=__magic_name__ , ) lowerCAmelCase__ = AutoencoderKL() lowerCAmelCase__ = DDIMScheduler() lowerCAmelCase__ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=0 ): """simple docstring""" if str(__magic_name__ ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(__magic_name__ ) else: lowerCAmelCase__ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) lowerCAmelCase__ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = "cpu" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = self.get_dummy_inputs(__magic_name__ ) lowerCAmelCase__ = pipe(**__magic_name__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowerCAmelCase__ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) lowerCAmelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__ , 1E-3 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=__magic_name__ , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) lowerCAmelCase__ = ["vase", "umbrella", "white shark", "white wolf"] lowerCAmelCase__ = pipe.get_label_ids(__magic_name__ ) lowerCAmelCase__ = pipe(__magic_name__ , generator=__magic_name__ , num_inference_steps=40 , output_type="np" ).images for word, image in zip(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) lowerCAmelCase__ = ["vase", "umbrella"] lowerCAmelCase__ = pipe.get_label_ids(__magic_name__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe(__magic_name__ , generator=__magic_name__ , num_inference_steps=25 , output_type="np" ).images for word, image in zip(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
48
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =XGLMTokenizer _lowerCamelCase =XGLMTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(a__ ) , 1008 ) def __snake_case ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __snake_case ( self : Optional[Any] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ ) UpperCAmelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def __snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : int ): UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : Any ): # fmt: off UpperCAmelCase = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
51
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : Union[str, Any] ): __UpperCAmelCase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __UpperCAmelCase = { '''input_ids''': tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __UpperCAmelCase = model(_lowercase )['''last_hidden_state'''] __UpperCAmelCase = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. __UpperCAmelCase = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
49
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : str = '▁' UpperCamelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} UpperCamelCase : Optional[Any] = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } UpperCamelCase : str = {'vinai/bartpho-syllable': 10_24} class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = vocab_file lowerCamelCase__ = monolingual_vocab_file lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCamelCase__ = {} lowerCamelCase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_lowerCAmelCase ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ = cnt cnt += 1 with open(_lowerCAmelCase ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): lowerCamelCase__ = line.strip().split()[0] lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) if str(_lowerCAmelCase ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None lowerCamelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_ids_to_tokens ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.fairseq_ids_to_tokens[index] def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase ,""" """ ).strip() return out_string def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(_lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
50
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a__ : List[Any] = logging.get_logger(__name__) a__ : int = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off a__ : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a__ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="whisper" _lowerCamelCase =["past_key_values"] _lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ): UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @property def __snake_case ( self : List[str] ): UpperCAmelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ): UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) UpperCAmelCase = encoder_inputs['''input_features'''].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) UpperCAmelCase = encoder_inputs.pop('''input_features''' ) UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __snake_case ( self : Dict ): return 1e-3
51
0
"""simple docstring""" from collections import defaultdict def __A ( a_ :int) -> int: __a : Dict = 1 __a : Any = True for v in tree[start]: if v not in visited: ret += dfs(a_) if ret % 2 == 0: cuts.append(a_) return ret def __A ( ) -> List[Any]: dfs(1) if __name__ == "__main__": A , A = 10, 9 A = defaultdict(list) A = {} A = [] A = 0 A = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
52
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =LEDConfig _lowerCamelCase ={} _lowerCamelCase ="gelu" def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ ) UpperCAmelCase = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ): UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(a__ , attention_mask=a__ )[0] UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1e-3 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ ) def __snake_case ( self : int ): self.config_tester.run_common_tests() def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a__ : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a__ : int ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __snake_case ( self : Any ): pass def __snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) a__ : int = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 ) def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
51
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _snake_case : Optional[int] = logging.get_logger(__name__) # General docstring _snake_case : int = 'RegNetConfig' # Base docstring _snake_case : List[str] = 'facebook/regnet-y-040' _snake_case : List[Any] = [1, 1088, 7, 7] # Image classification docstring _snake_case : List[Any] = 'facebook/regnet-y-040' _snake_case : Union[str, Any] = 'tabby, tabby cat' _snake_case : str = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[str] = "relu" , **lowerCAmelCase_ : Any , ) -> Tuple: super().__init__(**lowerCAmelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCAmelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowerCAmelCase = tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , strides=lowerCAmelCase_ , padding='VALID' , groups=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name='convolution' , ) __lowerCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) __lowerCAmelCase = ACTaFN[activation] if activation is not None else tf.identity def lowercase ( self : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: __lowerCAmelCase = self.convolution(self.padding(lowerCAmelCase_ ) ) __lowerCAmelCase = self.normalization(lowerCAmelCase_ ) __lowerCAmelCase = self.activation(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : RegNetConfig , **lowerCAmelCase_ : Optional[Any] ) -> List[Any]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = config.num_channels __lowerCAmelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = shape_list(lowerCAmelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCAmelCase = tf.transpose(lowerCAmelCase_ , perm=(0, 2, 3, 1) ) __lowerCAmelCase = self.embedder(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 2 , **lowerCAmelCase_ : Tuple ) -> List[str]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=1 , strides=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name='convolution' ) __lowerCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def lowercase ( self : List[Any] , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(lowerCAmelCase_ ) , training=lowerCAmelCase_ ) class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ) -> str: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name='pooler' ) __lowerCAmelCase = [ tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] ) -> Optional[int]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowerCAmelCase = self.pooler(lowerCAmelCase_ ) for layer_module in self.attention: __lowerCAmelCase = layer_module(lowerCAmelCase_ ) __lowerCAmelCase = hidden_state * pooled return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : Optional[int] ) -> List[str]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = max(1 , out_channels // config.groups_width ) __lowerCAmelCase = ( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCAmelCase = [ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name='layer.2' ), ] __lowerCAmelCase = ACTaFN[config.hidden_act] def lowercase ( self : List[str] , lowerCAmelCase_ : str ) -> Union[str, Any]: __lowerCAmelCase = hidden_state for layer_module in self.layers: __lowerCAmelCase = layer_module(lowerCAmelCase_ ) __lowerCAmelCase = self.shortcut(lowerCAmelCase_ ) hidden_state += residual __lowerCAmelCase = self.activation(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : List[str] ) -> str: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = max(1 , out_channels // config.groups_width ) __lowerCAmelCase = ( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) __lowerCAmelCase = [ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowerCAmelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name='layer.3' ), ] __lowerCAmelCase = ACTaFN[config.hidden_act] def lowercase ( self : Tuple , lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = hidden_state for layer_module in self.layers: __lowerCAmelCase = layer_module(lowerCAmelCase_ ) __lowerCAmelCase = self.shortcut(lowerCAmelCase_ ) hidden_state += residual __lowerCAmelCase = self.activation(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer __lowerCAmelCase = [ # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , name='layers.0' ), *[layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowercase ( self : int , lowerCAmelCase_ : int ) -> str: for layer_module in self.layers: __lowerCAmelCase = layer_module(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : RegNetConfig , **lowerCAmelCase_ : str ) -> List[str]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) __lowerCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCAmelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ , name=f"""stages.{i+1}""" ) ) def lowercase ( self : Any , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> TFBaseModelOutputWithNoAttention: __lowerCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) __lowerCAmelCase = stage_module(lowerCAmelCase_ ) if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ ) @keras_serializable class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" a_ = RegNetConfig def __init__( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[Any] ) -> str: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = config __lowerCAmelCase = TFRegNetEmbeddings(lowerCAmelCase_ , name='embedder' ) __lowerCAmelCase = TFRegNetEncoder(lowerCAmelCase_ , name='encoder' ) __lowerCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name='pooler' ) @unpack_inputs def lowercase ( self : str , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.embedder(lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCAmelCase = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(lowerCAmelCase_ ) # Change to NCHW output format have uniformity in the modules __lowerCAmelCase = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) __lowerCAmelCase = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCAmelCase = tuple([tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = RegNetConfig a_ = """regnet""" a_ = """pixel_values""" @property def lowercase ( self : Tuple ) -> List[str]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _snake_case : List[str] = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' _snake_case : Union[str, Any] = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , _UpperCamelCase , ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : RegNetConfig , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[str] ) -> int: super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = TFRegNetMainLayer(lowerCAmelCase_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase ( self : int , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : List[Any]=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.regnet( pixel_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _UpperCamelCase , ) class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def __init__( self : str , lowerCAmelCase_ : RegNetConfig , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Tuple ) -> Dict: super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = TFRegNetMainLayer(lowerCAmelCase_ , name='regnet' ) # classification head __lowerCAmelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : tf.Tensor = None , lowerCAmelCase_ : tf.Tensor = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : str=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.regnet( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCAmelCase = self.classifier[0](lowerCAmelCase_ ) __lowerCAmelCase = self.classifier[1](lowerCAmelCase_ ) __lowerCAmelCase = None if labels is None else self.hf_compute_loss(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) if not return_dict: __lowerCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states )
53
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import re from filelock import FileLock try: import nltk __lowercase : str =True except (ImportError, ModuleNotFoundError): __lowercase : Optional[Any] =False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def a__ ( lowercase__ ): '''simple docstring''' re.sub("<n>" , "" , lowercase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase__ ) )
54
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
0
from collections import deque from math import floor from random import random from time import time class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple ): __A = {} def UpperCamelCase_ ( self : List[Any] ,A : int ,A : str ,A : Optional[int]=1 ): if self.graph.get(A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __A = [[w, v]] if not self.graph.get(A ): __A = [] def UpperCamelCase_ ( self : Any ): return list(self.graph ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ): if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) def UpperCamelCase_ ( self : List[Any] ,A : str=-2 ,A : List[str]=-1 ): if s == d: return [] __A = [] __A = [] if s == -2: __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = ss # check if se have reached the starting point if len(A ) == 0: return visited def UpperCamelCase_ ( self : str ,A : Union[str, Any]=-1 ): if c == -1: __A = floor(random() * 1_00_00 ) + 10 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __A = floor(random() * c ) + 1 if n != i: self.add_pair(A ,A ,1 ) def UpperCamelCase_ ( self : int ,A : str=-2 ): __A = deque() __A = [] if s == -2: __A = list(self.graph )[0] d.append(A ) visited.append(A ) while d: __A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase_ ( self : Tuple ,A : int ): __A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCamelCase_ ( self : Any ,A : List[str] ): return len(self.graph[u] ) def UpperCamelCase_ ( self : Optional[int] ,A : Any=-2 ): __A = [] __A = [] if s == -2: __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = s __A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = ss # check if se have reached the starting point if len(A ) == 0: return sorted_nodes def UpperCamelCase_ ( self : List[Any] ): __A = [] __A = [] __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = False indirect_parents.append(A ) __A = s __A = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def UpperCamelCase_ ( self : str ): __A = [] __A = [] __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = False indirect_parents.append(A ) __A = s __A = ss # check if se have reached the starting point if len(A ) == 0: return False def UpperCamelCase_ ( self : Tuple ,A : Dict=-2 ,A : Any=-1 ): __A = time() self.dfs(A ,A ) __A = time() return end - begin def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any]=-2 ): __A = time() self.bfs(A ) __A = time() return end - begin class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ): __A = {} def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ,A : Union[str, Any] ,A : Union[str, Any]=1 ): # check if the u exists if self.graph.get(A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __A = [[w, v]] # add the other way if self.graph.get(A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __A = [[w, u]] def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : Optional[Any] ): if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) # the other way round if self.graph.get(A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=-2 ,A : int=-1 ): if s == d: return [] __A = [] __A = [] if s == -2: __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = ss # check if se have reached the starting point if len(A ) == 0: return visited def UpperCamelCase_ ( self : Optional[Any] ,A : Dict=-1 ): if c == -1: __A = floor(random() * 1_00_00 ) + 10 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __A = floor(random() * c ) + 1 if n != i: self.add_pair(A ,A ,1 ) def UpperCamelCase_ ( self : List[str] ,A : Union[str, Any]=-2 ): __A = deque() __A = [] if s == -2: __A = list(self.graph )[0] d.append(A ) visited.append(A ) while d: __A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase_ ( self : int ,A : Optional[Any] ): return len(self.graph[u] ) def UpperCamelCase_ ( self : str ): __A = [] __A = [] __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = False indirect_parents.append(A ) __A = s __A = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def UpperCamelCase_ ( self : Any ): __A = [] __A = [] __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = False indirect_parents.append(A ) __A = s __A = ss # check if se have reached the starting point if len(A ) == 0: return False def UpperCamelCase_ ( self : Union[str, Any] ): return list(self.graph ) def UpperCamelCase_ ( self : Dict ,A : Any=-2 ,A : int=-1 ): __A = time() self.dfs(A ,A ) __A = time() return end - begin def UpperCamelCase_ ( self : str ,A : List[str]=-2 ): __A = time() self.bfs(A ) __A = time() return end - begin
55
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
51
0
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : str = logging.get_logger(__name__) _a : str = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = "owlvit_text_model" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : int=4_9408 , SCREAMING_SNAKE_CASE_ : Dict=512 , SCREAMING_SNAKE_CASE_ : Any=2048 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE_ : Any="quick_gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : int=0.0_2 , SCREAMING_SNAKE_CASE_ : List[Any]=1.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0 , SCREAMING_SNAKE_CASE_ : List[Any]=4_9406 , SCREAMING_SNAKE_CASE_ : int=4_9407 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Tuple: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = max_position_embeddings __snake_case = hidden_act __snake_case = layer_norm_eps __snake_case = attention_dropout __snake_case = initializer_range __snake_case = initializer_factor @classmethod def a ( cls : Dict , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __snake_case = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = "owlvit_vision_model" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int=768 , SCREAMING_SNAKE_CASE_ : List[Any]=3072 , SCREAMING_SNAKE_CASE_ : Any=12 , SCREAMING_SNAKE_CASE_ : List[Any]=12 , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : Any=768 , SCREAMING_SNAKE_CASE_ : Optional[int]=32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="quick_gelu" , SCREAMING_SNAKE_CASE_ : Any=1e-5 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1.0 , **SCREAMING_SNAKE_CASE_ : str , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = num_channels __snake_case = image_size __snake_case = patch_size __snake_case = hidden_act __snake_case = layer_norm_eps __snake_case = attention_dropout __snake_case = initializer_range __snake_case = initializer_factor @classmethod def a ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "owlvit" _SCREAMING_SNAKE_CASE : int = True def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Tuple=512 , SCREAMING_SNAKE_CASE_ : Dict=2.6_5_9_2 , SCREAMING_SNAKE_CASE_ : Tuple=True , **SCREAMING_SNAKE_CASE_ : Any , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE_ ) if text_config is None: __snake_case = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: __snake_case = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) __snake_case = OwlViTTextConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = projection_dim __snake_case = logit_scale_init_value __snake_case = return_dict __snake_case = 1.0 @classmethod def a ( cls : Dict , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @classmethod def a ( cls : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Dict ) -> Any: __snake_case = {} __snake_case = text_config __snake_case = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.text_config.to_dict() __snake_case = self.vision_config.to_dict() __snake_case = self.__class__.model_type return output class _lowercase ( __lowercase ): @property def a ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def a ( self : Optional[int] ) -> float: return 1e-4 def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : "ProcessorMixin" , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: __snake_case = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) __snake_case = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) return {**text_input_dict, **image_input_dict} @property def a ( self : Tuple ) -> int: return 14
56
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
51
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex A_ : str = logging.getLogger(__name__) class _lowerCAmelCase: """simple docstring""" def __init__( self ): UpperCamelCase_: Optional[int] = False def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not self.initialized: UpperCamelCase_: Optional[Any] = RagRetriever( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) UpperCamelCase_: str = True def _a ( self ): self.retriever.index.init_index() def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ ,UpperCamelCase_: Any = self.retriever._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return doc_ids, retrieved_doc_embeds class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): if index is not None and index.is_initialized() and len(_lowerCamelCase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) UpperCamelCase_: List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for worker in self.retrieval_workers ] ) def _a ( self ): logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , _lowerCamelCase , _lowerCamelCase ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCamelCase_: Union[str, Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCamelCase_ ,UpperCamelCase_: str = ray.get(random_worker.retrieve.remote(_lowerCamelCase , _lowerCamelCase ) ) else: UpperCamelCase_ ,UpperCamelCase_: Dict = self._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCamelCase ) @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): return super(_lowerCamelCase , cls ).get_tokenizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_: List[str] = kwargs.pop('config' , _lowerCamelCase ) or RagConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Optional[int] = RagTokenizer.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) UpperCamelCase_: List[str] = rag_tokenizer.question_encoder UpperCamelCase_: List[Any] = rag_tokenizer.generator if indexed_dataset is not None: UpperCamelCase_: Union[str, Any] = 'custom' UpperCamelCase_: int = CustomHFIndex(config.retrieval_vector_size , _lowerCamelCase ) else: UpperCamelCase_: str = cls._build_index(_lowerCamelCase ) return cls( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , retrieval_workers=_lowerCamelCase , index=_lowerCamelCase , )
57
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
0
"""simple docstring""" import argparse import os import re import packaging.version __lowerCAmelCase : Optional[Any] = '''examples/''' __lowerCAmelCase : Union[str, Any] = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __lowerCAmelCase : Union[str, Any] = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } __lowerCAmelCase : List[Any] = '''README.md''' def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : Any = f.read() snake_case_ , snake_case_ : Optional[int] = REPLACE_PATTERNS[pattern] snake_case_ : Union[str, Any] = replace.replace("""VERSION""" , __UpperCamelCase ) snake_case_ : List[Any] = re_pattern.sub(__UpperCamelCase , __UpperCamelCase ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , pattern="""examples""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : int=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = """🤗 Transformers currently provides the following architectures""" snake_case_ : Union[str, Any] = """1. Want to contribute a new model?""" with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() # Find the start of the list. snake_case_ : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 snake_case_ : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): snake_case_ : Any = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: snake_case_ : Any = f.read() snake_case_ : Tuple = REPLACE_PATTERNS["""init"""][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str=False ): '''simple docstring''' snake_case_ : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: snake_case_ : str = default_version.base_version elif patch: snake_case_ : str = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: snake_case_ : str = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. snake_case_ : int = input(F'Which version are you releasing? [{default_version}]' ) if len(__UpperCamelCase ) == 0: snake_case_ : Optional[int] = default_version print(F'Updating version to {version}.' ) global_version_update(__UpperCamelCase , patch=__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = get_version() snake_case_ : str = F'{current_version.major}.{current_version.minor + 1}.0.dev0' snake_case_ : Tuple = current_version.base_version # Check with the user we got that right. snake_case_ : Optional[int] = input(F'Which version are we developing now? [{dev_version}]' ) if len(__UpperCamelCase ) == 0: snake_case_ : Dict = dev_version print(F'Updating version to {version}.' ) global_version_update(__UpperCamelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __lowerCAmelCase : str = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
58
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ ) def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(a__ ) if do_resize: UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: UpperCAmelCase = self.center_crop(a__ , size=a__ ) if do_rescale: UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ ) UpperCAmelCase = to_channel_dimension_format(a__ , a__ ) return image def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(a__ ) UpperCAmelCase = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=a__ , tensor_type=a__ )
51
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' requires_backends(self , ["bs4"]) super().__init__(**UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =[] lowerCamelCase__: List[str] =[] lowerCamelCase__: Optional[Any] =element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCamelCase__: Any =parent.find_all(child.name , recursive=UpperCAmelCase_) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(UpperCAmelCase_) else next(i for i, s in enumerate(UpperCAmelCase_ , 1) if s is child)) lowerCamelCase__: Union[str, Any] =parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =BeautifulSoup(UpperCAmelCase_ , "html.parser") lowerCamelCase__: Tuple =[] lowerCamelCase__: Tuple =[] lowerCamelCase__: Any =[] for element in html_code.descendants: if type(UpperCAmelCase_) == bsa.element.NavigableString: if type(element.parent) != bsa.element.Tag: continue lowerCamelCase__: Tuple =html.unescape(UpperCAmelCase_).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Optional[int] =self.xpath_soup(UpperCAmelCase_) stringaxtag_seq.append(UpperCAmelCase_) stringaxsubs_seq.append(UpperCAmelCase_) if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError("Number of doc strings and xtags does not correspond") if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError("Number of doc strings and xsubs does not correspond") return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] ="" for tagname, subs in zip(UpperCAmelCase_ , UpperCAmelCase_): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__(self : Tuple , UpperCAmelCase_ : Any) ->BatchFeature: '''simple docstring''' lowerCamelCase__: List[str] =False # Check that strings has a valid type if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =True elif isinstance(UpperCAmelCase_ , (list, tuple)): if len(UpperCAmelCase_) == 0 or isinstance(html_strings[0] , UpperCAmelCase_): lowerCamelCase__: str =True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F"""but is of type {type(UpperCAmelCase_)}.""") lowerCamelCase__: Tuple =bool(isinstance(UpperCAmelCase_ , (list, tuple)) and (isinstance(html_strings[0] , UpperCAmelCase_))) if not is_batched: lowerCamelCase__: List[Any] =[html_strings] # Get nodes + xpaths lowerCamelCase__: List[str] =[] lowerCamelCase__: List[str] =[] for html_string in html_strings: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self.get_three_from_single(UpperCAmelCase_) nodes.append(UpperCAmelCase_) lowerCamelCase__: Any =[] for node, tag_list, sub_list in zip(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: List[Any] =self.construct_xpath(UpperCAmelCase_ , UpperCAmelCase_) xpath_strings.append(UpperCAmelCase_) xpaths.append(UpperCAmelCase_) # return as Dict lowerCamelCase__: int ={"nodes": nodes, "xpaths": xpaths} lowerCamelCase__: int =BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_) return encoded_inputs
