code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =42
_lowerCamelCase =None
_lowerCamelCase =None
a__ : str = namedtuple('CoinsDistribResult', 'moves excess')
def __snake_case ( SCREAMING_SNAKE_CASE_ : TreeNode | None ) -> int:
"""simple docstring"""
if root is None:
return 0
# Validation
def count_nodes(SCREAMING_SNAKE_CASE_ : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(SCREAMING_SNAKE_CASE_ : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(SCREAMING_SNAKE_CASE_ ) != count_coins(SCREAMING_SNAKE_CASE_ ):
raise ValueError('''The nodes number should be same as the number of coins''' )
# Main calculation
def get_distrib(SCREAMING_SNAKE_CASE_ : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
UpperCAmelCase, UpperCAmelCase = get_distrib(node.left )
UpperCAmelCase, UpperCAmelCase = get_distrib(node.right )
UpperCAmelCase = 1 - left_distrib_excess
UpperCAmelCase = 1 - right_distrib_excess
UpperCAmelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(SCREAMING_SNAKE_CASE_ )
+ abs(SCREAMING_SNAKE_CASE_ )
)
UpperCAmelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return get_distrib(SCREAMING_SNAKE_CASE_ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a__ : List[Any] = logging.get_logger(__name__)
a__ : int = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
a__ : Any = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
a__ : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="whisper"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ):
UpperCAmelCase = vocab_size
UpperCAmelCase = num_mel_bins
UpperCAmelCase = d_model
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(a__ , direction='''inputs''' )
return common_inputs
def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ):
UpperCAmelCase = OrderedDict()
UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , )
UpperCAmelCase = encoder_inputs['''input_features'''].shape[2]
UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , a__ , a__ , a__ , a__ )
UpperCAmelCase = encoder_inputs.pop('''input_features''' )
UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
UpperCAmelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def __snake_case ( self : Dict ):
return 1e-3
| 51 | 1 |
'''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int:
"""simple docstring"""
UpperCAmelCase = prime_factors(SCREAMING_SNAKE_CASE_ )
if is_square_free(SCREAMING_SNAKE_CASE_ ):
return -1 if len(SCREAMING_SNAKE_CASE_ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =LEDConfig
_lowerCamelCase ={}
_lowerCamelCase ="gelu"
def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = eos_token_id
UpperCAmelCase = pad_token_id
UpperCAmelCase = bos_token_id
UpperCAmelCase = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ )
UpperCAmelCase = tf.concat(
[tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , )
UpperCAmelCase = global_attention_mask
return config, inputs_dict
def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ):
UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder()
UpperCAmelCase = inputs_dict['''input_ids''']
UpperCAmelCase = input_ids[:1, :]
UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase = 1
# first forward pass
UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ )
UpperCAmelCase, UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase = model(a__ , attention_mask=a__ )[0]
UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(a__ , a__ , rtol=1e-3 )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase =(
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = TFLEDModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ )
def __snake_case ( self : int ):
self.config_tester.run_common_tests()
def __snake_case ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] )
UpperCAmelCase = 2
UpperCAmelCase = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
UpperCAmelCase = True
UpperCAmelCase = self.model_tester.seq_length
UpperCAmelCase = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(a__ : Tuple ):
UpperCAmelCase = outputs.decoder_attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(a__ : int ):
UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = len(a__ )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
if self.is_encoder_decoder:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_decoder_attentions_output(a__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) )
self.assertEqual(model.config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def __snake_case ( self : Any ):
pass
def __snake_case ( self : Union[str, Any] ):
# TODO: Head-masking not yet implement
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple:
"""simple docstring"""
return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa )
a__ : int = 1e-4
@slow
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, 768)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 )
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
| 51 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =RoCBertTokenizer
_lowerCamelCase =None
_lowerCamelCase =False
_lowerCamelCase =True
_lowerCamelCase =filter_non_english
def __snake_case ( self : Any ):
super().setUp()
UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d''']
UpperCAmelCase = {}
UpperCAmelCase = {}
for i, value in enumerate(a__ ):
UpperCAmelCase = i
UpperCAmelCase = i
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer:
json.dump(a__ , a__ , ensure_ascii=a__ )
with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer:
json.dump(a__ , a__ , ensure_ascii=a__ )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
UpperCAmelCase = tokenizer.tokenize('''你好[SEP]你是谁''' )
self.assertListEqual(a__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(a__ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(a__ ) , [5, 6, 2, 5, 7, 8] )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __snake_case ( self : Tuple ):
UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __snake_case ( self : Tuple ):
UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __snake_case ( self : int ):
UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , strip_accents=a__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = RoCBertBasicTokenizer(do_lower_case=a__ , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
UpperCAmelCase = {}
for i, token in enumerate(a__ ):
UpperCAmelCase = i
UpperCAmelCase = RoCBertWordpieceTokenizer(vocab=a__ , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __snake_case ( self : int ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __snake_case ( self : Union[str, Any] ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __snake_case ( self : Any ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(a__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
if self.test_rust_tokenizer:
UpperCAmelCase = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(a__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
def __snake_case ( self : int ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(a__ , **a__ )
UpperCAmelCase = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(
a__ , return_attention_mask=a__ , return_token_type_ids=a__ , return_offsets_mapping=a__ , add_special_tokens=a__ , )
UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(a__ , '''do_lower_case''' ) else False
UpperCAmelCase = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __snake_case ( self : List[str] ):
UpperCAmelCase = ['''的''', '''人''', '''有''']
UpperCAmelCase = ''''''.join(a__ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = True
UpperCAmelCase = self.tokenizer_class.from_pretrained(a__ , **a__ )
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(a__ , **a__ )
UpperCAmelCase = tokenizer_p.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = tokenizer_r.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(a__ )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(a__ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(a__ , a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = False
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(a__ , **a__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(a__ , **a__ )
UpperCAmelCase = tokenizer_r.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = tokenizer_p.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(a__ )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(a__ )