59
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ): super(a__ , self ).__init__() UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ ) UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 ) UpperCAmelCase = torch.nn.Softmax(dim=1 ) def __snake_case ( self : List[Any] , **a__ : Tuple ): return self.bert(**a__ ).last_hidden_state def __snake_case ( self : int , a__ : List[str] ): return token_embeddings.sum(2 , keepdim=a__ ) def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ): return self.softmax(T * self.cos(a__ , a__ ) ) def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ): UpperCAmelCase = W_supports['''sizes'''].tolist() UpperCAmelCase = W_supports['''start_token_id'''].item() UpperCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = W_supports['''input_ids'''] == start_token_id UpperCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(a__ ): if i == 0: UpperCAmelCase = 0 else: UpperCAmelCase = support_sizes[i - 1] UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase = torch.vstack((p_starts, p_start) ) UpperCAmelCase = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase = p_start UpperCAmelCase = p_end return p_starts, p_ends
51
0
import requests def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> None: """simple docstring""" snake_case_ : Tuple = {'''Content-Type''': '''application/json'''} snake_case_ : Any = requests.post(_UpperCamelCase , json={'''text''': message_body} , headers=_UpperCamelCase ) if response.status_code != 200: snake_case_ : List[Any] = ( '''Request to slack returned an error ''' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(_UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
60
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =(EulerDiscreteScheduler,) _lowerCamelCase =10 def __snake_case ( self : str , **a__ : Tuple ): UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def __snake_case ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __snake_case ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def __snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
51
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCamelCase = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCamelCase = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' UpperCamelCase = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def a ( self : Tuple ) -> Any: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Tuple: lowerCAmelCase__ = len(references[0] ) if any(len(SCREAMING_SNAKE_CASE__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE__ )] lowerCAmelCase__ = TER( normalized=SCREAMING_SNAKE_CASE__ , no_punct=SCREAMING_SNAKE_CASE__ , asian_support=SCREAMING_SNAKE_CASE__ , case_sensitive=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = sb_ter.corpus_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
61
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( metadata={"help": "The csv file to plot."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowerCamelCase =list_field( default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : Optional[int] ): UpperCAmelCase = args UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCAmelCase = csv.DictReader(a__ ) for row in reader: UpperCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCAmelCase = float(row['''result'''] ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = plt.subplots() UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCAmelCase = self.result_dict[model_name]['''result'''] ((UpperCAmelCase), (UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , ) else: UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase), (UpperCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )] plt.scatter( a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a__ , a__ , '''--''' ) title_str += f" {label_model_name} vs." UpperCAmelCase = title_str[:-4] UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(a__ ) plt.xlabel(a__ ) plt.ylabel(a__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
51
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : Tuple = '''BlipImageProcessor''' UpperCamelCase_ : List[str] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : int = False super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase_ : ImageInput = None , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : str , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: SCREAMING_SNAKE_CASE : str = self.tokenizer SCREAMING_SNAKE_CASE : int = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) return text_encoding # add pixel_values SCREAMING_SNAKE_CASE : Tuple = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) else: SCREAMING_SNAKE_CASE : Tuple = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase_ ) return encoding_image_processor def _A ( self : Optional[int] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Optional[int] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
62
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file: try: UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = True elif task_name.startswith('''voc_''' ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = '''pascal-voc-id2label.json''' UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int: """simple docstring""" if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''mobilevitv2.''' UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
0
def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : float ): return round(float(moles / volume ) * nfactor ) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
63
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
0
from datetime import datetime as dt import os from github import Github lowercase_ : int = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def A__ ( ): SCREAMING_SNAKE_CASE__: int= Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE__: Union[str, Any]= g.get_repo('''huggingface/transformers''' ) SCREAMING_SNAKE_CASE__: int= repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE__: Optional[int]= sorted([comment for comment in issue.get_comments()] , key=lambda snake_case_ : i.created_at , reverse=snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[Any]= comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
64
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): def __init__( self : Optional[Any] ,A : str ,A : str=13 ,A : Optional[int]=7 ,A : str=True ,A : Any=True ,A : Union[str, Any]=True ,A : List[Any]=True ,A : Union[str, Any]=99 ,A : Optional[Any]=32 ,A : List[str]=5 ,A : Union[str, Any]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Tuple=0.1 ,A : Optional[int]=0.1 ,A : Optional[int]=512 ,A : List[str]=16 ,A : Any=2 ,A : int=0.0_2 ,A : Any=4 ,): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : List[str] = use_attention_mask UpperCAmelCase__ : Dict = use_token_type_ids UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : List[str] = vocab_size UpperCAmelCase__ : Tuple = hidden_size UpperCAmelCase__ : str = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : List[Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Dict = num_choices def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : Any = None if self.use_attention_mask: UpperCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : List[Any] = None if self.use_token_type_ids: UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase__ : Any = RobertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = config_and_inputs UpperCAmelCase__ : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = config_and_inputs UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = True snake_case_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxRobertaModelTester(self ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Any = model_class_name.from_pretrained("""roberta-base""" ,from_pt=A ) UpperCAmelCase__ : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(A )
65
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Union[str, Any] = 0 while number > 0: _lowercase : List[Any] = number % 10 sum_of_digits += last_digit _lowercase : Tuple = number // 10 # Removing the last_digit from the given number return sum_of_digits def __magic_name__ ( SCREAMING_SNAKE_CASE = 100 ) -> int: _lowercase : List[Any] = factorial(SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = split_and_add(SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
66
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def SCREAMING_SNAKE_CASE__ ( snake_case__ :BertModel , snake_case__ :str , snake_case__ :str ) -> int: _lowercase = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') _lowercase = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) _lowercase = model.state_dict() def to_tf_var_name(snake_case__ :str ): for patt, repl in iter(snake_case__ ): _lowercase = name.replace(snake_case__ , snake_case__ ) return F"""bert/{name}""" def create_tf_var(snake_case__ :np.ndarray , snake_case__ :str , snake_case__ :tf.Session ): _lowercase = tf.dtypes.as_dtype(tensor.dtype ) _lowercase = tf.get_variable(dtype=snake_case__ , shape=tensor.shape , name=snake_case__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowercase = to_tf_var_name(snake_case__ ) _lowercase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowercase = torch_tensor.T _lowercase = create_tf_var(tensor=snake_case__ , name=snake_case__ , session=snake_case__ ) tf.keras.backend.set_value(snake_case__ , snake_case__ ) _lowercase = session.run(snake_case__ ) print(F"""Successfully created {tf_name}: {np.allclose(snake_case__ , snake_case__ )}""" ) _lowercase = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case__ , os.path.join(snake_case__ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any=None ) -> List[str]: _lowercase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=snake_case__ , required=snake_case__ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=snake_case__ , default=snake_case__ , required=snake_case__ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=snake_case__ , required=snake_case__ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=snake_case__ , required=snake_case__ , help='Directory in which to save tensorflow model' ) _lowercase = parser.parse_args(snake_case__ ) _lowercase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=snake_case__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
67
'''simple docstring''' from math import factorial def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int: """simple docstring""" return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
51
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
68
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
0
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self : str , a_ : str , a_ : Optional[int] , a_ : Optional[Any] , a_ : List[str] , a_ : int=1 , a_ : str=False , **a_ : Optional[int] ): """simple docstring""" super().__init__(**a_ ) __snake_case = vocab_size __snake_case = d_embed __snake_case = d_proj __snake_case = cutoffs + [vocab_size] __snake_case = [0] + self.cutoffs __snake_case = div_val __snake_case = self.cutoffs[0] __snake_case = len(self.cutoffs ) - 1 __snake_case = self.shortlist_size + self.n_clusters __snake_case = keep_order __snake_case = [] __snake_case = [] def A ( self : int , a_ : List[str] ): """simple docstring""" if self.n_clusters > 0: __snake_case = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=a_ , name="cluster_weight" ) __snake_case = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=a_ , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: __snake_case = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=a_ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(a_ ) else: self.out_projs.append(a_ ) __snake_case = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=a_ , name=f'''out_layers_._{i}_._weight''' , ) __snake_case = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=a_ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): __snake_case , __snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case = self.d_embed // (self.div_val**i) __snake_case = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=a_ , name=f'''out_projs_._{i}''' ) self.out_projs.append(a_ ) __snake_case = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=a_ , name=f'''out_layers_._{i}_._weight''' , ) __snake_case = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=a_ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(a_ ) @staticmethod def A ( a_ : str , a_ : Tuple , a_ : Tuple , a_ : List[str]=None ): """simple docstring""" __snake_case = x if proj is not None: __snake_case = tf.einsum("ibd,ed->ibe" , a_ , a_ ) return tf.einsum("ibd,nd->ibn" , a_ , a_ ) + b @staticmethod def A ( a_ : int , a_ : Optional[Any] ): """simple docstring""" __snake_case = shape_list(a_ ) __snake_case = tf.range(lp_size[0] , dtype=target.dtype ) __snake_case = tf.stack([r, target] , 1 ) return tf.gather_nd(a_ , a_ ) def A ( self : Optional[int] , a_ : Dict , a_ : Dict , a_ : Tuple=True , a_ : Optional[Any]=False ): """simple docstring""" __snake_case = 0 if self.n_clusters == 0: __snake_case = self._logit(a_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: __snake_case = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=a_ , logits=a_ ) __snake_case = tf.nn.log_softmax(a_ , axis=-1 ) else: __snake_case = shape_list(a_ ) __snake_case = [] __snake_case = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): __snake_case , __snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: __snake_case = (target >= l_idx) & (target < r_idx) __snake_case = tf.where(a_ ) __snake_case = tf.boolean_mask(a_ , a_ ) - l_idx if self.div_val == 1: __snake_case = self.out_layers[0][0][l_idx:r_idx] __snake_case = self.out_layers[0][1][l_idx:r_idx] else: __snake_case = self.out_layers[i][0] __snake_case = self.out_layers[i][1] if i == 0: __snake_case = tf.concat([cur_W, self.cluster_weight] , 0 ) __snake_case = tf.concat([cur_b, self.cluster_bias] , 0 ) __snake_case = self._logit(a_ , a_ , a_ , self.out_projs[0] ) __snake_case = tf.nn.log_softmax(a_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: __snake_case = tf.boolean_mask(a_ , a_ ) __snake_case = self._gather_logprob(a_ , a_ ) else: __snake_case = self._logit(a_ , a_ , a_ , self.out_projs[i] ) __snake_case = tf.nn.log_softmax(a_ ) __snake_case = self.cutoffs[0] + i - 1 # No probability for the head cluster __snake_case = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(a_ ) if target is not None: __snake_case = tf.boolean_mask(a_ , a_ ) __snake_case = tf.boolean_mask(a_ , a_ ) __snake_case = self._gather_logprob(a_ , a_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(a_ , -cur_logprob , shape_list(a_ ) ) __snake_case = tf.concat(a_ , axis=-1 ) if target is not None: if return_mean: __snake_case = tf.reduce_mean(a_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(a_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(a_ , name=self.name , aggregation="mean" if return_mean else "" ) return out
69
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase : Tuple = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase : Optional[Any] = concatenate_datasets lowerCamelCase : int = DownloadConfig lowerCamelCase : str = DownloadManager lowerCamelCase : Dict = DownloadMode lowerCamelCase : int = DownloadConfig lowerCamelCase : Union[str, Any] = DownloadMode lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
70
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _snake_case : @property def UpperCamelCase__ ( self ): return self.get_dummy_input() @property def UpperCamelCase__ ( self ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def UpperCamelCase__ ( self ,_snake_case=True ,_snake_case=False ,_snake_case=False ,_snake_case=False ,): UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Any = 32 UpperCAmelCase_ : Tuple = (32, 32) UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : str = torch.device(_snake_case ) UpperCAmelCase_ : Optional[Any] = (batch_size, num_channels) + sizes UpperCAmelCase_ : Tuple = randn_tensor(_snake_case ,generator=_snake_case ,device=_snake_case ) UpperCAmelCase_ : Union[str, Any] = {"hidden_states": hidden_states} if include_temb: UpperCAmelCase_ : Optional[Any] = 1_28 UpperCAmelCase_ : Any = randn_tensor((batch_size, temb_channels) ,generator=_snake_case ,device=_snake_case ) if include_res_hidden_states_tuple: UpperCAmelCase_ : Optional[Any] = torch.manual_seed(1 ) UpperCAmelCase_ : List[str] = (randn_tensor(_snake_case ,generator=_snake_case ,device=_snake_case ),) if include_encoder_hidden_states: UpperCAmelCase_ : int = floats_tensor((batch_size, 32, 32) ).to(_snake_case ) if include_skip_sample: UpperCAmelCase_ : str = randn_tensor(((batch_size, 3) + sizes) ,generator=_snake_case ,device=_snake_case ) return dummy_input def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = { "in_channels": 32, "out_channels": 32, "temb_channels": 1_28, } if self.block_type == "up": UpperCAmelCase_ : List[str] = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) UpperCAmelCase_ : List[Any] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : Tuple = self.block_class(**_snake_case ) unet_block.to(_snake_case ) unet_block.eval() with torch.no_grad(): UpperCAmelCase_ : Any = unet_block(**_snake_case ) if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : List[Any] = output[0] self.assertEqual(output.shape ,self.output_shape ) UpperCAmelCase_ : Union[str, Any] = output[0, -1, -3:, -3:] UpperCAmelCase_ : Tuple = torch.tensor(_snake_case ).to(_snake_case ) assert torch_all_close(output_slice.flatten() ,_snake_case ,atol=5E-3 ) @unittest.skipIf(torch_device == "mps" ,"Training is not supported in mps" ) def UpperCamelCase__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : Tuple = self.block_class(**_snake_case ) model.to(_snake_case ) model.train() UpperCAmelCase_ : List[Any] = model(**_snake_case ) if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : Optional[Any] = output[0] UpperCAmelCase_ : int = torch.device(_snake_case ) UpperCAmelCase_ : List[str] = randn_tensor(output.shape ,device=_snake_case ) UpperCAmelCase_ : str = torch.nn.functional.mse_loss(_snake_case ,_snake_case ) loss.backward()
71
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =XGLMTokenizer _lowerCamelCase =XGLMTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(a__ ) , 1008 ) def __snake_case ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __snake_case ( self : Optional[Any] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ ) UpperCAmelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def __snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : int ): UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : Any ): # fmt: off UpperCAmelCase = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
51
0
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _UpperCAmelCase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *snake_case_ , **snake_case_ ): super().__init__(*snake_case_ , **snake_case_ ) self.check_model_type(snake_case_ ) def _A( self , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ): lowercase , lowercase ={}, {} if padding is not None: lowercase =padding if truncation is not None: lowercase =truncation if top_k is not None: lowercase =top_k return preprocess_params, {}, postprocess_params def __call__( self , snake_case_ , snake_case_ = None , **snake_case_ ): if isinstance(snake_case_ , (Image.Image, str) ) and isinstance(snake_case_ , snake_case_ ): lowercase ={'''image''': image, '''question''': question} else: lowercase =image lowercase =super().__call__(snake_case_ , **snake_case_ ) return results def _A( self , snake_case_ , snake_case_=False , snake_case_=False ): lowercase =load_image(inputs['''image'''] ) lowercase =self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=snake_case_ , truncation=snake_case_ ) lowercase =self.image_processor(images=snake_case_ , return_tensors=self.framework ) model_inputs.update(snake_case_ ) return model_inputs def _A( self , snake_case_ ): lowercase =self.model(**snake_case_ ) return model_outputs def _A( self , snake_case_ , snake_case_=5 ): if top_k > self.model.config.num_labels: lowercase =self.model.config.num_labels if self.framework == "pt": lowercase =model_outputs.logits.sigmoid()[0] lowercase , lowercase =probs.topk(snake_case_ ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase =scores.tolist() lowercase =ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(snake_case_ , snake_case_ )]
72
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session') def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string')), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'])), 'answers': datasets.Sequence( { 'text': datasets.Value('string'), 'answer_start': datasets.Value('int32'), }), 'id': datasets.Value('int64'), }) SCREAMING_SNAKE_CASE = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(_UpperCAmelCase)), } , features=_UpperCAmelCase , ) return dataset @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'file.arrow') dataset.map(cache_file_name=_UpperCAmelCase) return filename # FILE_CONTENT + files a_ : Tuple = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'file.txt' SCREAMING_SNAKE_CASE = FILE_CONTENT with open(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase) return filename @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): import bza SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'file.txt.bz2' SCREAMING_SNAKE_CASE = bytes(_UpperCAmelCase , 'utf-8') with bza.open(_UpperCAmelCase , 'wb') as f: f.write(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): import gzip SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'file.txt.gz') SCREAMING_SNAKE_CASE = bytes(_UpperCAmelCase , 'utf-8') with gzip.open(_UpperCAmelCase , 'wb') as f: f.write(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): if datasets.config.LZ4_AVAILABLE: import lza.frame SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'file.txt.lz4' SCREAMING_SNAKE_CASE = bytes(_UpperCAmelCase , 'utf-8') with lza.frame.open(_UpperCAmelCase , 'wb') as f: f.write(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if datasets.config.PY7ZR_AVAILABLE: import pyazr SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'file.txt.7z' with pyazr.SevenZipFile(_UpperCAmelCase , 'w') as archive: archive.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): import tarfile SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'file.txt.tar' with tarfile.TarFile(_UpperCAmelCase , 'w') as f: f.add(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): import lzma SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'file.txt.xz' SCREAMING_SNAKE_CASE = bytes(_UpperCAmelCase , 'utf-8') with lzma.open(_UpperCAmelCase , 'wb') as f: f.write(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): import zipfile SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'file.txt.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'file.txt.zst' SCREAMING_SNAKE_CASE = bytes(_UpperCAmelCase , 'utf-8') with zstd.open(_UpperCAmelCase , 'wb') as f: f.write(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'file.xml' SCREAMING_SNAKE_CASE = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>') with open(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase) return filename a_ : Tuple = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] a_ : Any = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] a_ : List[Any] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } a_ : Dict = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] a_ : List[Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session') def lowerCamelCase__ (): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = datasets.Dataset.from_dict(_UpperCAmelCase) SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.arrow') dataset.map(cache_file_name=_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.sqlite') with contextlib.closing(sqlitea.connect(_UpperCAmelCase)) as con: SCREAMING_SNAKE_CASE = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)') for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values())) con.commit() return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.csv') with open(_UpperCAmelCase , 'w' , newline='') as f: SCREAMING_SNAKE_CASE = csv.DictWriter(_UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3']) writer.writeheader() for item in DATA: writer.writerow(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset2.csv') with open(_UpperCAmelCase , 'w' , newline='') as f: SCREAMING_SNAKE_CASE = csv.DictWriter(_UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3']) writer.writeheader() for item in DATA: writer.writerow(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): import bza SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset.csv.bz2' with open(_UpperCAmelCase , 'rb') as f: SCREAMING_SNAKE_CASE = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_UpperCAmelCase , 'wb') as f: f.write(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset.csv.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset.csv.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV'))) f.write(_UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV'))) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase))) f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase))) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.parquet') SCREAMING_SNAKE_CASE = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), }) with open(_UpperCAmelCase , 'wb') as f: SCREAMING_SNAKE_CASE = pq.ParquetWriter(_UpperCAmelCase , schema=_UpperCAmelCase) SCREAMING_SNAKE_CASE = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_UpperCAmelCase))] for k in DATA[0]} , schema=_UpperCAmelCase) writer.write_table(_UpperCAmelCase) writer.close() return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.json') SCREAMING_SNAKE_CASE = {'data': DATA} with open(_UpperCAmelCase , 'w') as f: json.dump(_UpperCAmelCase , _UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.json') SCREAMING_SNAKE_CASE = {'data': DATA_DICT_OF_LISTS} with open(_UpperCAmelCase , 'w') as f: json.dump(_UpperCAmelCase , _UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.jsonl') with open(_UpperCAmelCase , 'w') as f: for item in DATA: f.write(json.dumps(_UpperCAmelCase) + '\n') return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset2.jsonl') with open(_UpperCAmelCase , 'w') as f: for item in DATA: f.write(json.dumps(_UpperCAmelCase) + '\n') return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset_312.jsonl') with open(_UpperCAmelCase , 'w') as f: for item in DATA_312: f.write(json.dumps(_UpperCAmelCase) + '\n') return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset-str.jsonl') with open(_UpperCAmelCase , 'w') as f: for item in DATA_STR: f.write(json.dumps(_UpperCAmelCase) + '\n') return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): import gzip SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.txt.gz') with open(_UpperCAmelCase , 'rb') as orig_file: with gzip.open(_UpperCAmelCase , 'wb') as zipped_file: zipped_file.writelines(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): import gzip SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.jsonl.gz') with open(_UpperCAmelCase , 'rb') as orig_file: with gzip.open(_UpperCAmelCase , 'wb') as zipped_file: zipped_file.writelines(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset.jsonl.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(_UpperCAmelCase))) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase))) f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase))) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset.jsonl.tar' with tarfile.TarFile(_UpperCAmelCase , 'w') as f: f.add(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) f.add(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset_nested.jsonl.tar' with tarfile.TarFile(_UpperCAmelCase , 'w') as f: f.add(_UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(_UpperCAmelCase))) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset.txt') with open(_UpperCAmelCase , 'w') as f: for item in data: f.write(item + '\n') return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset2.txt') with open(_UpperCAmelCase , 'w') as f: for item in data: f.write(item + '\n') return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset.abc' with open(_UpperCAmelCase , 'w') as f: for item in data: f.write(item + '\n') return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset.text.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset_with_dir.text.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase))) f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase))) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset.ext.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.basename('unsupported.ext')) f.write(_UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext')) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third']) SCREAMING_SNAKE_CASE = str(tmp_path_factory.mktemp('data') / 'dataset_with_unicode_new_lines.txt') with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f: f.write(_UpperCAmelCase) return path @pytest.fixture(scope='session') def lowerCamelCase__ (): return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg') @pytest.fixture(scope='session') def lowerCamelCase__ (): return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav') @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data') / 'dataset.img.zip' with zipfile.ZipFile(_UpperCAmelCase , 'w') as f: f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase)) f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase).replace('.jpg' , '2.jpg')) return path @pytest.fixture(scope='session') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data_dir') (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w') as f: f.write('foo\n' * 10) with open(data_dir / 'subdir' / 'test.txt' , 'w') as f: f.write('bar\n' * 10) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w') as f: f.write('bar\n' * 10) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w') as f: f.write('foo\n' * 10) with open(data_dir / '.subdir' / 'test.txt' , 'w') as f: f.write('bar\n' * 10) return data_dir