# it is expected that only the first Chinese character is not preceded by "##".
UpperCAmelCase = [
f"##{token}" if idx != 0 else token for idx, token in enumerate(a__ )
]
self.assertListEqual(a__ , a__ )
self.assertListEqual(a__ , a__ )
@slow
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
UpperCAmelCase = tokenizer.encode('''你好''' , add_special_tokens=a__ )
UpperCAmelCase = tokenizer.encode('''你是谁''' , add_special_tokens=a__ )
UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ )
UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ , a__ )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def __snake_case ( self : str ):
UpperCAmelCase = self.get_tokenizers(do_lower_case=a__ )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
UpperCAmelCase = '''你好,你是谁'''
UpperCAmelCase = tokenizer.tokenize(a__ )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ )
UpperCAmelCase = tokenizer.convert_tokens_to_shape_ids(a__ )
UpperCAmelCase = tokenizer.convert_tokens_to_pronunciation_ids(a__ )
UpperCAmelCase = tokenizer.prepare_for_model(
a__ , a__ , a__ , add_special_tokens=a__ )
UpperCAmelCase = tokenizer.encode_plus(a__ , add_special_tokens=a__ )
self.assertEqual(a__ , a__ )
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
a__ : Optional[Any] = {'tokenization_herbert': ['HerbertTokenizer']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = ['HerbertTokenizerFast']
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
a__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a__ : List[Any] = 'sshleifer/mar_enro_6_3_student'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Dict ):
super().setUp()
UpperCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , )
UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def __snake_case ( self : Optional[int] ):
MarianMTModel.from_pretrained(a__ )
@slow
@require_torch_gpu
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __snake_case ( self : Any ):
UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
UpperCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
UpperCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' )
UpperCAmelCase = 6
UpperCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
'''--gpus=1''',
'''--learning_rate=1e-3''',
f"--num_train_epochs={epochs}",
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
UpperCAmelCase = distill_main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 51 | 1 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(EulerDiscreteScheduler,)
_lowerCamelCase =10
def __snake_case ( self : str , **a__ : Tuple ):
UpperCAmelCase = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[int] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=a__ , beta_end=a__ )
def __snake_case ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a__ )
def __snake_case ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 51 | 1 |
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , *a__ : List[Any] , a__ : Tuple=None , a__ : List[str]=None , **a__ : Any ):
super().__init__(*a__ , **a__ )
UpperCAmelCase = eval_examples
UpperCAmelCase = post_process_function
def __snake_case ( self : Any , a__ : Any=None , a__ : Optional[Any]=None , a__ : Dict=None , a__ : str = "eval" ):
UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase = self.get_eval_dataloader(a__ )
UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase = self.compute_metrics
UpperCAmelCase = None
UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
UpperCAmelCase = time.time()
try:
UpperCAmelCase = eval_loop(
a__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , )
finally:
UpperCAmelCase = compute_metrics
UpperCAmelCase = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
UpperCAmelCase = self.post_process_function(a__ , a__ , output.predictions )
UpperCAmelCase = self.compute_metrics(a__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
UpperCAmelCase = metrics.pop(a__ )
metrics.update(output.metrics )
else:
UpperCAmelCase = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(a__ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , a__ )
return metrics
def __snake_case ( self : str , a__ : Optional[int] , a__ : List[Any] , a__ : List[str]=None , a__ : str = "test" ):
UpperCAmelCase = self.get_test_dataloader(a__ )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase = self.compute_metrics
UpperCAmelCase = None
UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
UpperCAmelCase = time.time()
try:
UpperCAmelCase = eval_loop(
a__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , )
finally:
UpperCAmelCase = compute_metrics
UpperCAmelCase = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase = self.post_process_function(a__ , a__ , output.predictions , '''predict''' )
UpperCAmelCase = self.compute_metrics(a__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
UpperCAmelCase = metrics.pop(a__ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a__ )
| 51 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 | 1 |
'''simple docstring'''
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Tuple ):
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = 5
# Realm tok
UpperCAmelCase = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''test''',
'''question''',
'''this''',
'''is''',
'''the''',
'''first''',
'''second''',
'''third''',
'''fourth''',
'''fifth''',
'''record''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' )
os.makedirs(a__ , exist_ok=a__ )
UpperCAmelCase = os.path.join(a__ , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
UpperCAmelCase = os.path.join(self.tmpdirname , '''realm_block_records''' )
os.makedirs(a__ , exist_ok=a__ )
def __snake_case ( self : List[Any] ):
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) )
def __snake_case ( self : List[Any] ):
shutil.rmtree(self.tmpdirname )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = RealmConfig(num_block_records=self.num_block_records )
return config
def __snake_case ( self : int ):
UpperCAmelCase = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''question''': ['''foo''', '''bar'''],
'''answers''': [['''Foo''', '''Bar'''], ['''Bar''']],
} )
return dataset
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = np.array(
[
B'''This is the first record''',
B'''This is the second record''',
B'''This is the third record''',
B'''This is the fourth record''',
B'''This is the fifth record''',
B'''This is a longer longer longer record''',
] , dtype=a__ , )
return block_records
def __snake_case ( self : int ):
UpperCAmelCase = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def __snake_case ( self : str ):
UpperCAmelCase = self.get_config()
UpperCAmelCase = self.get_dummy_retriever()
UpperCAmelCase = retriever.tokenizer
UpperCAmelCase = np.array([0, 3] , dtype='''long''' )
UpperCAmelCase = tokenizer(['''Test question'''] ).input_ids
UpperCAmelCase = tokenizer(
['''the fourth'''] , add_special_tokens=a__ , return_token_type_ids=a__ , return_attention_mask=a__ , ).input_ids
UpperCAmelCase = config.reader_seq_len
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = retriever(
a__ , a__ , answer_ids=a__ , max_length=a__ , return_tensors='''np''' )
self.assertEqual(len(a__ ) , 2 )
self.assertEqual(len(a__ ) , 2 )
self.assertEqual(len(a__ ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_config()
UpperCAmelCase = self.get_dummy_retriever()
UpperCAmelCase = retriever.tokenizer
UpperCAmelCase = np.array([0, 3, 5] , dtype='''long''' )
UpperCAmelCase = tokenizer(['''Test question'''] ).input_ids
UpperCAmelCase = tokenizer(
['''the fourth''', '''longer longer'''] , add_special_tokens=a__ , return_token_type_ids=a__ , return_attention_mask=a__ , ).input_ids
UpperCAmelCase = config.reader_seq_len
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = retriever(
a__ , a__ , answer_ids=a__ , max_length=a__ , return_tensors='''np''' )
self.assertEqual([False, True, True] , a__ )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , a__ )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
# Test local path
UpperCAmelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) )
self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
# Test mocked remote path
with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download:
UpperCAmelCase = os.path.join(
os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME )
UpperCAmelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' )
self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
| 51 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ):
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str:
"""simple docstring"""
UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict:
"""simple docstring"""
UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ):
UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __snake_case ( self : int , a__ : Dict , a__ : Tuple ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def __snake_case ( self : str ):
pass
@slow
@require_torch
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871}
] , )
# fmt: on
@require_torch
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = '''facebook/sam-vit-huge'''
UpperCAmelCase = pipeline('''mask-generation''' , model=a__ )
UpperCAmelCase = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
] , )
| 51 | 1 |
'''simple docstring'''
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
a__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : int , a__ : bool , a__ : Optional[int] = None , a__ : Optional[int] = None ):
super().__init__()
UpperCAmelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCAmelCase = torch.zeros(a__ , a__ )
else:
UpperCAmelCase = None
UpperCAmelCase = torch.nn.Parameter(a__ )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =42
_lowerCamelCase =42
_lowerCamelCase =42
_lowerCamelCase =42
_lowerCamelCase =42
_lowerCamelCase =42
def __init__( self : List[str] , a__ : VQModel , a__ : CLIPTextModel , a__ : CLIPTokenizer , a__ : TransformeraDModel , a__ : VQDiffusionScheduler , a__ : LearnedClassifierFreeSamplingEmbeddings , ):
super().__init__()
self.register_modules(
vqvae=a__ , transformer=a__ , text_encoder=a__ , tokenizer=a__ , scheduler=a__ , learned_classifier_free_sampling_embeddings=a__ , )
def __snake_case ( self : Any , a__ : Dict , a__ : Optional[int] , a__ : Optional[Any] ):
UpperCAmelCase = len(a__ ) if isinstance(a__ , a__ ) else 1
# get prompt text embeddings
UpperCAmelCase = self.tokenizer(
a__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , )
UpperCAmelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=a__ )
# duplicate text embeddings for each generation per prompt
UpperCAmelCase = prompt_embeds.repeat_interleave(a__ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(a__ , 1 , 1 )
else:
UpperCAmelCase = [''''''] * batch_size
UpperCAmelCase = text_input_ids.shape[-1]
UpperCAmelCase = self.tokenizer(
a__ , padding='''max_length''' , max_length=a__ , truncation=a__ , return_tensors='''pt''' , )
UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=a__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase = negative_prompt_embeds.shape[1]
UpperCAmelCase = negative_prompt_embeds.repeat(1 , a__ , 1 )
UpperCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self : Optional[Any] , a__ : Union[str, List[str]] , a__ : int = 100 , a__ : float = 5.0 , a__ : float = 1.0 , a__ : int = 1 , a__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[str] = "pil" , a__ : bool = True , a__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a__ : int = 1 , ):
if isinstance(a__ , a__ ):
UpperCAmelCase = 1
elif isinstance(a__ , a__ ):
UpperCAmelCase = len(a__ )
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(a__ )}" )
UpperCAmelCase = batch_size * num_images_per_prompt
UpperCAmelCase = guidance_scale > 1.0
UpperCAmelCase = self._encode_prompt(a__ , a__ , a__ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(a__ , a__ ) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(a__ )}." )
# get the initial completely masked latents unless the user supplied it
UpperCAmelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCAmelCase = self.transformer.num_vector_embeds - 1
UpperCAmelCase = torch.full(a__ , a__ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'''
f" {self.transformer.num_vector_embeds - 1} (inclusive)." )
UpperCAmelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(a__ , device=self.device )
UpperCAmelCase = self.scheduler.timesteps.to(self.device )
UpperCAmelCase = latents
for i, t in enumerate(self.progress_bar(a__ ) ):
# expand the sample if we are doing classifier free guidance
UpperCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCAmelCase = self.transformer(a__ , encoder_hidden_states=a__ , timestep=a__ ).sample
if do_classifier_free_guidance:
UpperCAmelCase, UpperCAmelCase = model_output.chunk(2 )
UpperCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(a__ , dim=1 , keepdim=a__ )
UpperCAmelCase = self.truncate(a__ , a__ )
# remove `log(0)`'s (`-inf`s)
UpperCAmelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase = self.scheduler.step(a__ , timestep=a__ , sample=a__ , generator=a__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(a__ , a__ , a__ )
UpperCAmelCase = self.vqvae.config.vq_embed_dim
UpperCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCAmelCase = self.vqvae.quantize.get_codebook_entry(a__ , shape=a__ )
UpperCAmelCase = self.vqvae.decode(a__ , force_not_quantize=a__ ).sample
UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase = self.numpy_to_pil(a__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=a__ )
def __snake_case ( self : List[str] , a__ : torch.FloatTensor , a__ : float ):
UpperCAmelCase, UpperCAmelCase = torch.sort(a__ , 1 , descending=a__ )
UpperCAmelCase = torch.exp(a__ )
UpperCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , a__ )
UpperCAmelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCAmelCase = keep_mask[:, :-1, :]
UpperCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCAmelCase = log_p_x_0.clone()
UpperCAmelCase = -torch.inf # -inf = log(0)
return rv
| 51 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
import csv
import requests
from bsa import BeautifulSoup
def __snake_case ( SCREAMING_SNAKE_CASE_ : str = "" ) -> dict[str, float]:
"""simple docstring"""
UpperCAmelCase = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250'''
UpperCAmelCase = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' )
UpperCAmelCase = soup.find_all('''td''' , attrs='''titleColumn''' )
UpperCAmelCase = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' )
return {
title.a.text: float(rating.strong.text )
for title, rating in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
}
def __snake_case ( SCREAMING_SNAKE_CASE_ : str = "IMDb_Top_250_Movies.csv" ) -> None:
"""simple docstring"""
UpperCAmelCase = get_imdb_top_aaa_movies()
with open(SCREAMING_SNAKE_CASE_ , '''w''' , newline='''''' ) as out_file:
UpperCAmelCase = csv.writer(SCREAMING_SNAKE_CASE_ )
writer.writerow(['''Movie title''', '''IMDb rating'''] )
for title, rating in movies.items():
writer.writerow([title, rating] )
if __name__ == "__main__":
write_movies()
| 51 |
'''simple docstring'''
import torch
from transformers import AutoModel
class lowerCAmelCase__ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ):
super(a__ , self ).__init__()
UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ )
UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 )
UpperCAmelCase = torch.nn.Softmax(dim=1 )
def __snake_case ( self : List[Any] , **a__ : Tuple ):
return self.bert(**a__ ).last_hidden_state
def __snake_case ( self : int , a__ : List[str] ):
return token_embeddings.sum(2 , keepdim=a__ )
def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ):
return self.softmax(T * self.cos(a__ , a__ ) )
def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ):
UpperCAmelCase = W_supports['''sizes'''].tolist()
UpperCAmelCase = W_supports['''start_token_id'''].item()
UpperCAmelCase = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = W_supports['''input_ids'''] == start_token_id
UpperCAmelCase = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(a__ ):
if i == 0:
UpperCAmelCase = 0
else:
UpperCAmelCase = support_sizes[i - 1]
UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]]
UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]]
UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCAmelCase = torch.vstack((p_starts, p_start) )
UpperCAmelCase = torch.vstack((p_ends, p_end) )
else:
UpperCAmelCase = p_start
UpperCAmelCase = p_end
return p_starts, p_ends
| 51 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : List[str] = logging.get_logger(__name__)
a__ : Union[str, Any] = {
'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="vit_mae"
def __init__( self : Any , a__ : Any=768 , a__ : List[Any]=12 , a__ : Union[str, Any]=12 , a__ : Optional[Any]=3072 , a__ : Dict="gelu" , a__ : List[Any]=0.0 , a__ : int=0.0 , a__ : int=0.02 , a__ : Any=1e-1_2 , a__ : Any=224 , a__ : List[str]=16 , a__ : List[str]=3 , a__ : Optional[int]=True , a__ : str=16 , a__ : Union[str, Any]=512 , a__ : Dict=8 , a__ : int=2048 , a__ : List[str]=0.75 , a__ : Dict=False , **a__ : Optional[int] , ):
super().__init__(**a__ )
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = image_size
UpperCAmelCase = patch_size
UpperCAmelCase = num_channels
UpperCAmelCase = qkv_bias
UpperCAmelCase = decoder_num_attention_heads
UpperCAmelCase = decoder_hidden_size
UpperCAmelCase = decoder_num_hidden_layers
UpperCAmelCase = decoder_intermediate_size
UpperCAmelCase = mask_ratio
UpperCAmelCase = norm_pix_loss
| 51 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(EulerDiscreteScheduler,)
_lowerCamelCase =10
def __snake_case ( self : str , **a__ : Tuple ):
UpperCAmelCase = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[int] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=a__ , beta_end=a__ )
def __snake_case ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a__ )
def __snake_case ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 51 | 1 |
'''simple docstring'''
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
a__ : Tuple = re.compile(R'\s+')
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict:
"""simple docstring"""
return {"hash": hashlib.mda(re.sub(SCREAMING_SNAKE_CASE_ , '''''' , example['''content'''] ).encode('''utf-8''' ) ).hexdigest()}