73
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a__ : List[Any] = logging.get_logger(__name__) a__ : int = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off a__ : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a__ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="whisper" _lowerCamelCase =["past_key_values"] _lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ): UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @property def __snake_case ( self : List[str] ): UpperCAmelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ): UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) UpperCAmelCase = encoder_inputs['''input_features'''].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) UpperCAmelCase = encoder_inputs.pop('''input_features''' ) UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __snake_case ( self : Dict ): return 1e-3
51
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''informer''' lowerCAmelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Tuple , _A : Optional[int] = None , _A : Optional[int] = None , _A : str = "student_t" , _A : str = "nll" , _A : int = 1 , _A : List[int] = None , _A : Optional[Union[str, bool]] = "mean" , _A : int = 0 , _A : int = 0 , _A : int = 0 , _A : int = 0 , _A : Optional[List[int]] = None , _A : Optional[List[int]] = None , _A : int = 64 , _A : int = 32 , _A : int = 32 , _A : int = 2 , _A : int = 2 , _A : int = 2 , _A : int = 2 , _A : bool = True , _A : str = "gelu" , _A : float = 0.05 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : int = 100 , _A : float = 0.02 , _A : Union[str, Any]=True , _A : str = "prob" , _A : int = 5 , _A : bool = True , **_A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = prediction_length __SCREAMING_SNAKE_CASE : Union[str, Any] = context_length or prediction_length __SCREAMING_SNAKE_CASE : Optional[int] = distribution_output __SCREAMING_SNAKE_CASE : Optional[int] = loss __SCREAMING_SNAKE_CASE : Union[str, Any] = input_size __SCREAMING_SNAKE_CASE : Any = num_time_features __SCREAMING_SNAKE_CASE : Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __SCREAMING_SNAKE_CASE : Tuple = scaling __SCREAMING_SNAKE_CASE : List[Any] = num_dynamic_real_features __SCREAMING_SNAKE_CASE : str = num_static_real_features __SCREAMING_SNAKE_CASE : Union[str, Any] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE : List[Any] = cardinality else: __SCREAMING_SNAKE_CASE : int = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE : Any = embedding_dimension else: __SCREAMING_SNAKE_CASE : Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __SCREAMING_SNAKE_CASE : str = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE : List[Any] = input_size * len(self.lags_sequence ) + self._number_of_features __SCREAMING_SNAKE_CASE : Optional[int] = d_model __SCREAMING_SNAKE_CASE : Any = encoder_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers __SCREAMING_SNAKE_CASE : List[str] = decoder_layers __SCREAMING_SNAKE_CASE : List[str] = dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout __SCREAMING_SNAKE_CASE : Any = activation_dropout __SCREAMING_SNAKE_CASE : int = encoder_layerdrop __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop __SCREAMING_SNAKE_CASE : Optional[Any] = activation_function __SCREAMING_SNAKE_CASE : Optional[Any] = init_std __SCREAMING_SNAKE_CASE : List[str] = use_cache # Informer __SCREAMING_SNAKE_CASE : Optional[int] = attention_type __SCREAMING_SNAKE_CASE : int = sampling_factor __SCREAMING_SNAKE_CASE : Optional[Any] = distil super().__init__(is_encoder_decoder=_A , **_A ) @property def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
74
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =LEDConfig _lowerCamelCase ={} _lowerCamelCase ="gelu" def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ ) UpperCAmelCase = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ): UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(a__ , attention_mask=a__ )[0] UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1e-3 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ ) def __snake_case ( self : int ): self.config_tester.run_common_tests() def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a__ : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a__ : int ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __snake_case ( self : Any ): pass def __snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) a__ : int = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 ) def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
51
0
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase__ = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : Optional[int] = to_pil_image(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : int = pil_image.size UpperCAmelCase__ : Any = pytesseract.image_to_data(lowerCAmelCase__ , lang=lowerCAmelCase__ , output_type='''dict''' , config=lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates UpperCAmelCase__ : Union[str, Any] = [idx for idx, word in enumerate(lowerCAmelCase__ ) if not word.strip()] UpperCAmelCase__ : str = [word for idx, word in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] UpperCAmelCase__ : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] UpperCAmelCase__ : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] UpperCAmelCase__ : Optional[Any] = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] UpperCAmelCase__ : str = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase__ : Optional[Any] = [] for x, y, w, h in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : str = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase__ ) # finally, normalize the bounding boxes UpperCAmelCase__ : List[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCamelCase_ ( __a ): lowerCAmelCase__ = ['pixel_values'] def __init__( self : Tuple , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : float = 1 / 255 , _A : bool = True , _A : Union[float, Iterable[float]] = None , _A : Union[float, Iterable[float]] = None , _A : bool = True , _A : Optional[str] = None , _A : Optional[str] = "" , **_A : Tuple , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : Optional[int] = size if size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase__ : Union[str, Any] = get_size_dict(_A ) UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Tuple = size UpperCAmelCase__ : int = resample UpperCAmelCase__ : Any = do_rescale UpperCAmelCase__ : Tuple = rescale_value UpperCAmelCase__ : Optional[Any] = do_normalize UpperCAmelCase__ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCAmelCase__ : Optional[int] = apply_ocr UpperCAmelCase__ : List[Any] = ocr_lang UpperCAmelCase__ : Optional[int] = tesseract_config def lowercase_ ( self : List[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCAmelCase__ : Dict = (size['''height'''], size['''width''']) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def lowercase_ ( self : List[str] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def lowercase_ ( self : Optional[int] , _A : np.ndarray , _A : Union[float, Iterable[float]] , _A : Union[float, Iterable[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : str=None , _A : bool = None , _A : float = None , _A : bool = None , _A : Union[float, Iterable[float]] = None , _A : Union[float, Iterable[float]] = None , _A : bool = None , _A : Optional[str] = None , _A : Optional[str] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Tuple , ): '''simple docstring''' UpperCAmelCase__ : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Any = get_size_dict(_A ) UpperCAmelCase__ : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : int = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : Dict = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase__ : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase__ : List[str] = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase__ : Dict = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. UpperCAmelCase__ : Tuple = [to_numpy_array(_A ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Optional[Any] = [] for image in images: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = apply_tesseract(_A , _A , _A ) words_batch.append(_A ) boxes_batch.append(_A ) if do_resize: UpperCAmelCase__ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_rescale: UpperCAmelCase__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: UpperCAmelCase__ : Tuple = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] UpperCAmelCase__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] UpperCAmelCase__ : Dict = BatchFeature(data={'''pixel_values''': images} , tensor_type=_A ) if apply_ocr: UpperCAmelCase__ : Optional[int] = words_batch UpperCAmelCase__ : Any = boxes_batch return data
75
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="blip_text_model" def __init__( self , UpperCamelCase_=3_05_24 , UpperCamelCase_=7_68 , UpperCamelCase_=7_68 , UpperCamelCase_=30_72 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=8 , UpperCamelCase_=5_12 , UpperCamelCase_="gelu" , UpperCamelCase_=1E-12 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3_05_22 , UpperCamelCase_=2 , UpperCamelCase_=0 , UpperCamelCase_=1_02 , UpperCamelCase_=True , UpperCamelCase_=True , **UpperCamelCase_ , ) -> Dict: super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , sep_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : Dict = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : List[str] = encoder_hidden_size __lowercase : Optional[Any] = intermediate_size __lowercase : str = projection_dim __lowercase : List[str] = hidden_dropout_prob __lowercase : Tuple = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : Tuple = max_position_embeddings __lowercase : List[str] = layer_norm_eps __lowercase : List[str] = hidden_act __lowercase : List[Any] = initializer_range __lowercase : str = attention_probs_dropout_prob __lowercase : Union[str, Any] = is_decoder __lowercase : Optional[Any] = use_cache @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ , **UpperCamelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase_ ) __lowercase ,__lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": __lowercase : Tuple = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="blip_vision_model" def __init__( self , UpperCamelCase_=7_68 , UpperCamelCase_=30_72 , UpperCamelCase_=5_12 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3_84 , UpperCamelCase_=16 , UpperCamelCase_="gelu" , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0 , UpperCamelCase_=1E-10 , **UpperCamelCase_ , ) -> int: super().__init__(**UpperCamelCase_ ) __lowercase : Dict = hidden_size __lowercase : Tuple = intermediate_size __lowercase : Any = projection_dim __lowercase : Tuple = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : Union[str, Any] = patch_size __lowercase : Tuple = image_size __lowercase : Optional[int] = initializer_range __lowercase : int = attention_dropout __lowercase : List[Any] = layer_norm_eps __lowercase : List[str] = hidden_act @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ , **UpperCamelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase_ ) __lowercase ,__lowercase : Optional[Any] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": __lowercase : List[str] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="blip" UpperCamelCase =True def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=5_12 , UpperCamelCase_=2.6_5_9_2 , UpperCamelCase_=2_56 , **UpperCamelCase_ , ) -> Optional[Any]: super().__init__(**UpperCamelCase_ ) if text_config is None: __lowercase : Tuple = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: __lowercase : Optional[Any] = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) __lowercase : Tuple = BlipTextConfig(**UpperCamelCase_ ) __lowercase : Optional[int] = BlipVisionConfig(**UpperCamelCase_ ) __lowercase : str = self.vision_config.hidden_size __lowercase : List[str] = projection_dim __lowercase : Optional[Any] = logit_scale_init_value __lowercase : Any = 1.0 __lowercase : str = 0.0_2 __lowercase : int = image_text_hidden_size @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Optional[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : str = copy.deepcopy(self.__dict__ ) __lowercase : Union[str, Any] = self.text_config.to_dict() __lowercase : Tuple = self.vision_config.to_dict() __lowercase : List[Any] = self.__class__.model_type return output
76
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
0
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() A = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=True ) -> Optional[Any]: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(f"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}." ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __UpperCAmelCase : List[str] = cached_file(UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) __UpperCAmelCase : Tuple = config_class.from_json_file(UpperCamelCase ) __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : str = True print(f"Building TensorFlow model from configuration: {config}" ) __UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __UpperCAmelCase : int = cached_file( UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __UpperCAmelCase : Union[str, Any] = load_pytorch_checkpoint_in_tfa_model(UpperCamelCase , UpperCamelCase ) if compare_with_pt_model: __UpperCAmelCase : int = tf_model(tf_model.dummy_inputs , training=UpperCamelCase ) # build the network __UpperCAmelCase : str = torch.load(UpperCamelCase , map_location="cpu" ) __UpperCAmelCase : List[Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCamelCase , config=UpperCamelCase , state_dict=UpperCamelCase ) with torch.no_grad(): __UpperCAmelCase : Dict = pt_model(**pt_model.dummy_inputs ) __UpperCAmelCase : Optional[int] = pto[0].numpy() __UpperCAmelCase : List[str] = tfo[0].numpy() __UpperCAmelCase : List[Any] = np.amax(np.abs(np_pt - np_tf ) ) print(f"Max absolute difference between models outputs {diff}" ) assert diff <= 2e-2, f"Error, model absolute difference is >2e-2: {diff}" # Save pytorch-model print(f"Save TensorFlow model to {tf_dump_path}" ) tf_model.save_weights(UpperCamelCase , save_format="h5" ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , ) -> Any: """simple docstring""" if args_model_type is None: __UpperCAmelCase : Dict = list(MODEL_CLASSES.keys() ) else: __UpperCAmelCase : List[Any] = [args_model_type] for j, model_type in enumerate(UpperCamelCase , start=1 ): print("=" * 100 ) print(f" Converting model type {j}/{len(UpperCamelCase )}: {model_type}" ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}." ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __UpperCAmelCase : List[Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __UpperCAmelCase : int = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCamelCase , UpperCamelCase ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f" Skipping finetuned checkpoint {model_shortcut_name}" ) continue __UpperCAmelCase : Optional[Any] = model_shortcut_name elif only_convert_finetuned_models: print(f" Skipping not finetuned checkpoint {model_shortcut_name}" ) continue print( f" Converting checkpoint {i}/{len(UpperCamelCase )}: {model_shortcut_name} - model_type {model_type}" ) print("-" * 100 ) if config_shortcut_name in aws_config_map: __UpperCAmelCase : Dict = cached_file(UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) else: __UpperCAmelCase : Optional[Any] = config_shortcut_name if model_shortcut_name in aws_model_maps: __UpperCAmelCase : int = cached_file(UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) else: __UpperCAmelCase : List[str] = model_shortcut_name if os.path.isfile(UpperCamelCase ): __UpperCAmelCase : Tuple = "converted_model" convert_pt_checkpoint_to_tf( model_type=UpperCamelCase , pytorch_checkpoint_path=UpperCamelCase , config_file=UpperCamelCase , tf_dump_path=os.path.join(UpperCamelCase , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=UpperCamelCase , ) if remove_cached_files: os.remove(UpperCamelCase ) os.remove(UpperCamelCase ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( f'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") A = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
77
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
51
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_: List[str] =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : str = ReformerTokenizer a__ : Optional[Any] = ReformerTokenizerFast a__ : Any = True a__ : Union[str, Any] = False a__ : int = True def _lowercase (self : List[str] ): super().setUp() UpperCAmelCase_ = ReformerTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase (self : int ): UpperCAmelCase_ = "<s>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__a ) , 1000 ) def _lowercase (self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowercase (self : Dict ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(__a ) UpperCAmelCase_ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__a ) UpperCAmelCase_ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def _lowercase (self : Union[str, Any] , __a : List[str]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def _lowercase (self : Optional[Any] ): pass def _lowercase (self : Optional[int] ): UpperCAmelCase_ = ReformerTokenizer(__a , keep_accents=__a ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowercase (self : Optional[int] ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCAmelCase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def _lowercase (self : Tuple ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ = " ".join(__a ) UpperCAmelCase_ = self.big_tokenizer.encode_plus(__a , return_tensors="pt" ) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) UpperCAmelCase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ = encoded_sequence["input_ids"].shape UpperCAmelCase_ = ReformerModel(__a ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def _lowercase (self : Dict ): # fmt: off UpperCAmelCase_ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=__a , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=__a , sequences=__a , )
78
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
51
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase_ ( __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = MobileBertTokenizer __lowerCamelCase = MobileBertTokenizerFast __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = filter_non_english __lowerCamelCase = 'google/mobilebert-uncased' def __UpperCAmelCase ( self ): super().setUp() UpperCAmelCase__ : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase__ : List[str] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : Tuple = """UNwant\u00E9d,running""" UpperCAmelCase__ : Union[str, Any] = """unwanted, running""" return input_text, output_text def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = self.tokenizer_class(self.vocab_file ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_rust_tokenizer() UpperCAmelCase__ : List[str] = """UNwant\u00E9d,running""" UpperCAmelCase__ : Optional[int] = tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.get_rust_tokenizer() UpperCAmelCase__ : Any = tokenizer.encode(_lowerCAmelCase ) UpperCAmelCase__ : str = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # With lower casing UpperCAmelCase__ : Tuple = self.get_tokenizer(do_lower_case=_lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.get_rust_tokenizer(do_lower_case=_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = """UNwant\u00E9d,running""" UpperCAmelCase__ : int = tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase__ : Any = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : List[str] = tokenizer.encode(_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] UpperCAmelCase__ : List[str] = {} for i, token in enumerate(_lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = i UpperCAmelCase__ : str = WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) UpperCAmelCase__ : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) UpperCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." UpperCAmelCase__ : Optional[Any] = tokenizer_r.encode_plus( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , ) UpperCAmelCase__ : Any = tokenizer_r.do_lower_case if hasattr(_lowerCAmelCase , """do_lower_case""" ) else False UpperCAmelCase__ : Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = ["""的""", """人""", """有"""] UpperCAmelCase__ : Tuple = """""".join(_lowerCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : Any = tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase__ : List[str] = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_lowerCAmelCase ) ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
79
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ ) def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(a__ ) if do_resize: UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: UpperCAmelCase = self.center_crop(a__ , size=a__ ) if do_rescale: UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ ) UpperCAmelCase = to_channel_dimension_format(a__ , a__ ) return image def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(a__ ) UpperCAmelCase = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=a__ , tensor_type=a__ )
51
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Any = logging.get_logger(__name__) _snake_case : Union[str, Any] = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = "falcon" __UpperCAmelCase : str = ["past_key_values"] def __init__( self : Optional[Any] , lowerCamelCase : str=65024 , lowerCamelCase : str=4544 , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : Any=71 , lowerCamelCase : Optional[Any]=1E-5 , lowerCamelCase : Dict=0.02 , lowerCamelCase : Any=True , lowerCamelCase : Tuple=0.0 , lowerCamelCase : str=0.0 , lowerCamelCase : str=None , lowerCamelCase : List[str]=False , lowerCamelCase : int=False , lowerCamelCase : str=True , lowerCamelCase : List[str]=True , lowerCamelCase : List[str]=False , lowerCamelCase : Optional[int]=11 , lowerCamelCase : Optional[int]=11 , **lowerCamelCase : Dict , ) -> Optional[Any]: __snake_case : List[Any] = vocab_size # Backward compatibility with n_embed kwarg __snake_case : Optional[Any] = kwargs.pop("n_embed" , lowerCamelCase ) __snake_case : str = hidden_size if n_embed is None else n_embed __snake_case : List[str] = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Tuple = layer_norm_epsilon __snake_case : List[str] = initializer_range __snake_case : Tuple = use_cache __snake_case : List[Any] = hidden_dropout __snake_case : Tuple = attention_dropout __snake_case : int = bos_token_id __snake_case : Any = eos_token_id __snake_case : Optional[int] = num_attention_heads if num_kv_heads is None else num_kv_heads __snake_case : Optional[Any] = alibi __snake_case : Any = new_decoder_architecture __snake_case : List[str] = multi_query # Ignored when new_decoder_architecture is True __snake_case : int = parallel_attn __snake_case : Union[str, Any] = bias super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Dict ) -> List[Any]: return self.hidden_size // self.num_attention_heads @property def __snake_case ( self : Any ) -> List[Any]: return not self.alibi
81
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ): super(a__ , self ).__init__() UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ ) UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 ) UpperCAmelCase = torch.nn.Softmax(dim=1 ) def __snake_case ( self : List[Any] , **a__ : Tuple ): return self.bert(**a__ ).last_hidden_state def __snake_case ( self : int , a__ : List[str] ): return token_embeddings.sum(2 , keepdim=a__ ) def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ): return self.softmax(T * self.cos(a__ , a__ ) ) def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ): UpperCAmelCase = W_supports['''sizes'''].tolist() UpperCAmelCase = W_supports['''start_token_id'''].item() UpperCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = W_supports['''input_ids'''] == start_token_id UpperCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(a__ ): if i == 0: UpperCAmelCase = 0 else: UpperCAmelCase = support_sizes[i - 1] UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase = torch.vstack((p_starts, p_start) ) UpperCAmelCase = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase = p_start UpperCAmelCase = p_end return p_starts, p_ends
51
0
"""simple docstring""" from numpy import exp, pi, sqrt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
82
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =(EulerDiscreteScheduler,) _lowerCamelCase =10 def __snake_case ( self : str , **a__ : Tuple ): UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def __snake_case ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __snake_case ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def __snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
51
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __snake_case ( _lowercase): def __init__( self : Tuple , __lowerCAmelCase : str=0.01 , __lowerCAmelCase : Any=1_0_0_0 ): """simple docstring""" _lowerCamelCase : List[str] = p_stop _lowerCamelCase : List[Any] = max_length def __iter__( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : Dict = False while not stop and count < self.max_length: yield count count += 1 _lowerCamelCase : int = random.random() < self.p_stop class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int=False , __lowerCAmelCase : Dict=True ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] _lowerCamelCase : List[str] = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Dict = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : str = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Tuple = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Tuple = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : str = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : List[str] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : Dict = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : Tuple = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : int = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : List[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Tuple = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : List[str] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Dict = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : str = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] _lowerCamelCase : Any = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Any=False ): """simple docstring""" random.seed(__lowerCAmelCase ) _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) _lowerCamelCase : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCamelCase : Union[str, Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) _lowerCamelCase : List[str] = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : List[Any] = 4_2 _lowerCamelCase : Any = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset _lowerCamelCase : Optional[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Dict = DataLoader(list(range(1_6 ) ) , batch_size=4 ) _lowerCamelCase : str = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" Accelerator() _lowerCamelCase : Any = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
83
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( metadata={"help": "The csv file to plot."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowerCamelCase =list_field( default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : Optional[int] ): UpperCAmelCase = args UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCAmelCase = csv.DictReader(a__ ) for row in reader: UpperCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCAmelCase = float(row['''result'''] ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = plt.subplots() UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCAmelCase = self.result_dict[model_name]['''result'''] ((UpperCAmelCase), (UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , ) else: UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase), (UpperCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )] plt.scatter( a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a__ , a__ , '''--''' ) title_str += f" {label_model_name} vs." UpperCAmelCase = title_str[:-4] UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(a__ ) plt.xlabel(a__ ) plt.ylabel(a__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
51
0
from __future__ import annotations import os from typing import Any import requests UpperCAmelCase = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCAmelCase = BASE_URL + '''/user''' # https://github.com/settings/tokens UpperCAmelCase = os.environ.get('''USER_TOKEN''', '''''') def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = { 'Authorization': F'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