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase = [len(SCREAMING_SNAKE_CASE_ ) for line in example['''content'''].splitlines()]
return {"line_mean": np.mean(SCREAMING_SNAKE_CASE_ ), "line_max": max(SCREAMING_SNAKE_CASE_ )}
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = np.mean([c.isalnum() for c in example['''content''']] )
return {"alpha_frac": alpha_frac}
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Any:
"""simple docstring"""
if example["hash"] in uniques:
uniques.remove(example['''hash'''] )
return True
else:
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any=5 ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = ['''auto-generated''', '''autogenerated''', '''automatically generated''']
UpperCAmelCase = example['''content'''].splitlines()
for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=5 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.05 ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = ['''unit tests''', '''test file''', '''configuration file''']
UpperCAmelCase = example['''content'''].splitlines()
UpperCAmelCase = 0
UpperCAmelCase = 0
# first test
for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
UpperCAmelCase = example['''content'''].count('''\n''' )
UpperCAmelCase = int(coeff * nlines )
for line in lines:
count_config += line.lower().count('''config''' )
count_test += line.lower().count('''test''' )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase = ['''def ''', '''class ''', '''for ''', '''while ''']
UpperCAmelCase = example['''content'''].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any=4 ) -> int:
"""simple docstring"""
UpperCAmelCase = example['''content'''].splitlines()
UpperCAmelCase = 0
for line in lines:
counter += line.lower().count('''=''' )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict:
"""simple docstring"""
UpperCAmelCase = tokenizer(example['''content'''] , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids''']
UpperCAmelCase = len(example['''content'''] ) / len(SCREAMING_SNAKE_CASE_ )
return {"ratio": ratio}
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> int:
"""simple docstring"""
UpperCAmelCase = {}
results.update(get_hash(SCREAMING_SNAKE_CASE_ ) )
results.update(line_stats(SCREAMING_SNAKE_CASE_ ) )
results.update(alpha_stats(SCREAMING_SNAKE_CASE_ ) )
results.update(char_token_ratio(SCREAMING_SNAKE_CASE_ ) )
results.update(is_autogenerated(SCREAMING_SNAKE_CASE_ ) )
results.update(is_config_or_test(SCREAMING_SNAKE_CASE_ ) )
results.update(has_no_keywords(SCREAMING_SNAKE_CASE_ ) )
results.update(has_few_assignments(SCREAMING_SNAKE_CASE_ ) )
return results
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
if not check_uniques(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> str:
"""simple docstring"""
with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f_in:
with gzip.open(str(SCREAMING_SNAKE_CASE_ ) + '''.gz''' , '''wb''' , compresslevel=6 ) as f_out:
shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
os.unlink(SCREAMING_SNAKE_CASE_ )
# Settings
a__ : List[Any] = HfArgumentParser(PreprocessingArguments)
a__ : Tuple = parser.parse_args()
if args.num_workers is None:
a__ : Optional[Any] = multiprocessing.cpu_count()
a__ : Dict = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
a__ : List[str] = time.time()
a__ : Any = load_dataset(args.dataset_name, split='train')
print(F"""Time to load dataset: {time.time()-t_start:.2f}""")
# Run preprocessing
a__ : Any = time.time()
a__ : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers)
print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""")
# Deduplicate hashes
a__ : Tuple = set(ds.unique('hash'))
a__ : Any = len(uniques) / len(ds)
print(F"""Fraction of duplicates: {1-frac:.2%}""")
# Deduplicate data and apply heuristics
a__ : str = time.time()
a__ : Optional[Any] = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args})
print(F"""Time to filter dataset: {time.time()-t_start:.2f}""")
print(F"""Size of filtered dataset: {len(ds_filter)}""")
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
a__ : List[str] = time.time()
a__ , a__ : str = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""")
print(F"""Size of deduplicate dataset: {len(ds_filter)}""")
# Save data in batches of samples_per_file
a__ : Tuple = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / 'duplicate_clusters.json', 'w') as f:
json.dump(duplicate_clusters, f)
a__ : int = output_dir / 'data'
data_dir.mkdir(exist_ok=True)
a__ : Tuple = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
a__ : Any = str(data_dir / F"""file-{file_number+1:012}.json""")
a__ : Dict = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
| 51 |
'''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
metadata={"help": "The csv file to plot."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
_lowerCamelCase =list_field(
default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
try:
int(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
try:
float(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a__ : Optional[int] ):
UpperCAmelCase = args
UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
UpperCAmelCase = csv.DictReader(a__ )
for row in reader:
UpperCAmelCase = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
UpperCAmelCase = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
UpperCAmelCase = float(row['''result'''] )
def __snake_case ( self : Dict ):
UpperCAmelCase, UpperCAmelCase = plt.subplots()
UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage'''
UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
UpperCAmelCase = self.result_dict[model_name]['''result''']
((UpperCAmelCase), (UpperCAmelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
UpperCAmelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
UpperCAmelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , )
else:
UpperCAmelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((UpperCAmelCase), (UpperCAmelCase)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )]
plt.scatter(
a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" )
plt.plot(a__ , a__ , '''--''' )
title_str += f" {label_model_name} vs."
UpperCAmelCase = title_str[:-4]
UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(a__ )
plt.xlabel(a__ )
plt.ylabel(a__ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ )
plot.plot()
if __name__ == "__main__":
main()
| 51 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a__ : Any = {
'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'],
'tokenization_xlm': ['XLMTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'XLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLMForMultipleChoice',
'XLMForQuestionAnswering',
'XLMForQuestionAnsweringSimple',
'XLMForSequenceClassification',
'XLMForTokenClassification',
'XLMModel',
'XLMPreTrainedModel',
'XLMWithLMHeadModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLMForMultipleChoice',
'TFXLMForQuestionAnsweringSimple',
'TFXLMForSequenceClassification',
'TFXLMForTokenClassification',
'TFXLMMainLayer',
'TFXLMModel',
'TFXLMPreTrainedModel',
'TFXLMWithLMHeadModel',
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
a__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
print('''Loading config file...''' )
def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ):
UpperCAmelCase = []
for k, v in d.items():
UpperCAmelCase = parent_key + sep + k if parent_key else k
if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() )
else:
items.append((new_key, v) )
return dict(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = argparse.Namespace()
with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file:
try:
UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader )
UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ )
for k, v in flat_cfg.items():
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) )
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = MobileViTVaConfig()
UpperCAmelCase = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase = 151
UpperCAmelCase = 512
UpperCAmelCase = '''ade20k-id2label.json'''
UpperCAmelCase = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase = 21
UpperCAmelCase = 512
UpperCAmelCase = '''pascal-voc-id2label.json'''
UpperCAmelCase = True
# orig_config
UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ )
assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = val
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int:
"""simple docstring"""
if base_model:
UpperCAmelCase = ''''''
else:
UpperCAmelCase = '''mobilevitv2.'''
UpperCAmelCase = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase = k[8:]
else:
UpperCAmelCase = k
if ".block." in k:
UpperCAmelCase = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." )
for i in [1, 2]:
if f"layer_{i}." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f"layer_{i}.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if f"layer_{i}.1.local_rep.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if f"layer_{i}.1.local_rep.1." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase = [0, 1]
elif i == 4:
UpperCAmelCase = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase = [0, 1, 2]
for j in j_in:
if f"layer_{i}.1.global_rep.{j}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if f"layer_{i}.1.global_rep.{j+1}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." )
if f"layer_{i}.1.conv_proj." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(SCREAMING_SNAKE_CASE_ )
for k in keys_to_ignore:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
else:
UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
# remove and rename some keys of load the original model
UpperCAmelCase = checkpoint
remove_unused_keys(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load modified state_dict
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase = outputs.logits
UpperCAmelCase = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] )
assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task',
default='imagenet1k_256',
type=str,
help=(
'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '
'\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n '
),
choices=[
'imagenet1k_256',
'imagenet1k_384',
'imagenet21k_to_1k_256',
'imagenet21k_to_1k_384',
'ade20k_deeplabv3',
'voc_deeplabv3',
],
)
parser.add_argument(
'--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
a__ : str = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 51 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[int] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="megatron-bert"
def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ):
super().__init__(pad_token_id=a__ , **a__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
| 51 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Optional[int] = logging.get_logger(__name__)
a__ : int = ['model.decoder.embed_positions.weights']
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple:
"""simple docstring"""
if "emb" in name:
UpperCAmelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
UpperCAmelCase = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
UpperCAmelCase = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
UpperCAmelCase = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
UpperCAmelCase = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
UpperCAmelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
UpperCAmelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
UpperCAmelCase = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
UpperCAmelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def __snake_case ( SCREAMING_SNAKE_CASE_ : OrderedDict , SCREAMING_SNAKE_CASE_ : int ) -> Tuple[Dict, Dict]:
"""simple docstring"""
UpperCAmelCase = list(state_dict.keys() )
UpperCAmelCase = {}
for key in keys:
UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = rename_keys(SCREAMING_SNAKE_CASE_ )
if "in_proj_weight" in key:
# split fused qkv proj
UpperCAmelCase = val[:hidden_size, :]
UpperCAmelCase = val[hidden_size : 2 * hidden_size, :]
UpperCAmelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
UpperCAmelCase = val
else:
UpperCAmelCase = val
return state_dict, enc_dec_proj_state_dict
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
UpperCAmelCase = 1_024
UpperCAmelCase = 24