84
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file: try: UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = True elif task_name.startswith('''voc_''' ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = '''pascal-voc-id2label.json''' UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int: """simple docstring""" if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''mobilevitv2.''' UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : int = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
0
from PIL import Image def __snake_case ( __UpperCamelCase : Image ,__UpperCamelCase : int ): """simple docstring""" A_ = (259 * (level + 255)) / (255 * (259 - level)) def contrast(__UpperCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 __a :Tuple = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
86
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
0
from ..utils import DummyObject, requires_backends class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : int , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Optional[Any]) ->Dict: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[str]) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : List[str]) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : Dict , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Dict) ->Any: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : int) ->Dict: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Optional[int]) ->Tuple: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : int , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : int) ->str: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : List[str]) ->str: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Dict: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : str , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : str) ->str: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : int , *UpperCAmelCase__ : int , **UpperCAmelCase__ : str) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Optional[Any]) ->Any: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Dict) ->Any: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[Any]) ->str: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[Any]) ->int: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[str]) ->int: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : List[str]) ->Dict: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Any) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Tuple) ->int: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : int) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : List[str] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : List[str]) ->str: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : int , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : str) ->Any: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : int , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[Any]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : int , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : str) ->List[Any]: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : List[str] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : int) ->Tuple: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : Tuple , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[int]) ->str: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Optional[int]) ->Tuple: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Dict) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : str , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : int) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[Any]) ->Dict: '''simple docstring''' requires_backends(cls , ['''flax''']) class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''flax'''] def __init__( self : List[str] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Tuple) ->Optional[int]: '''simple docstring''' requires_backends(self , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : int) ->Dict: '''simple docstring''' requires_backends(cls , ['''flax''']) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Any) ->Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''])
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def _snake_case ( __snake_case : Callable[[int | float], int | float] , __snake_case : int | float , __snake_case : int | float , __snake_case : int = 100 , ): """simple docstring""" _lowerCamelCase : Optional[int] = x_start _lowerCamelCase : Optional[int] = fnc(__snake_case ) _lowerCamelCase : Optional[int] = 0.0 for _ in range(__snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area _lowerCamelCase : int = (x_end - x_start) / steps + xa _lowerCamelCase : List[Any] = fnc(__snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _lowerCamelCase : List[Any] = xa _lowerCamelCase : Any = fxa return area if __name__ == "__main__": def _snake_case ( __snake_case : List[Any] ): """simple docstring""" return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") UpperCAmelCase = 10 while i <= 10_0000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
88
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> int: if config_name_or_path is None: _lowercase : int = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: _lowercase : int = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _lowercase : str = question_encoder_name_or_path _lowercase : Dict = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. _lowercase : Dict = RagConfig.from_pretrained(lowerCamelCase_ ) _lowercase : Dict = AutoConfig.from_pretrained(lowerCamelCase_ ) _lowercase : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) _lowercase : Any = gen_config _lowercase : Dict = question_encoder_config _lowercase : List[Any] = model_class.from_pretrained_question_encoder_generator( lowerCamelCase_ , lowerCamelCase_ , config=lowerCamelCase_ ) rag_model.save_pretrained(lowerCamelCase_ ) # Sanity check. model_class.from_pretrained(lowerCamelCase_ ) # Save tokenizers. _lowercase : int = AutoTokenizer.from_pretrained(lowerCamelCase_ ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
89
'''simple docstring''' from math import factorial def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int: """simple docstring""" return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
51
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __UpperCAmelCase = random.Random() def _snake_case ( A , A=1.0 , A=None , A=None ) -> int: if rng is None: lowerCAmelCase__ = global_rng lowerCAmelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class a__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=7 , lowerCamelCase_=4_00 , lowerCamelCase_=20_00 , lowerCamelCase_=24 , lowerCamelCase_=24 , lowerCamelCase_=0.0 , lowerCamelCase_=1_60_00 , lowerCamelCase_=True , lowerCamelCase_=True , ) -> Any: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = min_seq_length lowerCAmelCase__ = max_seq_length lowerCAmelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ = feature_size lowerCAmelCase__ = num_mel_bins lowerCAmelCase__ = padding_value lowerCAmelCase__ = sampling_rate lowerCAmelCase__ = return_attention_mask lowerCAmelCase__ = do_normalize def __SCREAMING_SNAKE_CASE ( self ) -> int: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=False , lowerCamelCase_=False ) -> List[str]: def _flatten(lowerCamelCase_ ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: lowerCAmelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : str = SpeechaTextFeatureExtractor if is_speech_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = SpeechaTextFeatureExtractionTester(self ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tuple: self.assertTrue(np.all(np.mean(lowerCamelCase_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase_ , axis=0 ) - 1 ) < 1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features lowerCAmelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test batched lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_features lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase__ = np.asarray(lowerCamelCase_ ) lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_features lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ = [None, 16, None] for max_length, padding in zip(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = [np.sum(lowerCamelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ = [None, 16, None] for max_length, padding in zip(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , max_length=lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''np''' , return_attention_mask=lowerCamelCase_ ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = [np.sum(lowerCamelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , padding='''max_length''' , max_length=4 , truncation=lowerCamelCase_ , return_tensors='''np''' , return_attention_mask=lowerCamelCase_ , ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , padding='''longest''' , max_length=4 , truncation=lowerCamelCase_ , return_tensors='''np''' , return_attention_mask=lowerCamelCase_ , ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ = feature_extractor( lowerCamelCase_ , padding='''longest''' , max_length=16 , truncation=lowerCamelCase_ , return_tensors='''np''' , return_attention_mask=lowerCamelCase_ , ) lowerCAmelCase__ = inputs.input_features lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: import torch lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = np.random.rand(1_00 , 32 ).astype(np.floataa ) lowerCAmelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Dict: from datasets import load_dataset lowerCAmelCase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCAmelCase__ = ds.sort('''id''' ).select(range(lowerCamelCase_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # fmt: off lowerCAmelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on lowerCAmelCase__ = self._load_datasamples(1 ) lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = feature_extractor(lowerCamelCase_ , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowerCamelCase_ , atol=1e-4 ) )
90
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
0
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
91
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = ['pixel_values'] def __init__( self : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Any , ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) lowercase : Tuple =size if size is not None else {'''shortest_edge''': 224} lowercase : List[str] =get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) lowercase : Dict =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Tuple =get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ , param_name='''crop_size''' ) lowercase : Dict =do_resize lowercase : Tuple =size lowercase : List[Any] =resample lowercase : Any =do_center_crop lowercase : Optional[Any] =crop_size lowercase : List[Any] =do_rescale lowercase : List[str] =rescale_factor lowercase : List[Any] =do_normalize lowercase : Tuple =image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase : Optional[int] =image_std if image_std is not None else OPENAI_CLIP_STD lowercase : List[Any] =do_convert_rgb def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Tuple , ): '''simple docstring''' lowercase : Any =get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase : List[str] =get_resize_output_image_size(UpperCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : List[Any] , ): '''simple docstring''' lowercase : List[str] =get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Any , ): '''simple docstring''' return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ): '''simple docstring''' return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : int = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase__ : str , ): '''simple docstring''' lowercase : Union[str, Any] =do_resize if do_resize is not None else self.do_resize lowercase : Optional[int] =size if size is not None else self.size lowercase : List[str] =get_size_dict(UpperCAmelCase__ , param_name='''size''' , default_to_square=UpperCAmelCase__ ) lowercase : int =resample if resample is not None else self.resample lowercase : Optional[int] =do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Optional[Any] =crop_size if crop_size is not None else self.crop_size lowercase : int =get_size_dict(UpperCAmelCase__ , param_name='''crop_size''' , default_to_square=UpperCAmelCase__ ) lowercase : Dict =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Union[str, Any] =do_normalize if do_normalize is not None else self.do_normalize lowercase : Union[str, Any] =image_mean if image_mean is not None else self.image_mean lowercase : List[str] =image_std if image_std is not None else self.image_std lowercase : Dict =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase : Any =make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase : Tuple =[convert_to_rgb(UpperCAmelCase__ ) for image in images] # All transformations expect numpy arrays. lowercase : Any =[to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: lowercase : Dict =[self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: lowercase : Optional[int] =[self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: lowercase : int =[self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] lowercase : Any =[to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] lowercase : Any ={'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
92
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="pt" ) ->List[str]: """simple docstring""" lowerCAmelCase__ :List[Any] = {'add_prefix_space': True} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not line.startswith(' ' ) else {} lowerCAmelCase__ :Any = padding_side return tokenizer( [line] , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' if pad_to_max_length else None , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Dict = input_ids.ne(_SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="train" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , ): '''simple docstring''' super().__init__() lowerCAmelCase__ :List[Any] = Path(__UpperCAmelCase ).joinpath(type_path + '.source' ) lowerCAmelCase__ :int = Path(__UpperCAmelCase ).joinpath(type_path + '.target' ) lowerCAmelCase__ :List[Any] = self.get_char_lens(self.src_file ) lowerCAmelCase__ :Dict = max_source_length lowerCAmelCase__ :Tuple = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" lowerCAmelCase__ :Union[str, Any] = tokenizer lowerCAmelCase__ :Tuple = prefix if n_obs is not None: lowerCAmelCase__ :List[str] = self.src_lens[:n_obs] lowerCAmelCase__ :Tuple = src_lang lowerCAmelCase__ :int = tgt_lang def __len__( self ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = index + 1 # linecache starts at 1 lowerCAmelCase__ :Any = self.prefix + linecache.getline(str(self.src_file ) , __UpperCAmelCase ).rstrip('\n' ) lowerCAmelCase__ :Dict = linecache.getline(str(self.tgt_file ) , __UpperCAmelCase ).rstrip('\n' ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase__ :str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer ) lowerCAmelCase__ :int = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer lowerCAmelCase__ :str = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_source_length , 'right' ) lowerCAmelCase__ :Optional[Any] = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_target_length , 'right' ) lowerCAmelCase__ :int = source_inputs['input_ids'].squeeze() lowerCAmelCase__ :Optional[Any] = target_inputs['input_ids'].squeeze() lowerCAmelCase__ :List[Any] = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case ( __UpperCAmelCase ): '''simple docstring''' return [len(__UpperCAmelCase ) for x in Path(__UpperCAmelCase ).open().readlines()] def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = torch.stack([x['input_ids'] for x in batch] ) lowerCAmelCase__ :Optional[Any] = torch.stack([x['attention_mask'] for x in batch] ) lowerCAmelCase__ :Any = torch.stack([x['decoder_input_ids'] for x in batch] ) lowerCAmelCase__ :Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ :Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ :List[str] = trim_batch(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = trim_batch(__UpperCAmelCase , __UpperCAmelCase , attention_mask=__UpperCAmelCase ) lowerCAmelCase__ :Dict = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __A = getLogger(__name__) def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" return list(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ) def __A (_SCREAMING_SNAKE_CASE ) ->None: """simple docstring""" lowerCAmelCase__ :Any = get_git_info() save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , 'git_log.json' ) ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=4 , **_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE ) as f: return json.load(_SCREAMING_SNAKE_CASE ) def __A () ->List[Any]: """simple docstring""" lowerCAmelCase__ :Any = git.Repo(search_parent_directories=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = { 'repo_id': str(_SCREAMING_SNAKE_CASE ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List: """simple docstring""" return list(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: return pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" def remove_articles(_SCREAMING_SNAKE_CASE ): return re.sub(r'\b(a|an|the)\b' , ' ' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Dict = normalize_answer(_SCREAMING_SNAKE_CASE ).split() lowerCAmelCase__ :List[str] = normalize_answer(_SCREAMING_SNAKE_CASE ).split() lowerCAmelCase__ :int = Counter(_SCREAMING_SNAKE_CASE ) & Counter(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Union[str, Any] = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase__ :int = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Union[str, Any] = (2 * precision * recall) / (precision + recall) return fa def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" return normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = 0 for hypo, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): em += exact_match_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: em /= len(_SCREAMING_SNAKE_CASE ) return {"em": em} def __A (_SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" return model_prefix.startswith('rag' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase__ :Union[str, Any] = 'dropout_rate' for p in extra_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not hasattr(_SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue lowerCAmelCase__ :int = p if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return hparams, config
93
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =XGLMTokenizer _lowerCamelCase =XGLMTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(a__ ) , 1008 ) def __snake_case ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __snake_case ( self : Optional[Any] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ ) UpperCAmelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def __snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : int ): UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : Any ): # fmt: off UpperCAmelCase = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
51
0
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __A : int , __A : List[Any] , __A : Union[str, Any] , __A : Union[str, Any]="attention" ) -> Union[str, Any]: """simple docstring""" lowercase : str =params[F'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowercase : Optional[int] =params[F'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowercase : int =params[F'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowercase : List[str] =params[F'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def lowercase_ ( __A : List[str] , __A : Tuple , __A : List[Any] , __A : Union[str, Any]=False ) -> List[str]: """simple docstring""" if split_mlp_wi: lowercase : Optional[int] =params[F'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowercase : str =params[F'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowercase : str =(wi_a, wi_a) else: lowercase : Any =params[F'{prefix}/layers_{i}/mlp/wi/kernel'] lowercase : str =params[F'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def lowercase_ ( __A : Dict , __A : Any , __A : Tuple , __A : str ) -> Any: """simple docstring""" return params[F'{prefix}/layers_{i}/{layer_name}/scale'] def lowercase_ ( __A : dict , *, __A : int , __A : bool ) -> List[str]: """simple docstring""" lowercase : Dict =traverse_util.flatten_dict(variables['''target'''] ) lowercase : int ={'''/'''.join(__A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase : Dict ='''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , __A ) lowercase : List[str] =collections.OrderedDict() # Shared embeddings. lowercase : List[Any] =old['''token_embedder/embedding'''] # Encoder. for i in range(__A ): # Block i, layer 0 (Self Attention). lowercase : Optional[int] =tax_layer_norm_lookup(__A , __A , '''encoder''' , '''pre_attention_layer_norm''' ) lowercase , lowercase , lowercase , lowercase : Tuple =tax_attention_lookup(__A , __A , '''encoder''' , '''attention''' ) lowercase : Dict =layer_norm lowercase : List[str] =k.T lowercase : List[Any] =o.T lowercase : Any =q.T lowercase : Optional[int] =v.T # Block i, layer 1 (MLP). lowercase : int =tax_layer_norm_lookup(__A , __A , '''encoder''' , '''pre_mlp_layer_norm''' ) lowercase , lowercase : str =tax_mlp_lookup(__A , __A , '''encoder''' , __A ) lowercase : List[str] =layer_norm if split_mlp_wi: lowercase : str =wi[0].T lowercase : str =wi[1].T else: lowercase : str =wi.T lowercase : Tuple =wo.T lowercase : List[str] =old[ '''encoder/relpos_bias/rel_embedding''' ].T lowercase : List[str] =old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(__A ): # Block i, layer 0 (Self Attention). lowercase : Dict =tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_self_attention_layer_norm''' ) lowercase , lowercase , lowercase , lowercase : str =tax_attention_lookup(__A , __A , '''decoder''' , '''self_attention''' ) lowercase : int =layer_norm lowercase : Tuple =k.T lowercase : Union[str, Any] =o.T lowercase : Any =q.T lowercase : str =v.T # Block i, layer 1 (Cross Attention). lowercase : Any =tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_cross_attention_layer_norm''' ) lowercase , lowercase , lowercase , lowercase : Optional[int] =tax_attention_lookup(__A , __A , '''decoder''' , '''encoder_decoder_attention''' ) lowercase : Tuple =layer_norm lowercase : Any =k.T lowercase : Tuple =o.T lowercase : int =q.T lowercase : str =v.T # Block i, layer 2 (MLP). lowercase : Union[str, Any] =tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_mlp_layer_norm''' ) lowercase , lowercase : str =tax_mlp_lookup(__A , __A , '''decoder''' , __A ) lowercase : Dict =layer_norm if split_mlp_wi: lowercase : List[Any] =wi[0].T lowercase : Union[str, Any] =wi[1].T else: lowercase : Tuple =wi.T lowercase : Optional[int] =wo.T lowercase : Tuple =old['''decoder/decoder_norm/scale'''] lowercase : str =old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase : Optional[Any] =old['''decoder/logits_dense/kernel'''].T return new def lowercase_ ( __A : Tuple , __A : bool ) -> List[str]: """simple docstring""" lowercase : Optional[int] =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase : List[str] =state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase : Optional[Any] =state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) lowercase : str =state_dict['''shared.weight'''] return state_dict def lowercase_ ( __A : List[Any] , __A : List[str] , __A : Dict , __A : Optional[Any] ) -> List[str]: """simple docstring""" lowercase : Optional[int] =checkpoints.load_tax_checkpoint(__A ) lowercase : Dict =convert_tax_to_pytorch(__A , num_layers=config.num_layers , is_encoder_only=__A ) lowercase : Dict =make_state_dict(__A , __A ) model.load_state_dict(__A , strict=__A ) def lowercase_ ( __A : Dict , __A : Union[str, Any] , __A : Any , __A : bool = False ) -> List[str]: """simple docstring""" lowercase : Tuple =TaConfig.from_json_file(__A ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase : Union[str, Any] =TaEncoderModel(__A ) else: lowercase : int =TaForConditionalGeneration(__A ) # Load weights from tf checkpoint load_tax_weights_in_ta(__A , __A , __A , __A ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__A ) # Verify that we can load the checkpoint. model.from_pretrained(__A ) print('''Done''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
94
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCamelCase_ : @staticmethod def _SCREAMING_SNAKE_CASE ( *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Dict ) -> str: pass def snake_case ( A__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCamelCase_ = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): __magic_name__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : int = pipeline( "document-question-answering" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) UpperCAmelCase_ : int = INVOICE_URL UpperCAmelCase_ : Union[str, Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) UpperCAmelCase_ : Optional[Any] = "What is the placebo?" UpperCAmelCase_ : Tuple = [ { "image": load_image(lowerCAmelCase_ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = dqa_pipeline(lowerCAmelCase_ , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [ [ {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: UpperCAmelCase_ : Tuple = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) UpperCAmelCase_ : Dict = INVOICE_URL UpperCAmelCase_ : int = "How many cats are there?" UpperCAmelCase_ : Any = [ {"score": 0.0_0_0_1, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_0_0_1, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Dict = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , words=lowerCAmelCase_ , boxes=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: UpperCAmelCase_ : Dict = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) UpperCAmelCase_ : Optional[Any] = INVOICE_URL UpperCAmelCase_ : Dict = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : int = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : Tuple = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) UpperCAmelCase_ : Tuple = INVOICE_URL UpperCAmelCase_ : Any = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : str = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , ) UpperCAmelCase_ : Any = INVOICE_URL UpperCAmelCase_ : List[str] = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) UpperCAmelCase_ : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : List[str] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , max_seq_len=50 , ) UpperCAmelCase_ : List[Any] = INVOICE_URL UpperCAmelCase_ : Optional[int] = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) UpperCAmelCase_ : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : Dict = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) UpperCAmelCase_ : Optional[int] = INVOICE_URL UpperCAmelCase_ : int = "What is the invoice number?" UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: pass
95
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a__ : List[Any] = logging.get_logger(__name__) a__ : int = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off a__ : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a__ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="whisper" _lowerCamelCase =["past_key_values"] _lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ): UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @property def __snake_case ( self : List[str] ): UpperCAmelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ): UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) UpperCAmelCase = encoder_inputs['''input_features'''].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) UpperCAmelCase = encoder_inputs.pop('''input_features''' ) UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __snake_case ( self : Dict ): return 1e-3
51
0