UpperCAmelCase = 16
elif checkpoint == "medium":
UpperCAmelCase = 1_536
UpperCAmelCase = 48
UpperCAmelCase = 24
elif checkpoint == "large":
UpperCAmelCase = 2_048
UpperCAmelCase = 48
UpperCAmelCase = 32
else:
raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
UpperCAmelCase = MusicgenDecoderConfig(
hidden_size=SCREAMING_SNAKE_CASE_ , ffn_dim=hidden_size * 4 , num_hidden_layers=SCREAMING_SNAKE_CASE_ , num_attention_heads=SCREAMING_SNAKE_CASE_ , )
return config
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]="cpu" ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = MusicGen.get_pretrained(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = decoder_config_from_checkpoint(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = fairseq_model.lm.state_dict()
UpperCAmelCase, UpperCAmelCase = rename_state_dict(
SCREAMING_SNAKE_CASE_ , hidden_size=decoder_config.hidden_size )
UpperCAmelCase = TaEncoderModel.from_pretrained('''t5-base''' )
UpperCAmelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
UpperCAmelCase = MusicgenForCausalLM(SCREAMING_SNAKE_CASE_ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
UpperCAmelCase, UpperCAmelCase = decoder.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
UpperCAmelCase = MusicgenForConditionalGeneration(text_encoder=SCREAMING_SNAKE_CASE_ , audio_encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(SCREAMING_SNAKE_CASE_ )
# check we can do a forward pass
UpperCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
UpperCAmelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
UpperCAmelCase = model(input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
UpperCAmelCase = AutoTokenizer.from_pretrained('''t5-base''' )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
UpperCAmelCase = MusicgenProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ )
# set the appropriate bos/pad token ids
UpperCAmelCase = 2_048
UpperCAmelCase = 2_048
# set other default generation config params
UpperCAmelCase = int(30 * audio_encoder.config.frame_rate )
UpperCAmelCase = True
UpperCAmelCase = 3.0
if pytorch_dump_folder is not None:
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if repo_id:
logger.info(f"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(SCREAMING_SNAKE_CASE_ )
processor.push_to_hub(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
a__ : List[str] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 51 |
'''simple docstring'''
from __future__ import annotations
a__ : List[str] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ):
UpperCAmelCase = graph
# mapping node to its parent in resulting breadth first tree
UpperCAmelCase = {}
UpperCAmelCase = source_vertex
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = {self.source_vertex}
UpperCAmelCase = None
UpperCAmelCase = [self.source_vertex] # first in first out queue
while queue:
UpperCAmelCase = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(a__ )
UpperCAmelCase = vertex
queue.append(a__ )
def __snake_case ( self : Any , a__ : str ):
if target_vertex == self.source_vertex:
return self.source_vertex
UpperCAmelCase = self.parent.get(a__ )
if target_vertex_parent is None:
UpperCAmelCase = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(a__ )
return self.shortest_path(a__ ) + f"->{target_vertex}"
if __name__ == "__main__":
a__ : Tuple = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 51 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
a__ : int = logging.get_logger(__name__)
a__ : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
a__ : str = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
a__ : Any = {
'allenai/led-base-16384': 16_384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def __snake_case ( ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
UpperCAmelCase = bs[:]
UpperCAmelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(SCREAMING_SNAKE_CASE_ )
cs.append(2**8 + n )
n += 1
UpperCAmelCase = [chr(SCREAMING_SNAKE_CASE_ ) for n in cs]
return dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = set()
UpperCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase = char
return pairs
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =VOCAB_FILES_NAMES
_lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase =["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , a__ : Any , a__ : Any , a__ : Optional[int]="replace" , a__ : Optional[int]="<s>" , a__ : int="</s>" , a__ : List[Any]="</s>" , a__ : Dict="<s>" , a__ : int="<unk>" , a__ : List[Any]="<pad>" , a__ : Any="<mask>" , a__ : List[Any]=False , **a__ : str , ):
UpperCAmelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token
UpperCAmelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token
UpperCAmelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token
UpperCAmelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token
UpperCAmelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token
UpperCAmelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token
super().__init__(
errors=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , **a__ , )
with open(a__ , encoding='''utf-8''' ) as vocab_handle:
UpperCAmelCase = json.load(a__ )
UpperCAmelCase = {v: k for k, v in self.encoder.items()}
UpperCAmelCase = errors # how to handle errors in decoding
UpperCAmelCase = bytes_to_unicode()
UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()}
with open(a__ , encoding='''utf-8''' ) as merges_handle:
UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1]
UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase = dict(zip(a__ , range(len(a__ ) ) ) )
UpperCAmelCase = {}
UpperCAmelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def __snake_case ( self : Dict ):
return len(self.encoder )
def __snake_case ( self : List[Any] ):
return dict(self.encoder , **self.added_tokens_encoder )
def __snake_case ( self : Optional[Any] , a__ : Union[str, Any] ):
if token in self.cache:
return self.cache[token]
UpperCAmelCase = tuple(a__ )
UpperCAmelCase = get_pairs(a__ )
if not pairs:
return token
while True:
UpperCAmelCase = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase, UpperCAmelCase = bigram