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : str ) -> int: __magic_name__: str = [] __magic_name__: Any = [] for i in range(self.num_layers ): __magic_name__: str = self.in_channels if i == 0 else self.out_channels __magic_name__: Optional[int] = FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __magic_name__: Any = resnets __magic_name__: str = attentions if self.add_downsample: __magic_name__: List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : List[str]=True ) -> str: __magic_name__: str = () for resnet, attn in zip(self.resnets , self.attentions ): __magic_name__: Optional[Any] = resnet(__snake_case , __snake_case , deterministic=__snake_case ) __magic_name__: Union[str, Any] = attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __magic_name__: Any = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = True UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : str ) -> Optional[int]: __magic_name__: Optional[Any] = [] for i in range(self.num_layers ): __magic_name__: str = self.in_channels if i == 0 else self.out_channels __magic_name__: Tuple = FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: Union[str, Any] = resnets if self.add_downsample: __magic_name__: str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , __snake_case : int , __snake_case : List[str] , __snake_case : List[Any]=True ) -> Dict: __magic_name__: Optional[Any] = () for resnet in self.resnets: __magic_name__: Optional[int] = resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __magic_name__: List[str] = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : int ) -> int: __magic_name__: Optional[int] = [] __magic_name__: Any = [] for i in range(self.num_layers ): __magic_name__: int = self.in_channels if (i == self.num_layers - 1) else self.out_channels __magic_name__: Any = self.prev_output_channel if i == 0 else self.out_channels __magic_name__: Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: int = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __magic_name__: List[str] = resnets __magic_name__: List[str] = attentions if self.add_upsample: __magic_name__: str = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , __snake_case : int , __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Dict=True ) -> List[Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __magic_name__: Any = res_hidden_states_tuple[-1] __magic_name__: Optional[int] = res_hidden_states_tuple[:-1] __magic_name__: Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __magic_name__: Optional[Any] = resnet(__snake_case , __snake_case , deterministic=__snake_case ) __magic_name__: str = attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __magic_name__: Optional[Any] = self.upsamplers_a(__snake_case ) return hidden_states class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = True UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : int ) -> Union[str, Any]: __magic_name__: Any = [] for i in range(self.num_layers ): __magic_name__: List[str] = self.in_channels if (i == self.num_layers - 1) else self.out_channels __magic_name__: List[Any] = self.prev_output_channel if i == 0 else self.out_channels __magic_name__: List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: Any = resnets if self.add_upsample: __magic_name__: List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int]=True ) -> int: for resnet in self.resnets: # pop res hidden states __magic_name__: List[Any] = res_hidden_states_tuple[-1] __magic_name__: Dict = res_hidden_states_tuple[:-1] __magic_name__: Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __magic_name__: Optional[int] = resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __magic_name__: Optional[Any] = self.upsamplers_a(__snake_case ) return hidden_states class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : Dict ) -> Dict: # there is always at least one resnet __magic_name__: Tuple = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __magic_name__: str = [] for _ in range(self.num_layers ): __magic_name__: List[Any] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __magic_name__: Tuple = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: Optional[Any] = resnets __magic_name__: int = attentions def __call__( self : str , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any]=True ) -> int: __magic_name__: Optional[Any] = self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __magic_name__: Optional[Any] = attn(__snake_case , __snake_case , deterministic=__snake_case ) __magic_name__: str = resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
96
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =LEDConfig _lowerCamelCase ={} _lowerCamelCase ="gelu" def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ ) UpperCAmelCase = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ): UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(a__ , attention_mask=a__ )[0] UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1e-3 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ ) def __snake_case ( self : int ): self.config_tester.run_common_tests() def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a__ : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a__ : int ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __snake_case ( self : Any ): pass def __snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) a__ : int = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 ) def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
51
0
from __future__ import annotations from math import pi, sqrt def a ( snake_case__: float , snake_case__: float ): '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
97
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
'''simple docstring''' def a__ ( lowercase : list ) -> float: """simple docstring""" _UpperCamelCase = 0 while len(lowercase ) > 1: _UpperCamelCase = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _UpperCamelCase = files.index(min(lowercase ) ) temp += files[min_index] files.pop(lowercase ) files.append(lowercase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
98
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def a (lowerCAmelCase__ , lowerCAmelCase__=10 ): __a = [] for _ in range(lowerCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def a (lowerCAmelCase__ , lowerCAmelCase__=10 ): __a = [] for step in range(lowerCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(lowerCAmelCase__ , """schedule.bin""" ) torch.save(scheduler.state_dict() , lowerCAmelCase__ ) __a = torch.load(lowerCAmelCase__ ) scheduler.load_state_dict(lowerCAmelCase__ ) return lrs @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self , __A , __A , __A ): self.assertEqual(len(__A ) , len(__A ) ) for a, b in zip(__A , __A ): self.assertAlmostEqual(__A , __A , delta=__A ) def snake_case_ ( self ): __a = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__A ) __a = torch.tensor([0.4, 0.2, -0.5] ) __a = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): __a = criterion(__A , __A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def snake_case_ ( self ): __a = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__A ) __a = torch.tensor([0.4, 0.2, -0.5] ) __a = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__A , weight_decay=0.0 , relative_step=__A , scale_parameter=__A , warmup_init=__A , ) for _ in range(1000 ): __a = criterion(__A , __A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None _lowerCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _lowerCamelCase = 10 def snake_case_ ( self , __A , __A , __A , __A=None ): self.assertEqual(len(__A ) , len(__A ) ) for a, b in zip(__A , __A ): self.assertAlmostEqual(__A , __A , delta=__A , msg=__A ) def snake_case_ ( self ): __a = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __a = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __a , __a = data __a = scheduler_func(self.optimizer , **__A ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __a = unwrap_schedule(__A , self.num_steps ) self.assertListAlmostEqual( __A , __A , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) __a = scheduler_func(self.optimizer , **__A ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__A ) # wrap to test picklability of the schedule __a = unwrap_and_save_reload_schedule(__A , self.num_steps ) self.assertListEqual(__A , __A , msg=f'''failed for {scheduler_func} in save and reload''' ) class __UpperCAmelCase : """simple docstring""" def __init__( self , __A ): __a = fn def __call__( self , *__A , **__A ): return self.fn(*__A , **__A ) @classmethod def snake_case_ ( self , __A ): __a = list(map(self , scheduler.lr_lambdas ) )
99
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
51
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _A : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _A : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
51
0
from __future__ import annotations import os from collections.abc import Mapping lowerCAmelCase__ : int =tuple[int, int] class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : set[int] = vertices SCREAMING_SNAKE_CASE_ : dict[EdgeT, int] = { (min(lowerCAmelCase__ ), max(lowerCAmelCase__ )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) SCREAMING_SNAKE_CASE_ : Tuple = weight def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Graph = Graph({min(self.vertices )} , {} ) SCREAMING_SNAKE_CASE_ : EdgeT SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : EdgeT SCREAMING_SNAKE_CASE_ : int while len(subgraph.vertices ) < len(self.vertices ): SCREAMING_SNAKE_CASE_ : List[Any] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: SCREAMING_SNAKE_CASE_ : Tuple = edge SCREAMING_SNAKE_CASE_ : Tuple = weight subgraph.add_edge(lowerCAmelCase__ , lowerCAmelCase__ ) return subgraph def a__ ( A__ = "p107_network.txt" ): SCREAMING_SNAKE_CASE_ : str = os.path.abspath(os.path.dirname(A__ ) ) SCREAMING_SNAKE_CASE_ : str = os.path.join(A__, A__ ) SCREAMING_SNAKE_CASE_ : dict[EdgeT, int] = {} SCREAMING_SNAKE_CASE_ : list[str] SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int with open(A__ ) as f: SCREAMING_SNAKE_CASE_ : Dict = f.read().strip().split('\n' ) SCREAMING_SNAKE_CASE_ : List[Any] = [line.split(',' ) for line in data] for edgea in range(1, len(A__ ) ): for edgea in range(A__ ): if adjaceny_matrix[edgea][edgea] != "-": SCREAMING_SNAKE_CASE_ : Tuple = int(adjaceny_matrix[edgea][edgea] ) SCREAMING_SNAKE_CASE_ : Graph = Graph(set(range(len(A__ ) ) ), A__ ) SCREAMING_SNAKE_CASE_ : Graph = graph.prims_algorithm() SCREAMING_SNAKE_CASE_ : int = sum(graph.edges.values() ) SCREAMING_SNAKE_CASE_ : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
101
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
0
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __magic_name__ : int = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __magic_name__ : Union[str, Any] = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) __magic_name__ : Optional[int] = """|""".join(sys.argv[1:]) __magic_name__ : Union[str, Any] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') __magic_name__ : Dict = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
102
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ ) def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(a__ ) if do_resize: UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: UpperCAmelCase = self.center_crop(a__ , size=a__ ) if do_rescale: UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ ) UpperCAmelCase = to_channel_dimension_format(a__ , a__ ) return image def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(a__ ) UpperCAmelCase = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=a__ , tensor_type=a__ )
51
0
"""simple docstring""" def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: while a != 0: _snake_case , _snake_case = b % a, a return b def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: if gcd(lowerCAmelCase_ , lowerCAmelCase_ ) != 1: _snake_case = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowerCAmelCase_ ) _snake_case , _snake_case , _snake_case = 1, 0, a _snake_case , _snake_case , _snake_case = 0, 1, m while va != 0: _snake_case = ua // va _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
103
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ): super(a__ , self ).__init__() UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ ) UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 ) UpperCAmelCase = torch.nn.Softmax(dim=1 ) def __snake_case ( self : List[Any] , **a__ : Tuple ): return self.bert(**a__ ).last_hidden_state def __snake_case ( self : int , a__ : List[str] ): return token_embeddings.sum(2 , keepdim=a__ ) def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ): return self.softmax(T * self.cos(a__ , a__ ) ) def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ): UpperCAmelCase = W_supports['''sizes'''].tolist() UpperCAmelCase = W_supports['''start_token_id'''].item() UpperCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = W_supports['''input_ids'''] == start_token_id UpperCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(a__ ): if i == 0: UpperCAmelCase = 0 else: UpperCAmelCase = support_sizes[i - 1] UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase = torch.vstack((p_starts, p_start) ) UpperCAmelCase = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase = p_start UpperCAmelCase = p_end return p_starts, p_ends
51
0
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__=-1 ) -> Optional[int]: # in NER datasets, the last column is usually reserved for NER label A__ = label_idx def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = mode.value A__ = os.path.join(SCREAMING_SNAKE_CASE__ , f"""{mode}.txt""" ) A__ = 1 A__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: A__ = [] A__ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 A__ = [] A__ = [] else: A__ = line.split(" " ) words.append(splits[0] ) if len(SCREAMING_SNAKE_CASE__ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) return examples def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: A__ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(SCREAMING_SNAKE_CASE__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: A__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(SCREAMING_SNAKE_CASE__ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = mode.value A__ = os.path.join(SCREAMING_SNAKE_CASE__ , f"""{mode}.txt""" ) A__ = 1 A__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): A__ = [] A__ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 return examples def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: A__ = 0 for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): A__ = preds_list[example_id] A__ = "" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(SCREAMING_SNAKE_CASE__ ) example_id += 1 def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
104
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =(EulerDiscreteScheduler,) _lowerCamelCase =10 def __snake_case ( self : str , **a__ : Tuple ): UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def __snake_case ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __snake_case ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def __snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
51
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase__ : List[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ) -> Any: """simple docstring""" inspect_dataset(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = path + '.py' assert script_name in os.listdir(lowerCamelCase_ ) assert "__pycache__" not in os.listdir(lowerCamelCase_ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ) -> Optional[Any]: """simple docstring""" inspect_metric(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = path + '.py' assert script_name in os.listdir(lowerCamelCase_ ) assert "__pycache__" not in os.listdir(lowerCamelCase_ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int ) -> List[Any]: """simple docstring""" with pytest.raises(lowerCamelCase_ ): get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_dataset_config_names(lowerCamelCase_ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_dataset_infos(lowerCamelCase_ ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE_ : Optional[Any] = expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE_ : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_dataset_infos(lowerCamelCase_ ) assert expected_config in infos SCREAMING_SNAKE_CASE_ : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ) -> int: """simple docstring""" with pytest.raises(lowerCamelCase_ ): get_dataset_split_names(lowerCamelCase_ , config_name=lowerCamelCase_ )
105
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( metadata={"help": "The csv file to plot."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowerCamelCase =list_field( default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : Optional[int] ): UpperCAmelCase = args UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCAmelCase = csv.DictReader(a__ ) for row in reader: UpperCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCAmelCase = float(row['''result'''] ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = plt.subplots() UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCAmelCase = self.result_dict[model_name]['''result'''] ((UpperCAmelCase), (UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , ) else: UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase), (UpperCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )] plt.scatter( a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a__ , a__ , '''--''' ) title_str += f" {label_model_name} vs." UpperCAmelCase = title_str[:-4] UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(a__ ) plt.xlabel(a__ ) plt.ylabel(a__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
51
0
from collections.abc import Sequence def lowerCamelCase_ ( lowerCAmelCase__ : Sequence[int] | None = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) A = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): A = nums[i] A = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __snake_case :str =int(input('Enter number of elements : ').strip()) __snake_case :Optional[int] =list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
106
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file: try: UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = True elif task_name.startswith('''voc_''' ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = '''pascal-voc-id2label.json''' UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int: """simple docstring""" if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''mobilevitv2.''' UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[int] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
107
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
0
from ...configuration_utils import PretrainedConfig class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''bert-generation''' def __init__( self : List[Any] , lowerCamelCase : Any=5_0358 , lowerCamelCase : Union[str, Any]=1024 , lowerCamelCase : str=24 , lowerCamelCase : List[str]=16 , lowerCamelCase : Optional[int]=4096 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Dict=512 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : Optional[Any]=1E-12 , lowerCamelCase : Any=0 , lowerCamelCase : List[str]=2 , lowerCamelCase : Any=1 , lowerCamelCase : Tuple="absolute" , lowerCamelCase : List[str]=True , **lowerCamelCase : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache
108
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __a ( _snake_case ): __UpperCamelCase : List[str] = 'wavlm' def __init__( self : List[Any] ,lowerCamelCase : List[str]=32 ,lowerCamelCase : Any=768 ,lowerCamelCase : Optional[int]=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : List[str]=3072 ,lowerCamelCase : List[str]="gelu" ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Dict=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Dict=0.0 ,lowerCamelCase : int=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Dict=0.02 ,lowerCamelCase : Optional[int]=1E-5 ,lowerCamelCase : int="group" ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) ,lowerCamelCase : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) ,lowerCamelCase : List[Any]=(10, 3, 3, 3, 3, 2, 2) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Tuple=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : int=320 ,lowerCamelCase : Dict=800 ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Dict=10 ,lowerCamelCase : Optional[int]=2 ,lowerCamelCase : List[str]=0.0 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : str=320 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Dict=100 ,lowerCamelCase : Optional[Any]=256 ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : Dict=0.1 ,lowerCamelCase : List[str]="mean" ,lowerCamelCase : Dict=False ,lowerCamelCase : int=False ,lowerCamelCase : Tuple=256 ,lowerCamelCase : str=(512, 512, 512, 512, 1500) ,lowerCamelCase : List[Any]=(5, 3, 3, 1, 1) ,lowerCamelCase : List[Any]=(1, 2, 3, 1, 1) ,lowerCamelCase : str=512 ,lowerCamelCase : Optional[Any]=80 ,lowerCamelCase : Optional[int]=0 ,lowerCamelCase : Dict=1 ,lowerCamelCase : Any=2 ,lowerCamelCase : List[str]=False ,lowerCamelCase : Optional[Any]=3 ,lowerCamelCase : int=2 ,lowerCamelCase : int=3 ,lowerCamelCase : List[Any]=None ,**lowerCamelCase : str ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_buckets __SCREAMING_SNAKE_CASE = max_bucket_distance __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_ctc_classes __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = do_stable_layer_norm __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length # parameters for pretraining with codevector quantized representations __SCREAMING_SNAKE_CASE = num_codevectors_per_group __SCREAMING_SNAKE_CASE = num_codevector_groups __SCREAMING_SNAKE_CASE = contrastive_logits_temperature __SCREAMING_SNAKE_CASE = num_negatives __SCREAMING_SNAKE_CASE = codevector_dim __SCREAMING_SNAKE_CASE = proj_codevector_dim __SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # adapter __SCREAMING_SNAKE_CASE = add_adapter __SCREAMING_SNAKE_CASE = adapter_kernel_size __SCREAMING_SNAKE_CASE = adapter_stride __SCREAMING_SNAKE_CASE = num_adapter_layers __SCREAMING_SNAKE_CASE = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = xvector_output_dim @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
109
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" import random from typing import Any def lowerCamelCase ( _snake_case ): for _ in range(len(_snake_case ) ): UpperCAmelCase__ : str = random.randint(0 ,len(_snake_case ) - 1 ) UpperCAmelCase__ : List[str] = random.randint(0 ,len(_snake_case ) - 1 ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase__ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase__ = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
110
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCAmelCase : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[List[ImageInput]]: if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class lowerCAmelCase ( UpperCAmelCase_ ): UpperCAmelCase__ = ["""pixel_values"""] def __init__( self : int , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : Union[str, Any] , ) -> Dict: super().__init__(**a__ ) lowerCamelCase__ : str = size if size is not None else {'shortest_edge': 256} lowerCamelCase__ : Union[str, Any] = get_size_dict(a__ , default_to_square=a__ ) lowerCamelCase__ : Tuple = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase__ : Any = get_size_dict(a__ , param_name='crop_size' ) lowerCamelCase__ : Optional[int] = do_resize lowerCamelCase__ : Union[str, Any] = size lowerCamelCase__ : Union[str, Any] = do_center_crop lowerCamelCase__ : Optional[Any] = crop_size lowerCamelCase__ : Any = resample lowerCamelCase__ : Tuple = do_rescale lowerCamelCase__ : Optional[int] = rescale_factor lowerCamelCase__ : Optional[int] = offset lowerCamelCase__ : Tuple = do_normalize lowerCamelCase__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> Any: lowerCamelCase__ : Tuple = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: lowerCamelCase__ : Dict = get_resize_output_image_size(a__ , size['shortest_edge'] , default_to_square=a__ ) elif "height" in size and "width" in size: lowerCamelCase__ : Any = (size['height'], size['width']) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def A_ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Any , ) -> List[str]: lowerCamelCase__ : Union[str, Any] = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(a__ , size=(size['height'], size['width']) , data_format=a__ , **a__ ) def A_ ( self : List[str] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ) -> Tuple: lowerCamelCase__ : Optional[Any] = image.astype(np.floataa ) if offset: lowerCamelCase__ : Optional[Any] = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def A_ ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Any , ) -> Optional[int]: return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def A_ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> int: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : Any = to_numpy_array(a__ ) if do_resize: lowerCamelCase__ : Optional[int] = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: lowerCamelCase__ : int = self.center_crop(a__ , size=a__ ) if do_rescale: lowerCamelCase__ : int = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: lowerCamelCase__ : Optional[Any] = self.normalize(image=a__ , mean=a__ , std=a__ ) lowerCamelCase__ : Optional[int] = to_channel_dimension_format(a__ , a__ ) return image def A_ ( self : List[Any] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : Any , ) -> str: lowerCamelCase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : List[Any] = resample if resample is not None else self.resample lowerCamelCase__ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Optional[int] = offset if offset is not None else self.offset lowerCamelCase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : Optional[Any] = image_std if image_std is not None else self.image_std lowerCamelCase__ : Tuple = size if size is not None else self.size lowerCamelCase__ : Any = get_size_dict(a__ , default_to_square=a__ ) lowerCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : Optional[int] = get_size_dict(a__ , param_name='crop_size' ) if not valid_images(a__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) lowerCamelCase__ : Optional[int] = make_batched(a__ ) lowerCamelCase__ : Dict = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] lowerCamelCase__ : Tuple = {'pixel_values': videos} return BatchFeature(data=a__ , tensor_type=a__ )
295
'''simple docstring''' from math import factorial def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int: """simple docstring""" return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
51
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __lowerCAmelCase : str = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Any = { 'allenai/led-base-16384': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowerCAmelCase__ = bs[:] lowerCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE_ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ = [chr(SCREAMING_SNAKE_CASE_ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char return pairs class a_ ( UpperCAmelCase_ ): UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , snake_case__ : Any , snake_case__ : Any , snake_case__ : Optional[int]="replace" , snake_case__ : Optional[int]="<s>" , snake_case__ : int="</s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Dict="<s>" , snake_case__ : int="<unk>" , snake_case__ : List[Any]="<pad>" , snake_case__ : Any="<mask>" , snake_case__ : List[Any]=False , **snake_case__ : str , ): lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( errors=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , **a__ , ) with open(a__ , encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase__ = json.load(a__ ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ = errors # how to handle errors in decoding lowerCAmelCase__ = bytes_to_unicode() lowerCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(a__ , encoding="""utf-8""" ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split("""\n""" )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ = dict(zip(a__ , range(len(a__ ) ) ) ) lowerCAmelCase__ = {} lowerCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ = re.compile(R"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _SCREAMING_SNAKE_CASE ( self : Dict ): return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[str, Any] ): if token in self.cache: return self.cache[token] lowerCAmelCase__ = tuple(a__ ) lowerCAmelCase__ = get_pairs(a__ ) if not pairs: return token while True: lowerCAmelCase__ = min(a__ , key=lambda snake_case__ : self.bpe_ranks.get(a__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(a__ ): try: lowerCAmelCase__ = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(a__ ) lowerCAmelCase__ = new_word if len(a__ ) == 1: break else: lowerCAmelCase__ = get_pairs(a__ ) lowerCAmelCase__ = """ """.join(a__ ) lowerCAmelCase__ = word return word def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : str ): lowerCAmelCase__ = [] for token in re.findall(self.pat , a__ ): lowerCAmelCase__ = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a__ ).split(""" """ ) ) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : int ): return self.decoder.get(a__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Tuple ): lowerCAmelCase__ = """""".join(a__ ) lowerCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): if not os.path.isdir(a__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + """\n""" ) lowerCAmelCase__ = 0 with open(a__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) lowerCAmelCase__ = token_index writer.write(""" """.join(a__ ) + """\n""" ) index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any]=False , **snake_case__ : Dict ): lowerCAmelCase__ = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a__ ) > 0 and not text[0].isspace()): lowerCAmelCase__ = """ """ + text return (text, kwargs) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): lowerCAmelCase__ = super()._pad( encoded_inputs=a__ , max_length=a__ , padding_strategy=a__ , pad_to_multiple_of=a__ , return_attention_mask=a__ , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase__ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase__ = len(encoded_inputs["""global_attention_mask"""] ) != len(a__ ) if needs_to_be_padded: lowerCAmelCase__ = len(a__ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase__ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase__ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
644
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['MobileNetV2FeatureExtractor'] lowercase_ = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
154
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _lowercase = input('Enter image url: ').strip() print(f'Downloading image from {url} ...') _lowercase = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image _lowercase = soup.find('meta', {'property': 'og:image'})['content'] _lowercase = requests.get(image_url).content _lowercase = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, 'wb') as fp: fp.write(image_data) print(f'Done. Image saved to disk as {file_name}.')
342
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = '''biogpt''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[Any]=4_2384 , UpperCAmelCase_ : List[Any]=1024 , UpperCAmelCase_ : Optional[Any]=24 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : str=4096 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=1024 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Any=1E-12 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : List[str]=2 , **UpperCAmelCase_ : Any , ): SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = scale_embedding SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : Tuple = layerdrop SCREAMING_SNAKE_CASE : Any = activation_dropout super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ )
62
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =XGLMTokenizer _lowerCamelCase =XGLMTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(a__ ) , 1008 ) def __snake_case ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __snake_case ( self : Optional[Any] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ ) UpperCAmelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def __snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : int ): UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : Any ): # fmt: off UpperCAmelCase = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
51
0
from __future__ import annotations import requests def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : int = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(SCREAMING_SNAKE_CASE_ ).json() def a__ ( A__ = 1_0 ): SCREAMING_SNAKE_CASE_ : Dict = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' SCREAMING_SNAKE_CASE_ : Optional[Any] = requests.get(SCREAMING_SNAKE_CASE_ ).json()[:max_stories] return [get_hackernews_story(SCREAMING_SNAKE_CASE_ ) for story_id in story_ids] def a__ ( A__ = 1_0 ): SCREAMING_SNAKE_CASE_ : Any = hackernews_top_stories(SCREAMING_SNAKE_CASE_ ) return "\n".join('* [{title}]({url})'.format(**SCREAMING_SNAKE_CASE_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": a__ : Optional[Any] =pd.read_csv('''sample_data.csv''', header=None) a__ : str =df.shape[:1][0] # If you're using some other dataset input the target column a__ : Dict =df.iloc[:, 1:2] a__ : Tuple =actual_data.values.reshape(len_data, 1) a__ : int =MinMaxScaler().fit_transform(actual_data) a__ : int =10 a__ : int =5 a__ : Dict =20 a__ : Union[str, Any] =len_data - periods * look_back a__ : Optional[int] =actual_data[:division] a__ : Union[str, Any] =actual_data[division - look_back :] a__ : Any =[], [] a__ : Tuple =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) a__ : Any =np.array(train_x) a__ : List[str] =np.array(test_x) a__ : str =np.array([list(i.ravel()) for i in train_y]) a__ : Optional[int] =np.array([list(i.ravel()) for i in test_y]) a__ : int =Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') a__ : Optional[Any] =model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) a__ : List[Any] =model.predict(x_test)
399
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a__ : List[Any] = logging.get_logger(__name__) a__ : int = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off a__ : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a__ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="whisper" _lowerCamelCase =["past_key_values"] _lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ): UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @property def __snake_case ( self : List[str] ): UpperCAmelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ): UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) UpperCAmelCase = encoder_inputs['''input_features'''].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) UpperCAmelCase = encoder_inputs.pop('''input_features''' ) UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __snake_case ( self : Dict ): return 1e-3
51
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase :List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a__ =['''pixel_values'''] def __init__( self , A = True , A = None , A = PILImageResampling.BICUBIC , A = True , A = 1 / 2_5_5 , A = True , A = None , A = None , A = True , **A , ) -> Optional[int]: super().__init__(**a__ ) _UpperCAmelCase : str = size if size is not None else {'''height''': 3_8_4, '''width''': 3_8_4} _UpperCAmelCase : Dict = get_size_dict(a__ , default_to_square=a__ ) _UpperCAmelCase : Union[str, Any] = do_resize _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Dict = resample _UpperCAmelCase : Optional[int] = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : Any = do_normalize _UpperCAmelCase : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase : List[str] = do_convert_rgb def __lowerCAmelCase ( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> Union[str, Any]: _UpperCAmelCase : Dict = get_size_dict(a__ , default_to_square=a__ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) _UpperCAmelCase : List[Any] = (size['''height'''], size['''width''']) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __lowerCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __lowerCAmelCase ( self , A , A , A , A = None , **A , ) -> str: return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __lowerCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> Optional[Any]: _UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[str] = resample if resample is not None else self.resample _UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : List[Any] = image_std if image_std is not None else self.image_std _UpperCAmelCase : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : int = get_size_dict(a__ , default_to_square=a__ ) _UpperCAmelCase : Union[str, Any] = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase : List[Any] = [convert_to_rgb(a__ ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase : Union[str, Any] = [to_numpy_array(a__ ) for image in images] if do_resize: _UpperCAmelCase : Any = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] if do_rescale: _UpperCAmelCase : Tuple = [self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: _UpperCAmelCase : Optional[Any] = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] _UpperCAmelCase : Any = [to_channel_dimension_format(a__ , a__ ) for image in images] _UpperCAmelCase : Union[str, Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=a__ ) return encoded_outputs
506
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =LEDConfig _lowerCamelCase ={} _lowerCamelCase ="gelu" def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ ) UpperCAmelCase = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ): UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(a__ , attention_mask=a__ )[0] UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1e-3 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ ) def __snake_case ( self : int ): self.config_tester.run_common_tests() def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a__ : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a__ : int ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __snake_case ( self : Any ): pass def __snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) a__ : int = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 ) def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
51
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , a : str , a : Union[str, Any]=13 , a : Any=32 , a : int=2 , a : str=3 , a : List[Any]=16 , a : Tuple=[1, 2, 1] , a : Union[str, Any]=[2, 2, 4] , a : Optional[int]=2 , a : str=2.0 , a : int=True , a : Any=0.0 , a : Optional[Any]=0.0 , a : int=0.1 , a : List[str]="gelu" , a : Optional[Any]=False , a : Tuple=True , a : int=0.02 , a : Tuple=1E-5 , a : str=True , a : Optional[Any]=None , a : List[str]=True , a : Tuple=10 , a : int=8 , )-> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = patch_norm lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = is_training lowercase__ = scope lowercase__ = use_labels lowercase__ = type_sequence_label_size lowercase__ = encoder_stride def SCREAMING_SNAKE_CASE_ ( self : Any )-> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : str )-> Union[str, Any]: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : str , a : str , a : List[str] , a : Dict )-> Optional[Any]: """simple docstring""" lowercase__ = SwinvaModel(config=a__ ) model.to(a__ ) model.eval() lowercase__ = model(a__ ) lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : Optional[int] , a : Union[str, Any] , a : int )-> Any: """simple docstring""" lowercase__ = SwinvaForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() lowercase__ = model(a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = SwinvaForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Dict , a : Tuple , a : int )-> List[Any]: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = SwinvaForImageClassification(a__ ) model.to(a__ ) model.eval() lowercase__ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): _UpperCamelCase : int = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _UpperCamelCase : Tuple = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Dict = False _UpperCamelCase : Dict = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : str = False def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Dict: """simple docstring""" lowercase__ = SwinvaModelTester(self ) lowercase__ = ConfigTester(self , config_class=a__ , embed_dim=37 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[str]: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : int )-> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a__ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(a__ , a__ ) ) lowercase__ = outputs.attentions lowercase__ = len(self.model_tester.depths ) self.assertEqual(len(a__ ) , a__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = config.window_size**2 lowercase__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(a__ , a__ ) ) lowercase__ = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowercase__ = len(a__ ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(a__ , a__ ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): lowercase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ = 2 self.assertEqual(out_len + added_hidden_states , len(a__ ) ) lowercase__ = outputs.attentions self.assertEqual(len(a__ ) , a__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[Any] , a : List[str] , a : Any , a : Tuple )-> Optional[int]: """simple docstring""" lowercase__ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(a__ , a__ ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a__ ) , a__ ) # Swinv2 has a different seq_length lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase__ = outputs.reshaped_hidden_states self.assertEqual(len(a__ ) , a__ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = reshaped_hidden_states[0].shape lowercase__ = ( reshaped_hidden_states[0].view(a__ , a__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(a__ , a__ , a__ , a__ ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(a__ , a__ , a__ , (padded_height, padded_width) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Any: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = SwinvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE_ ( self : str )-> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(a__ ) for model_class in self.all_model_classes: lowercase__ = model_class(config=a__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( a__ ) lowercase__ = self.default_image_processor lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowercase__ = image_processor(images=a__ , return_tensors='pt' ).to(a__ ) # forward pass with torch.no_grad(): lowercase__ = model(**a__ ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a__ ) lowercase__ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
235
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): SCREAMING_SNAKE_CASE_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE_ = 128022 SCREAMING_SNAKE_CASE_ = 128028 @require_sentencepiece class a ( UpperCAmelCase_ , unittest.TestCase ): _lowercase = MaMaaaTokenizer _lowercase = False _lowercase = False _lowercase = True def _UpperCAmelCase ( self ): '''simple docstring''' super().setUp() _UpperCAmelCase : Optional[int] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _UpperCAmelCase : Union[str, Any] = dict(zip(a__ , range(len(a__ ) ) ) ) _UpperCAmelCase : Union[str, Any] = Path(self.tmpdirname ) save_json(a__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _UpperCAmelCase : Tuple = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **a__ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return ( "This is a test", "This is a test", ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = "</s>" _UpperCAmelCase : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : Optional[int] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(a__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [2, 3, 4, 5, 6] , ) _UpperCAmelCase : int = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(a__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _UpperCAmelCase : Dict = tokenizer.convert_tokens_to_string(a__ ) self.assertEqual(a__ , "This is a test" ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = {"input_ids": [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): _lowercase = "facebook/m2m100_418M" _lowercase = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] _lowercase = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off _lowercase = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def _UpperCAmelCase ( cls ): '''simple docstring''' _UpperCAmelCase : Optional[int] = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _UpperCAmelCase : int = 1 return cls def _UpperCAmelCase ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128063 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.tokenizer.get_vocab() self.assertEqual(len(a__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , a__ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = "en" _UpperCAmelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a__ ) def _UpperCAmelCase ( self ): '''simple docstring''' self.assertIn(a__ , self.tokenizer.all_special_ids ) # fmt: off _UpperCAmelCase : int = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on _UpperCAmelCase : str = self.tokenizer.decode(a__ , skip_special_tokens=a__ ) _UpperCAmelCase : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ ) self.assertNotIn(self.tokenizer.eos_token , a__ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() _UpperCAmelCase : Union[str, Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(a__ ) _UpperCAmelCase : List[Any] = MaMaaaTokenizer.from_pretrained(a__ ) self.assertDictEqual(new_tok.lang_token_to_id , a__ ) @require_torch def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = "en" _UpperCAmelCase : Optional[Any] = "fr" _UpperCAmelCase : List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a__ , return_tensors="pt" ) _UpperCAmelCase : Tuple = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _UpperCAmelCase : Optional[int] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _UpperCAmelCase : str = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _UpperCAmelCase : Optional[Any] = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(a__ ) , { # en_XX, A, test, EOS "input_ids": [[128022, 58, 4183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128006, } , )
300
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( __A : Optional[int] , __A : Union[str, Any] , __A : Tuple=None ) -> Any: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" SCREAMING_SNAKE_CASE : int = nn.Parameter(SCREAMING_SNAKE_CASE_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" SCREAMING_SNAKE_CASE : str = nn.Parameter(SCREAMING_SNAKE_CASE_ ) def __snake_case ( __A : Union[str, Any] , __A : str , __A : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE : Dict = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , ) def __snake_case ( __A : Tuple , __A : Optional[Any] , __A : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE : Any = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE : Tuple = np.asarray(weights[2] ) SCREAMING_SNAKE_CASE : str = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , ) def __snake_case ( __A : List[str] , __A : Optional[Any] , __A : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = weights[0][0][0] SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(layer_norm_a[0] ) SCREAMING_SNAKE_CASE : Dict = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # lsh weights + output SCREAMING_SNAKE_CASE : List[str] = weights[0][1] if len(SCREAMING_SNAKE_CASE_ ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ ) # intermediate weighs SCREAMING_SNAKE_CASE : List[str] = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE_ ) == 4: SCREAMING_SNAKE_CASE : Dict = intermediate_weights[2] # layernorm 2 SCREAMING_SNAKE_CASE : Tuple = np.asarray(intermediate_weights[0][0] ) SCREAMING_SNAKE_CASE : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # intermediate dense SCREAMING_SNAKE_CASE : Tuple = np.asarray(intermediate_weights[1][0] ) SCREAMING_SNAKE_CASE : List[str] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # intermediate out SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(intermediate_weights[4][0] ) SCREAMING_SNAKE_CASE : Dict = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) def __snake_case ( __A : Any , __A : Any , __A : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = torch_model.reformer # word embeds SCREAMING_SNAKE_CASE : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): SCREAMING_SNAKE_CASE : List[Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): SCREAMING_SNAKE_CASE : List[str] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # output layer norm SCREAMING_SNAKE_CASE : List[str] = np.asarray(weights[7][0] ) SCREAMING_SNAKE_CASE : List[str] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # output embeddings SCREAMING_SNAKE_CASE : Optional[int] = np.asarray(weights[9][0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) def __snake_case ( __A : Dict , __A : Any , __A : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE : Any = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as f: SCREAMING_SNAKE_CASE : str = pickle.load(SCREAMING_SNAKE_CASE_ )['weights'] set_model_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
265
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
51
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _UpperCAmelCase : Optional[int] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class lowerCAmelCase ( UpperCAmelCase_ ): def __init__( self : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=1 ) -> List[str]: lowerCamelCase__ : List[str] = tokenizer lowerCamelCase__ : str = dataset lowerCamelCase__ : Tuple = len(a__ ) if n_tasks is None else n_tasks lowerCamelCase__ : Dict = n_copies def __iter__( self : int ) -> Tuple: lowerCamelCase__ : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ : Optional[int] = self.tokenizer(a__ , padding=a__ , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCAmelCase ( UpperCAmelCase_ ): def __init__( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: lowerCamelCase__ : Dict = start_length lowerCamelCase__ : Union[str, Any] = eof_strings lowerCamelCase__ : Any = tokenizer def __call__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ : Union[str, Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a__ ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : int = re.split('(%s)' % '|'.join(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # last string should be "" return "".join(string_list[:-2] ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=20 , **_UpperCAmelCase ) -> Any: lowerCamelCase__ : Dict = defaultdict(SCREAMING_SNAKE_CASE_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(SCREAMING_SNAKE_CASE_ ) ): with torch.no_grad(): lowerCamelCase__ : Optional[int] = batch['ids'].shape[-1] lowerCamelCase__ : Optional[Any] = accelerator.unwrap_model(SCREAMING_SNAKE_CASE_ ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # each task is generated batch_size times lowerCamelCase__ : Optional[int] = batch['task_id'].repeat(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Optional[int] = accelerator.pad_across_processes( SCREAMING_SNAKE_CASE_ , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ : Dict = generated_tokens.cpu().numpy() lowerCamelCase__ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): gen_token_dict[task].append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : int = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ : List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) code_gens[task].append(remove_last_block(SCREAMING_SNAKE_CASE_ ) ) return code_gens def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : str = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Any = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ : Any = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ : Dict = 'false' if args.num_workers is None: lowerCamelCase__ : Tuple = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ : int = Accelerator() set_seed(args.seed , device_specific=SCREAMING_SNAKE_CASE_ ) # Load model and tokenizer lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : List[str] = tokenizer.eos_token lowerCamelCase__ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ : Optional[int] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] ), } # Load evaluation dataset and metric lowerCamelCase__ : int = load_dataset('openai_humaneval' ) lowerCamelCase__ : Dict = load_metric('code_eval' ) lowerCamelCase__ : Any = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ : Dict = args.n_samples // args.batch_size lowerCamelCase__ : Union[str, Any] = TokenizedDataset(SCREAMING_SNAKE_CASE_ , human_eval['test'] , n_copies=SCREAMING_SNAKE_CASE_ , n_tasks=SCREAMING_SNAKE_CASE_ ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ : List[str] = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ : Union[str, Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ : Any = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Optional[int] = complete_code( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , n_tasks=SCREAMING_SNAKE_CASE_ , batch_size=args.batch_size , **SCREAMING_SNAKE_CASE_ , ) if accelerator.is_main_process: lowerCamelCase__ : List[Any] = [] for task in tqdm(range(SCREAMING_SNAKE_CASE_ ) ): lowerCamelCase__ : str = human_eval['test'][task]['test'] lowerCamelCase__ : Optional[Any] = F"""check({human_eval["test"][task]["entry_point"]})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ : int = code_eval_metric.compute( references=SCREAMING_SNAKE_CASE_ , predictions=SCREAMING_SNAKE_CASE_ , num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
295
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
51
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __lowerCAmelCase : Dict = 'src/transformers' __lowerCAmelCase : Tuple = 'docs/source/en' __lowerCAmelCase : str = '.' def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(SCREAMING_SNAKE_CASE_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(SCREAMING_SNAKE_CASE_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __lowerCAmelCase : List[Any] = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : Tuple = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : Optional[int] = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : Union[str, Any] = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , SCREAMING_SNAKE_CASE_ ) return [m.group(0 ) for m in matches] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = 2 if text == """✅""" or text == """❌""" else len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = (width - text_length) // 2 lowerCAmelCase__ = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCAmelCase__ = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowerCAmelCase__ = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowerCAmelCase__ = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = collections.defaultdict(SCREAMING_SNAKE_CASE_ ) # Let's lookup through all transformers object (once). for attr_name in dir(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ = None if attr_name.endswith("""Tokenizer""" ): lowerCAmelCase__ = slow_tokenizers lowerCAmelCase__ = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowerCAmelCase__ = fast_tokenizers lowerCAmelCase__ = attr_name[:-13] elif _re_tf_models.match(SCREAMING_SNAKE_CASE_ ) is not None: lowerCAmelCase__ = tf_models lowerCAmelCase__ = _re_tf_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] elif _re_flax_models.match(SCREAMING_SNAKE_CASE_ ) is not None: lowerCAmelCase__ = flax_models lowerCAmelCase__ = _re_flax_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] elif _re_pt_models.match(SCREAMING_SNAKE_CASE_ ) is not None: lowerCAmelCase__ = pt_models lowerCAmelCase__ = _re_pt_models.match(SCREAMING_SNAKE_CASE_ ).groups()[0] if lookup_dict is not None: while len(SCREAMING_SNAKE_CASE_ ) > 0: if attr_name in model_name_to_prefix.values(): lowerCAmelCase__ = True break # Try again after removing the last word in the name lowerCAmelCase__ = """""".join(camel_case_split(SCREAMING_SNAKE_CASE_ )[:-1] ) # Let's build that table! lowerCAmelCase__ = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowerCAmelCase__ = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowerCAmelCase__ = [len(SCREAMING_SNAKE_CASE_ ) + 2 for c in columns] lowerCAmelCase__ = max([len(SCREAMING_SNAKE_CASE_ ) for name in model_names] ) + 2 # Build the table per se lowerCAmelCase__ = """|""" + """|""".join([_center_text(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for c, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowerCAmelCase__ = {True: """✅""", False: """❌"""} for name in model_names: lowerCAmelCase__ = model_name_to_prefix[name] lowerCAmelCase__ = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for l, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] ) + "|\n" return table def _UpperCAmelCase ( lowerCamelCase__=False ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(SCREAMING_SNAKE_CASE_ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowerCAmelCase__ = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(SCREAMING_SNAKE_CASE_ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __lowerCAmelCase : Optional[int] = parser.parse_args() check_model_table(args.fix_and_overwrite)
644
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
0
from ..utils import DummyObject, requires_backends class A__ ( metaclass=UpperCAmelCase_ ): lowerCamelCase__ : Any =["torch", "transformers", "onnx"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> Tuple: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> Tuple: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__ ( metaclass=UpperCAmelCase_ ): lowerCamelCase__ : Any =["torch", "transformers", "onnx"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> int: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> Tuple: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__ ( metaclass=UpperCAmelCase_ ): lowerCamelCase__ : List[Any] =["torch", "transformers", "onnx"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> List[str]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__ ( metaclass=UpperCAmelCase_ ): lowerCamelCase__ : int =["torch", "transformers", "onnx"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> str: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__ ( metaclass=UpperCAmelCase_ ): lowerCamelCase__ : List[Any] =["torch", "transformers", "onnx"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> List[str]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class A__ ( metaclass=UpperCAmelCase_ ): lowerCamelCase__ : List[str] =["torch", "transformers", "onnx"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> Any: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> List[str]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase ( cls , *lowerCamelCase , **lowerCamelCase ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
154
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ ) def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(a__ ) if do_resize: UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: UpperCAmelCase = self.center_crop(a__ , size=a__ ) if do_rescale: UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ ) UpperCAmelCase = to_channel_dimension_format(a__ , a__ ) return image def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(a__ ) UpperCAmelCase = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=a__ , tensor_type=a__ )
51
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _lowercase ( UpperCAmelCase_ ): _UpperCAmelCase = '''altclip_text_model''' def __init__( self , A__=25_00_02 , A__=10_24 , A__=24 , A__=16 , A__=40_96 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_14 , A__=1 , A__=0.0_2 , A__=0.0_2 , A__=1e-05 , A__=1 , A__=0 , A__=2 , A__="absolute" , A__=True , A__=7_68 , **A__ , ) -> Optional[Any]: super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = initializer_factor snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = project_dim class _lowercase ( UpperCAmelCase_ ): _UpperCAmelCase = '''altclip_vision_model''' def __init__( self , A__=7_68 , A__=30_72 , A__=5_12 , A__=12 , A__=12 , A__=3 , A__=2_24 , A__=32 , A__="quick_gelu" , A__=1e-5 , A__=0.0 , A__=0.0_2 , A__=1.0 , **A__ , ) -> int: super().__init__(**a__ ) snake_case = hidden_size snake_case = intermediate_size snake_case = projection_dim snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = num_channels snake_case = patch_size snake_case = image_size snake_case = initializer_range snake_case = initializer_factor snake_case = attention_dropout snake_case = layer_norm_eps snake_case = hidden_act @classmethod def UpperCamelCase ( cls , A__ , **A__ ) -> Union[str, Any]: cls._set_token_in_kwargs(a__ ) snake_case , snake_case = cls.get_config_dict(a__ , **a__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": snake_case = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(a__ , **a__ ) class _lowercase ( UpperCAmelCase_ ): _UpperCAmelCase = '''altclip''' _UpperCAmelCase = True def __init__( self , A__=None , A__=None , A__=7_68 , A__=2.6_5_9_2 , **A__ ) -> List[Any]: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). snake_case = kwargs.pop('''text_config_dict''' , a__ ) snake_case = kwargs.pop('''vision_config_dict''' , a__ ) super().__init__(**a__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case = {} # This is the complete result when using `text_config_dict`. snake_case = AltCLIPTextConfig(**a__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case = ( F"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ F"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case = ( F"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ F"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(a__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: snake_case = {} # This is the complete result when using `vision_config_dict`. snake_case = AltCLIPVisionConfig(**a__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case = { str(a__ ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case = ( F"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ F"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case = ( F"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ F"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(a__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: snake_case = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: snake_case = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) snake_case = AltCLIPTextConfig(**a__ ) snake_case = AltCLIPVisionConfig(**a__ ) snake_case = projection_dim snake_case = logit_scale_init_value snake_case = 1.0 @classmethod def UpperCamelCase ( cls , A__ , A__ , **A__ ) -> Optional[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a__ ) def UpperCamelCase ( self ) -> Any: snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.text_config.to_dict() snake_case = self.vision_config.to_dict() snake_case = self.__class__.model_type return output
342
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ): super(a__ , self ).__init__() UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ ) UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 ) UpperCAmelCase = torch.nn.Softmax(dim=1 ) def __snake_case ( self : List[Any] , **a__ : Tuple ): return self.bert(**a__ ).last_hidden_state def __snake_case ( self : int , a__ : List[str] ): return token_embeddings.sum(2 , keepdim=a__ ) def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ): return self.softmax(T * self.cos(a__ , a__ ) ) def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ): UpperCAmelCase = W_supports['''sizes'''].tolist() UpperCAmelCase = W_supports['''start_token_id'''].item() UpperCAmelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = self.BERT(**a__ ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = W_supports['''input_ids'''] == start_token_id UpperCAmelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(a__ ): if i == 0: UpperCAmelCase = 0 else: UpperCAmelCase = support_sizes[i - 1] UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase = torch.vstack((p_starts, p_start) ) UpperCAmelCase = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase = p_start UpperCAmelCase = p_end return p_starts, p_ends
51
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : str=10 , UpperCAmelCase_ : List[Any]=[10, 20, 30, 40] , UpperCAmelCase_ : Dict=[1, 1, 2, 1] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]="relu" , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Union[str, Any]=None , ): SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Tuple = embeddings_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE : Dict = depths SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = scope SCREAMING_SNAKE_CASE : Union[str, Any] = len(a__ ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def _A ( self : Any ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _A ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Any = RegNetModel(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _A ( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE : Tuple = RegNetForImageClassification(a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : int = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () UpperCamelCase_ : Optional[Any] = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str = False UpperCamelCase_ : int = False UpperCamelCase_ : Dict = False UpperCamelCase_ : Optional[Any] = False def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Any = RegNetModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def _A ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A ( self : Optional[int] ): return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _A ( self : Optional[int] ): pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _A ( self : Tuple ): pass def _A ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(config=a__ ) for name, module in model.named_modules(): if isinstance(a__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _A ( self : Dict ): def check_hidden_states_output(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Optional[int] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE : Optional[int] = layer_type SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(a__ , a__ , a__ ) def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def _A ( self : str ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = RegNetModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : int ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Union[str, Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**a__ ) # verify the logits SCREAMING_SNAKE_CASE : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
62
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =(EulerDiscreteScheduler,) _lowerCamelCase =10 def __snake_case ( self : str , **a__ : Tuple ): UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def __snake_case ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __snake_case ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def __snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
51
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : List[str] = BlipImageProcessor() SCREAMING_SNAKE_CASE_ : int = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) SCREAMING_SNAKE_CASE_ : List[str] = BlipProcessor(a__ , a__ ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).tokenizer def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : str = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = BlipProcessor(tokenizer=a__ , image_processor=a__ ) SCREAMING_SNAKE_CASE_ : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Dict = image_processor(a__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Any = processor(images=a__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = BlipProcessor(tokenizer=a__ , image_processor=a__ ) SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Any = processor(text=a__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer(a__ , return_token_type_ids=a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = BlipProcessor(tokenizer=a__ , image_processor=a__ ) SCREAMING_SNAKE_CASE_ : Any = 'lower newer' SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : str = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = BlipProcessor(tokenizer=a__ , image_processor=a__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : List[Any] = processor.batch_decode(a__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ , a__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = BlipProcessor(tokenizer=a__ , image_processor=a__ ) SCREAMING_SNAKE_CASE_ : int = 'lower newer' SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = processor(text=a__ , images=a__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
101
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( metadata={"help": "The csv file to plot."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowerCamelCase =list_field( default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a__ : Optional[int] ): UpperCAmelCase = args UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCAmelCase = csv.DictReader(a__ ) for row in reader: UpperCAmelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCAmelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCAmelCase = float(row['''result'''] ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = plt.subplots() UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCAmelCase = self.result_dict[model_name]['''result'''] ((UpperCAmelCase), (UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , ) else: UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase), (UpperCAmelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )] plt.scatter( a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(a__ , a__ , '''--''' ) title_str += f" {label_model_name} vs." UpperCAmelCase = title_str[:-4] UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(a__ ) plt.xlabel(a__ ) plt.ylabel(a__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
51
0
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class snake_case ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __A : int , __A : int , __A : int , __A : str=0.0 , __A : Optional[int] = None , __A : str = "geglu" , __A : Optional[int] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : str = "layer_norm" , __A : bool = False , ): super().__init__() __UpperCamelCase = only_cross_attention __UpperCamelCase = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' __UpperCamelCase = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __UpperCamelCase = AdaLayerNorm(a__ , a__ ) elif self.use_ada_layer_norm_zero: __UpperCamelCase = AdaLayerNormZero(a__ , a__ ) else: __UpperCamelCase = nn.LayerNorm(a__ , elementwise_affine=a__ ) __UpperCamelCase = Attention( query_dim=a__ , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=a__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __UpperCamelCase = ( AdaLayerNorm(a__ , a__ ) if self.use_ada_layer_norm else nn.LayerNorm(a__ , elementwise_affine=a__ ) ) __UpperCamelCase = Attention( query_dim=a__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , upcast_attention=a__ , ) # is self-attn if encoder_hidden_states is none else: __UpperCamelCase = None __UpperCamelCase = None # 3. Feed-forward __UpperCamelCase = nn.LayerNorm(a__ , elementwise_affine=a__ ) __UpperCamelCase = FeedForward(a__ , dropout=a__ , activation_fn=a__ , final_dropout=a__ ) # let chunk size default to None __UpperCamelCase = None __UpperCamelCase = 0 def _lowerCamelCase ( self : Tuple , __A : Optional[int] , __A : int ): # Sets chunk feed-forward __UpperCamelCase = chunk_size __UpperCamelCase = dim def _lowerCamelCase ( self : Optional[Any] , __A : torch.FloatTensor , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.LongTensor] = None , __A : Dict[str, Any] = None , __A : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __UpperCamelCase = self.norma(a__ , a__ ) elif self.use_ada_layer_norm_zero: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.norma( a__ , a__ , a__ , hidden_dtype=hidden_states.dtype ) else: __UpperCamelCase = self.norma(a__ ) __UpperCamelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __UpperCamelCase = self.attna( a__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=a__ , **a__ , ) if self.use_ada_layer_norm_zero: __UpperCamelCase = gate_msa.unsqueeze(1 ) * attn_output __UpperCamelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __UpperCamelCase = ( self.norma(a__ , a__ ) if self.use_ada_layer_norm else self.norma(a__ ) ) __UpperCamelCase = self.attna( a__ , encoder_hidden_states=a__ , attention_mask=a__ , **a__ , ) __UpperCamelCase = attn_output + hidden_states # 3. Feed-forward __UpperCamelCase = self.norma(a__ ) if self.use_ada_layer_norm_zero: __UpperCamelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) __UpperCamelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __UpperCamelCase = torch.cat( [self.ff(a__ ) for hid_slice in norm_hidden_states.chunk(a__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __UpperCamelCase = self.ff(a__ ) if self.use_ada_layer_norm_zero: __UpperCamelCase = gate_mlp.unsqueeze(1 ) * ff_output __UpperCamelCase = ff_output + hidden_states return hidden_states class snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __A : int , __A : Optional[int] = None , __A : int = 4 , __A : float = 0.0 , __A : str = "geglu" , __A : bool = False , ): super().__init__() __UpperCamelCase = int(dim * mult ) __UpperCamelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __UpperCamelCase = GELU(a__ , a__ ) if activation_fn == "gelu-approximate": __UpperCamelCase = GELU(a__ , a__ , approximate='tanh' ) elif activation_fn == "geglu": __UpperCamelCase = GEGLU(a__ , a__ ) elif activation_fn == "geglu-approximate": __UpperCamelCase = ApproximateGELU(a__ , a__ ) __UpperCamelCase = nn.ModuleList([] ) # project in self.net.append(a__ ) # project dropout self.net.append(nn.Dropout(a__ ) ) # project out self.net.append(nn.Linear(a__ , a__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(a__ ) ) def _lowerCamelCase ( self : Any , __A : List[Any] ): for module in self.net: __UpperCamelCase = module(a__ ) return hidden_states class snake_case ( nn.Module ): """simple docstring""" def __init__( self : int , __A : int , __A : int , __A : str = "none" ): super().__init__() __UpperCamelCase = nn.Linear(a__ , a__ ) __UpperCamelCase = approximate def _lowerCamelCase ( self : List[str] , __A : Optional[int] ): if gate.device.type != "mps": return F.gelu(a__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _lowerCamelCase ( self : Union[str, Any] , __A : List[Any] ): __UpperCamelCase = self.proj(a__ ) __UpperCamelCase = self.gelu(a__ ) return hidden_states class snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __A : int , __A : int ): super().__init__() __UpperCamelCase = nn.Linear(a__ , dim_out * 2 ) def _lowerCamelCase ( self : List[Any] , __A : List[str] ): if gate.device.type != "mps": return F.gelu(a__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowerCamelCase ( self : Dict , __A : Optional[Any] ): __UpperCamelCase , __UpperCamelCase = self.proj(a__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(a__ ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , __A : int , __A : int ): super().__init__() __UpperCamelCase = nn.Linear(a__ , a__ ) def _lowerCamelCase ( self : Optional[int] , __A : Union[str, Any] ): __UpperCamelCase = self.proj(a__ ) return x * torch.sigmoid(1.702 * x ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __A : Tuple , __A : str ): super().__init__() __UpperCamelCase = nn.Embedding(a__ , a__ ) __UpperCamelCase = nn.SiLU() __UpperCamelCase = nn.Linear(a__ , embedding_dim * 2 ) __UpperCamelCase = nn.LayerNorm(a__ , elementwise_affine=a__ ) def _lowerCamelCase ( self : int , __A : Union[str, Any] , __A : Optional[int] ): __UpperCamelCase = self.linear(self.silu(self.emb(a__ ) ) ) __UpperCamelCase , __UpperCamelCase = torch.chunk(a__ , 2 ) __UpperCamelCase = self.norm(a__ ) * (1 + scale) + shift return x class snake_case ( nn.Module ): """simple docstring""" def __init__( self : Tuple , __A : List[str] , __A : List[str] ): super().__init__() __UpperCamelCase = CombinedTimestepLabelEmbeddings(a__ , a__ ) __UpperCamelCase = nn.SiLU() __UpperCamelCase = nn.Linear(a__ , 6 * embedding_dim , bias=a__ ) __UpperCamelCase = nn.LayerNorm(a__ , elementwise_affine=a__ , eps=1e-6 ) def _lowerCamelCase ( self : List[str] , __A : str , __A : List[str] , __A : List[str] , __A : int=None ): __UpperCamelCase = self.linear(self.silu(self.emb(a__ , a__ , hidden_dtype=a__ ) ) ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = emb.chunk(6 , dim=1 ) __UpperCamelCase = self.norm(a__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , __A : int , __A : int , __A : int , __A : Optional[str] = None , __A : float = 1e-5 ): super().__init__() __UpperCamelCase = num_groups __UpperCamelCase = eps if act_fn is None: __UpperCamelCase = None else: __UpperCamelCase = get_activation(a__ ) __UpperCamelCase = nn.Linear(a__ , out_dim * 2 ) def _lowerCamelCase ( self : List[Any] , __A : Optional[int] , __A : int ): if self.act: __UpperCamelCase = self.act(a__ ) __UpperCamelCase = self.linear(a__ ) __UpperCamelCase = emb[:, :, None, None] __UpperCamelCase , __UpperCamelCase = emb.chunk(2 , dim=1 ) __UpperCamelCase = F.group_norm(a__ , self.num_groups , eps=self.eps ) __UpperCamelCase = x * (1 + scale) + shift return x
399
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file: try: UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = True elif task_name.startswith('''voc_''' ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = '''pascal-voc-id2label.json''' UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int: """simple docstring""" if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''mobilevitv2.''' UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase :Dict = logging.get_logger(__name__) _lowerCAmelCase :Any = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class _UpperCAmelCase ( UpperCAmelCase_ ,UpperCAmelCase_ ): '''simple docstring''' a__ ='''nat''' a__ ={ '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , A=4 , A=3 , A=6_4 , A=[3, 4, 6, 5] , A=[2, 4, 8, 1_6] , A=7 , A=3.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=0.02 , A=1E-5 , A=0.0 , A=None , A=None , **A , ) -> List[str]: super().__init__(**a__ ) _UpperCAmelCase : List[str] = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Optional[Any] = embed_dim _UpperCAmelCase : Tuple = depths _UpperCAmelCase : List[str] = len(a__ ) _UpperCAmelCase : Dict = num_heads _UpperCAmelCase : Tuple = kernel_size _UpperCAmelCase : int = mlp_ratio _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : int = drop_path_rate _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase : Optional[int] = int(embed_dim * 2 ** (len(a__ ) - 1) ) _UpperCAmelCase : List[Any] = layer_scale_init_value _UpperCAmelCase : Optional[int] = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(a__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
506
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [] lowercase__ = [] lowercase__ = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowercase__ = len(SCREAMING_SNAKE_CASE_ ) if (len(SCREAMING_SNAKE_CASE_ ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(SCREAMING_SNAKE_CASE_ ) , 'Postfix'.center(SCREAMING_SNAKE_CASE_ ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(SCREAMING_SNAKE_CASE_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(SCREAMING_SNAKE_CASE_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(SCREAMING_SNAKE_CASE_ ) == 0: stack.append(SCREAMING_SNAKE_CASE_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(SCREAMING_SNAKE_CASE_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(SCREAMING_SNAKE_CASE_ ) # push x to stack print( x.center(8 ) , (''.join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , (''.join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , sep=' | ' , ) # Output in tabular format while len(SCREAMING_SNAKE_CASE_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , (''.join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , sep=' | ' , ) # Output in tabular format return "".join(SCREAMING_SNAKE_CASE_ ) # return Postfix as str def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if infix[i] == "(": lowercase__ = ')' # change "(" to ")" elif infix[i] == ")": lowercase__ = '(' # change ")" to "(" return (infix_2_postfix(''.join(SCREAMING_SNAKE_CASE_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowercase_ = input("""\nEnter an Infix Equation = """) # Input an Infix equation lowercase_ = ''.join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
235
'''simple docstring''' from __future__ import annotations a__ : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def __snake_case ( self : Optional[int] ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(a__ ) UpperCAmelCase = vertex queue.append(a__ ) def __snake_case ( self : Any , a__ : str ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(a__ ) if target_vertex_parent is None: UpperCAmelCase = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(a__ ) return self.shortest_path(a__ ) + f"->{target_vertex}" if __name__ == "__main__": a__ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
51
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
300
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" def __snake_case ( __A : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, 0, 0 SCREAMING_SNAKE_CASE : Tuple = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE : List[Any] = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE : Optional[Any] = ugly_nums[ia] * 5 for _ in range(1 , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE : Optional[Any] = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ugly_nums.append(SCREAMING_SNAKE_CASE_ ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE : Optional[Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
265
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _UpperCAmelCase : int = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase ( UpperCAmelCase_ ): UpperCAmelCase__ = """maskformer""" UpperCAmelCase__ = {"""hidden_size""": """mask_feature_size"""} UpperCAmelCase__ = ["""resnet""", """swin"""] UpperCAmelCase__ = ["""detr"""] def __init__( self : Tuple , UpperCAmelCase : int = 256 , UpperCAmelCase : int = 256 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[Dict] = None , UpperCAmelCase : Optional[Dict] = None , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : float = 1.0 , UpperCAmelCase : float = 1.0 , UpperCAmelCase : float = 1.0 , UpperCAmelCase : float = 2_0.0 , UpperCAmelCase : Optional[bool] = None , **UpperCAmelCase : List[Any] , ) -> Tuple: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCamelCase__ : Union[str, Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(a__ , a__ ): lowerCamelCase__ : Optional[int] = backbone_config.pop('model_type' ) lowerCamelCase__ : int = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : List[Any] = config_class.from_dict(a__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCamelCase__ : Optional[int] = DetrConfig() else: # verify that the decoder is supported lowerCamelCase__ : Optional[int] = ( decoder_config.pop('model_type' ) if isinstance(a__ , a__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {",".join(self.decoders_supported )}""" ) if isinstance(a__ , a__ ): lowerCamelCase__ : List[str] = CONFIG_MAPPING[decoder_type] lowerCamelCase__ : List[str] = config_class.from_dict(a__ ) lowerCamelCase__ : Optional[int] = backbone_config lowerCamelCase__ : Any = decoder_config # main feature dimension for the model lowerCamelCase__ : List[str] = fpn_feature_size lowerCamelCase__ : Any = mask_feature_size # initializer lowerCamelCase__ : Dict = init_std lowerCamelCase__ : Optional[Any] = init_xavier_std # Hungarian matcher && loss lowerCamelCase__ : Tuple = cross_entropy_weight lowerCamelCase__ : Optional[Any] = dice_weight lowerCamelCase__ : Optional[int] = mask_weight lowerCamelCase__ : Union[str, Any] = use_auxiliary_loss lowerCamelCase__ : str = no_object_weight lowerCamelCase__ : Dict = output_auxiliary_logits lowerCamelCase__ : int = self.decoder_config.encoder_attention_heads lowerCamelCase__ : Any = self.decoder_config.num_hidden_layers super().__init__(**a__ ) @classmethod def A_ ( cls : Tuple , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : PretrainedConfig , **UpperCAmelCase : List[str] ) -> Any: return cls( backbone_config=a__ , decoder_config=a__ , **a__ , ) def A_ ( self : List[Any] ) -> List[Any]: lowerCamelCase__ : str = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Union[str, Any] = self.backbone_config.to_dict() lowerCamelCase__ : List[Any] = self.decoder_config.to_dict() lowerCamelCase__ : List[Any] = self.__class__.model_type return output
295
'''simple docstring''' from math import factorial def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int: """simple docstring""" return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
51
0
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = model.config lowerCAmelCase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowerCAmelCase__ = MBartConfig( is_decoder=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=SCREAMING_SNAKE_CASE_ , add_final_layer_norm=SCREAMING_SNAKE_CASE_ , ) return encoder_config, decoder_config def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if "encoder.model" in name: lowerCAmelCase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowerCAmelCase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowerCAmelCase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowerCAmelCase__ = """encoder.""" + name if "attn.proj" in name: lowerCAmelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowerCAmelCase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowerCAmelCase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowerCAmelCase__ = """encoder.layernorm.bias""" return name def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: lowerCAmelCase__ = key.split(""".""" ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = int(key_split[5] ) lowerCAmelCase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCAmelCase__ = val return orig_state_dict def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=False ): """simple docstring""" lowerCAmelCase__ = DonutModel.from_pretrained(SCREAMING_SNAKE_CASE_ ).eval() # load HuggingFace model lowerCAmelCase__ , lowerCAmelCase__ = get_configs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = DonutSwinModel(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = MBartForCausalLM(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = VisionEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase__ = original_model.state_dict() lowerCAmelCase__ = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify results on scanned document lowerCAmelCase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowerCAmelCase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowerCAmelCase__ = XLMRobertaTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ , from_slow=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCAmelCase__ = DonutProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCAmelCase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowerCAmelCase__ = """When is the coffee break?""" lowerCAmelCase__ = task_prompt.replace("""{user_input}""" , SCREAMING_SNAKE_CASE_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCAmelCase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCAmelCase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCAmelCase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCAmelCase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCAmelCase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowerCAmelCase__ = original_model.decoder.tokenizer(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" )[ """input_ids""" ] lowerCAmelCase__ = original_model.encoder.model.patch_embed(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ = model.encoder.embeddings(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) # verify encoder hidden states lowerCAmelCase__ = original_model.encoder(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model.encoder(SCREAMING_SNAKE_CASE_ ).last_hidden_state assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) # verify decoder hidden states lowerCAmelCase__ = original_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).logits lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": __lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __lowerCAmelCase : Optional[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
644
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( UpperCAmelCase_ ): lowerCamelCase__ : List[Any] =["image_processor", "tokenizer"] lowerCamelCase__ : Tuple ="CLIPImageProcessor" lowerCamelCase__ : int =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ) -> Optional[int]: """simple docstring""" __magic_name__ : str = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) __magic_name__ : List[str] = kwargs.pop('''feature_extractor''' ) __magic_name__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ) -> str: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __magic_name__ : Dict = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: __magic_name__ : Optional[int] = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: __magic_name__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def lowercase ( self , *lowerCamelCase , **lowerCamelCase ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def lowercase ( self , *lowerCamelCase , **lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property def lowercase ( self ) -> Union[str, Any]: """simple docstring""" __magic_name__ : List[Any] = self.tokenizer.model_input_names __magic_name__ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
154
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
0
'''simple docstring''' def __UpperCamelCase ( a : int , a : int ) ->int: return int((input_a, input_a).count(0 ) != 0 ) def __UpperCamelCase ( ) ->None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
342
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal snake_case = datasets.utils.logging.get_logger(__name__) snake_case = ['names', 'prefix'] snake_case = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] snake_case = ['encoding_errors', 'on_bad_lines'] snake_case = ['date_format'] @dataclass class SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ''',''' UpperCamelCase_ : str = None UpperCamelCase_ : List[str] = '''infer''' UpperCamelCase_ : List[Any] = None UpperCamelCase_ : str = None UpperCamelCase_ : Any = None UpperCamelCase_ : List[Any] = None UpperCamelCase_ : List[Any] = None UpperCamelCase_ : List[Any] = True UpperCamelCase_ : Tuple = None UpperCamelCase_ : Tuple = None UpperCamelCase_ : Tuple = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Any = False UpperCamelCase_ : Tuple = None UpperCamelCase_ : Dict = None UpperCamelCase_ : Any = None UpperCamelCase_ : List[Any] = True UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Dict = True UpperCamelCase_ : List[Any] = None UpperCamelCase_ : List[str] = '''.''' UpperCamelCase_ : Any = None UpperCamelCase_ : List[str] = '''"''' UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : List[str] = None UpperCamelCase_ : Optional[Any] = None UpperCamelCase_ : List[str] = None UpperCamelCase_ : Optional[Any] = None UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : int = True UpperCamelCase_ : str = 0 UpperCamelCase_ : str = True UpperCamelCase_ : List[Any] = False UpperCamelCase_ : str = None UpperCamelCase_ : List[Any] = 1_0_0_0_0 UpperCamelCase_ : Tuple = None UpperCamelCase_ : List[Any] = '''strict''' UpperCamelCase_ : Any = '''error''' UpperCamelCase_ : Tuple = None def _A ( self : Any ): if self.delimiter is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.column_names @property def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , a__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = CsvConfig def _A ( self : Optional[int] ): return datasets.DatasetInfo(features=self.config.features ) def _A ( self : int , UpperCAmelCase_ : List[str] ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE : Any = data_files if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : Dict = [files] SCREAMING_SNAKE_CASE : Dict = [dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE : int = [] for split_name, files in data_files.items(): if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : Any = [files] SCREAMING_SNAKE_CASE : Dict = [dl_manager.iter_files(a__ ) for file in files] splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={"files": files} ) ) return splits def _A ( self : Any , UpperCAmelCase_ : pa.Table ): if self.config.features is not None: SCREAMING_SNAKE_CASE : Any = self.config.features.arrow_schema if all(not require_storage_cast(a__ ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=a__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE : str = table_cast(a__ , a__ ) return pa_table def _A ( self : Any , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE : Any = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(a__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ): SCREAMING_SNAKE_CASE : Dict = pd.read_csv(a__ , iterator=a__ , dtype=a__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(a__ ): SCREAMING_SNAKE_CASE : List[Any] = pa.Table.from_pandas(a__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(a__ ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(a__ )}: {e}''' ) raise
62
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =XGLMTokenizer _lowerCamelCase =XGLMTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(a__ ) , 1008 ) def __snake_case ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __snake_case ( self : Optional[Any] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def __snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ ) UpperCAmelCase = pickle.dumps(a__ ) pickle.loads(a__ ) def __snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : int ): UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : List[str] ): UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __snake_case ( self : Any ): # fmt: off UpperCAmelCase = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
51
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowercase (UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase = 4_2 class __lowercase (UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" @register_to_config def __init__( self , lowerCAmelCase__ = 1_6 , lowerCAmelCase__ = 8_8 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = "geglu" , lowerCAmelCase__ = True , lowerCAmelCase__ = True , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : int = attention_head_dim SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE_ : List[Any] = in_channels SCREAMING_SNAKE_CASE_ : List[Any] = torch.nn.GroupNorm(num_groups=a__ , num_channels=a__ , eps=1E-6 , affine=a__ ) SCREAMING_SNAKE_CASE_ : List[str] = nn.Linear(a__ , a__ ) # 3. Define transformers blocks SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( a__ , a__ , a__ , dropout=a__ , cross_attention_dim=a__ , activation_fn=a__ , attention_bias=a__ , double_self_attention=a__ , norm_elementwise_affine=a__ , ) for d in range(a__ ) ] ) SCREAMING_SNAKE_CASE_ : Tuple = nn.Linear(a__ , a__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=1 , lowerCAmelCase__=None , lowerCAmelCase__ = True , ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = hidden_states.shape SCREAMING_SNAKE_CASE_ : Tuple = batch_frames // num_frames SCREAMING_SNAKE_CASE_ : str = hidden_states SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_states[None, :].reshape(a__ , a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE_ : str = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.norm(a__ ) SCREAMING_SNAKE_CASE_ : int = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , a__ , a__ ) SCREAMING_SNAKE_CASE_ : str = self.proj_in(a__ ) # 2. Blocks for block in self.transformer_blocks: SCREAMING_SNAKE_CASE_ : Optional[Any] = block( a__ , encoder_hidden_states=a__ , timestep=a__ , cross_attention_kwargs=a__ , class_labels=a__ , ) # 3. Output SCREAMING_SNAKE_CASE_ : Tuple = self.proj_out(a__ ) SCREAMING_SNAKE_CASE_ : Any = ( hidden_states[None, None, :] .reshape(a__ , a__ , a__ , a__ , a__ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_states.reshape(a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE_ : List[str] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=a__ )
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig: """simple docstring""" UpperCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 UpperCAmelCase = [800, 1_333] UpperCAmelCase = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase = 330 UpperCAmelCase = 14 UpperCAmelCase = 6 UpperCAmelCase = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 elif "yolos_b" in yolos_name: UpperCAmelCase = [800, 1_344] UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def __snake_case ( ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes UpperCAmelCase, UpperCAmelCase = None, None if yolos_name == "yolos_ti": UpperCAmelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: UpperCAmelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : Optional[Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
51
0
'''simple docstring''' from math import isqrt def lowercase__ ( __lowercase : int ) -> bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ) def lowercase__ ( __lowercase : int = 10**6 ) -> int: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 7 while prime_candidate < max_prime: primes_count += is_prime(SCREAMING_SNAKE_CASE_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'{solution() = }')
399
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a__ : List[Any] = logging.get_logger(__name__) a__ : int = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off a__ : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a__ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="whisper" _lowerCamelCase =["past_key_values"] _lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ): UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @property def __snake_case ( self : List[str] ): UpperCAmelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) return common_inputs def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ): UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , ) UpperCAmelCase = encoder_inputs['''input_features'''].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , a__ , a__ , a__ , a__ ) UpperCAmelCase = encoder_inputs.pop('''input_features''' ) UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __snake_case ( self : Dict ): return 1e-3
51
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a__ =4_2 class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , A=3 , A=3 , A=("DownEncoderBlock2D",) , A=(6_4,) , A=2 , A=3_2 , A="silu" , A=True , ) -> Union[str, Any]: super().__init__() _UpperCAmelCase : Optional[Any] = layers_per_block _UpperCAmelCase : Optional[int] = torch.nn.Convad( a__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCAmelCase : str = None _UpperCAmelCase : List[str] = nn.ModuleList([] ) # down _UpperCAmelCase : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(a__ ): _UpperCAmelCase : List[str] = output_channel _UpperCAmelCase : Union[str, Any] = block_out_channels[i] _UpperCAmelCase : Optional[int] = i == len(a__ ) - 1 _UpperCAmelCase : Dict = get_down_block( a__ , num_layers=self.layers_per_block , in_channels=a__ , out_channels=a__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , ) self.down_blocks.append(a__ ) # mid _UpperCAmelCase : Any = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , ) # out _UpperCAmelCase : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=a__ , eps=1E-6 ) _UpperCAmelCase : int = nn.SiLU() _UpperCAmelCase : Tuple = 2 * out_channels if double_z else out_channels _UpperCAmelCase : List[Any] = nn.Convad(block_out_channels[-1] , a__ , 3 , padding=1 ) _UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self , A ) -> Dict: _UpperCAmelCase : Union[str, Any] = x _UpperCAmelCase : Dict = self.conv_in(a__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A ): def custom_forward(*A ): return module(*a__ ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: _UpperCAmelCase : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(a__ ) , a__ , use_reentrant=a__ ) # middle _UpperCAmelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , use_reentrant=a__ ) else: for down_block in self.down_blocks: _UpperCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ ) # middle _UpperCAmelCase : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , a__ ) else: # down for down_block in self.down_blocks: _UpperCAmelCase : Any = down_block(a__ ) # middle _UpperCAmelCase : Optional[Any] = self.mid_block(a__ ) # post-process _UpperCAmelCase : Optional[int] = self.conv_norm_out(a__ ) _UpperCAmelCase : Optional[int] = self.conv_act(a__ ) _UpperCAmelCase : Optional[Any] = self.conv_out(a__ ) return sample class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , A=3 , A=3 , A=("UpDecoderBlock2D",) , A=(6_4,) , A=2 , A=3_2 , A="silu" , A="group" , ) -> List[str]: super().__init__() _UpperCAmelCase : List[str] = layers_per_block _UpperCAmelCase : Any = nn.Convad( a__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Tuple = nn.ModuleList([] ) _UpperCAmelCase : Any = in_channels if norm_type == '''spatial''' else None # mid _UpperCAmelCase : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , ) # up _UpperCAmelCase : Union[str, Any] = list(reversed(a__ ) ) _UpperCAmelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(a__ ): _UpperCAmelCase : Any = output_channel _UpperCAmelCase : List[Any] = reversed_block_out_channels[i] _UpperCAmelCase : List[Any] = i == len(a__ ) - 1 _UpperCAmelCase : Tuple = get_up_block( a__ , num_layers=self.layers_per_block + 1 , in_channels=a__ , out_channels=a__ , prev_output_channel=a__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , resnet_time_scale_shift=a__ , ) self.up_blocks.append(a__ ) _UpperCAmelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCAmelCase : int = SpatialNorm(block_out_channels[0] , a__ ) else: _UpperCAmelCase : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=a__ , eps=1E-6 ) _UpperCAmelCase : Union[str, Any] = nn.SiLU() _UpperCAmelCase : Union[str, Any] = nn.Convad(block_out_channels[0] , a__ , 3 , padding=1 ) _UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self , A , A=None ) -> Optional[int]: _UpperCAmelCase : int = z _UpperCAmelCase : List[Any] = self.conv_in(a__ ) _UpperCAmelCase : Union[str, Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A ): def custom_forward(*A ): return module(*a__ ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle _UpperCAmelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , a__ , use_reentrant=a__ ) _UpperCAmelCase : Union[str, Any] = sample.to(a__ ) # up for up_block in self.up_blocks: _UpperCAmelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(a__ ) , a__ , a__ , use_reentrant=a__ ) else: # middle _UpperCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , a__ ) _UpperCAmelCase : int = sample.to(a__ ) # up for up_block in self.up_blocks: _UpperCAmelCase : List[str] = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ , a__ ) else: # middle _UpperCAmelCase : Union[str, Any] = self.mid_block(a__ , a__ ) _UpperCAmelCase : Optional[int] = sample.to(a__ ) # up for up_block in self.up_blocks: _UpperCAmelCase : int = up_block(a__ , a__ ) # post-process if latent_embeds is None: _UpperCAmelCase : Dict = self.conv_norm_out(a__ ) else: _UpperCAmelCase : Any = self.conv_norm_out(a__ , a__ ) _UpperCAmelCase : Optional[int] = self.conv_act(a__ ) _UpperCAmelCase : List[Any] = self.conv_out(a__ ) return sample class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , A , A , A , A=None , A="random" , A=False , A=True ) -> Any: super().__init__() _UpperCAmelCase : List[Any] = n_e _UpperCAmelCase : str = vq_embed_dim _UpperCAmelCase : int = beta _UpperCAmelCase : str = legacy _UpperCAmelCase : Union[str, Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCAmelCase : int = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) _UpperCAmelCase : Any = self.used.shape[0] _UpperCAmelCase : List[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCAmelCase : Any = self.re_embed _UpperCAmelCase : int = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: _UpperCAmelCase : str = n_e _UpperCAmelCase : Any = sane_index_shape def __lowerCAmelCase ( self , A ) -> List[str]: _UpperCAmelCase : Optional[int] = inds.shape assert len(a__ ) > 1 _UpperCAmelCase : Tuple = inds.reshape(ishape[0] , -1 ) _UpperCAmelCase : str = self.used.to(a__ ) _UpperCAmelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCAmelCase : Any = match.argmax(-1 ) _UpperCAmelCase : Union[str, Any] = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCAmelCase : List[Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCAmelCase : str = self.unknown_index return new.reshape(a__ ) def __lowerCAmelCase ( self , A ) -> Optional[int]: _UpperCAmelCase : Optional[int] = inds.shape assert len(a__ ) > 1 _UpperCAmelCase : List[str] = inds.reshape(ishape[0] , -1 ) _UpperCAmelCase : int = self.used.to(a__ ) if self.re_embed > self.used.shape[0]: # extra token _UpperCAmelCase : Optional[int] = 0 # simply set to zero _UpperCAmelCase : str = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , a__ ) return back.reshape(a__ ) def __lowerCAmelCase ( self , A ) -> Union[str, Any]: # reshape z -> (batch, height, width, channel) and flatten _UpperCAmelCase : Union[str, Any] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCAmelCase : Dict = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCAmelCase : List[Any] = torch.argmin(torch.cdist(a__ , self.embedding.weight ) , dim=1 ) _UpperCAmelCase : str = self.embedding(a__ ).view(z.shape ) _UpperCAmelCase : int = None _UpperCAmelCase : Tuple = None # compute loss for embedding if not self.legacy: _UpperCAmelCase : Union[str, Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCAmelCase : Any = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCAmelCase : int = z + (z_q - z).detach() # reshape back to match original input shape _UpperCAmelCase : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCAmelCase : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCAmelCase : Optional[int] = self.remap_to_used(a__ ) _UpperCAmelCase : List[Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCAmelCase : Dict = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __lowerCAmelCase ( self , A , A ) -> Dict: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCAmelCase : Dict = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCAmelCase : Dict = self.unmap_to_all(a__ ) _UpperCAmelCase : Dict = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCAmelCase : str = self.embedding(a__ ) if shape is not None: _UpperCAmelCase : Optional[Any] = z_q.view(a__ ) # reshape back to match original input shape _UpperCAmelCase : Dict = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _UpperCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , A , A=False ) -> Tuple: _UpperCAmelCase : Optional[Any] = parameters _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = torch.chunk(a__ , 2 , dim=1 ) _UpperCAmelCase : Optional[Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCAmelCase : List[str] = deterministic _UpperCAmelCase : Any = torch.exp(0.5 * self.logvar ) _UpperCAmelCase : int = torch.exp(self.logvar ) if self.deterministic: _UpperCAmelCase : Any = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __lowerCAmelCase ( self , A = None ) -> Optional[Any]: # make sure sample is on the same device as the parameters and has same dtype _UpperCAmelCase : Union[str, Any] = randn_tensor( self.mean.shape , generator=a__ , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCAmelCase : int = self.mean + self.std * sample return x def __lowerCAmelCase ( self , A=None ) -> Tuple: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __lowerCAmelCase ( self , A , A=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCAmelCase : Dict = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=a__ ) def __lowerCAmelCase ( self ) -> Any: return self.mean
506
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =LEDConfig _lowerCamelCase ={} _lowerCamelCase ="gelu" def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ ) UpperCAmelCase = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ): UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(a__ , attention_mask=a__ )[0] UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1e-3 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ ) def __snake_case ( self : int ): self.config_tester.run_common_tests() def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a__ : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a__ : int ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __snake_case ( self : Any ): pass def __snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) a__ : int = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 ) def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
51
0