UpperCAmelCase = []
UpperCAmelCase = 0
while i < len(a__ ):
try:
UpperCAmelCase = word.index(a__ , a__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase = j
if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase = tuple(a__ )
UpperCAmelCase = new_word
if len(a__ ) == 1:
break
else:
UpperCAmelCase = get_pairs(a__ )
UpperCAmelCase = ''' '''.join(a__ )
UpperCAmelCase = word
return word
def __snake_case ( self : str , a__ : str ):
UpperCAmelCase = []
for token in re.findall(self.pat , a__ ):
UpperCAmelCase = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a__ ).split(''' ''' ) )
return bpe_tokens
def __snake_case ( self : Optional[Any] , a__ : Dict ):
return self.encoder.get(a__ , self.encoder.get(self.unk_token ) )
def __snake_case ( self : Any , a__ : int ):
return self.decoder.get(a__ )
def __snake_case ( self : Optional[int] , a__ : Tuple ):
UpperCAmelCase = ''''''.join(a__ )
UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def __snake_case ( self : Union[str, Any] , a__ : str , a__ : Optional[str] = None ):
if not os.path.isdir(a__ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase = os.path.join(
a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(
a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(a__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + '''\n''' )
UpperCAmelCase = 0
with open(a__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
''' Please check that the tokenizer is not corrupted!''' )
UpperCAmelCase = token_index
writer.write(''' '''.join(a__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def __snake_case ( self : Optional[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
UpperCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __snake_case ( self : Tuple , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ )
if token_ids_a is None:
return [1] + ([0] * len(a__ )) + [1]
return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1]
def __snake_case ( self : int , a__ : List[int] , a__ : Optional[List[int]] = None ):
UpperCAmelCase = [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __snake_case ( self : Union[str, Any] , a__ : List[str] , a__ : Union[str, Any]=False , **a__ : Dict ):
UpperCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(a__ ) > 0 and not text[0].isspace()):
UpperCAmelCase = ''' ''' + text
return (text, kwargs)
def __snake_case ( self : Optional[Any] , a__ : Union[Dict[str, EncodedInput], BatchEncoding] , a__ : Optional[int] = None , a__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , a__ : Optional[int] = None , a__ : Optional[bool] = None , ):
UpperCAmelCase = super()._pad(
encoded_inputs=a__ , max_length=a__ , padding_strategy=a__ , pad_to_multiple_of=a__ , return_attention_mask=a__ , )
# Load from model defaults
if return_attention_mask is None:
UpperCAmelCase = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCAmelCase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCAmelCase = len(encoded_inputs['''global_attention_mask'''] ) != len(a__ )
if needs_to_be_padded:
UpperCAmelCase = len(a__ ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCAmelCase = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
UpperCAmelCase = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
a__ : str = get_tests_dir('fixtures')
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Any ):
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 500
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=a__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' )
# This check we did call the fake head request
mock_head.assert_called()
def __snake_case ( self : Any ):
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' )
@is_staging_test
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __snake_case ( cls : Any ):
UpperCAmelCase = TOKEN
HfFolder.save_token(a__ )
@classmethod
def __snake_case ( cls : Union[str, Any] ):
try:
delete_repo(token=cls._token , repo_id='''test-feature-extractor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' )
except HTTPError:
pass
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(a__ )
feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(a__ , getattr(a__ , a__ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-feature-extractor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
a__ , repo_id='''test-feature-extractor''' , push_to_hub=a__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(a__ , getattr(a__ , a__ ) )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(a__ )
feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(a__ , getattr(a__ , a__ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
a__ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=a__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(a__ , getattr(a__ , a__ ) )
def __snake_case ( self : str ):
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(a__ )
feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=a__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Any = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
def __snake_case ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> float:
"""simple docstring"""
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def __snake_case ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> float:
"""simple docstring"""
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def __snake_case ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> float:
"""simple docstring"""
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
SCREAMING_SNAKE_CASE_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
from math import factorial
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int:
"""simple docstring"""
return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 51 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =42
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[Any] , a__ : int = 3 , a__ : int = 3 , a__ : Tuple[str] = ("DownEncoderBlock2D",) , a__ : Tuple[str] = ("UpDecoderBlock2D",) , a__ : Tuple[int] = (64,) , a__ : int = 1 , a__ : str = "silu" , a__ : int = 3 , a__ : int = 32 , a__ : int = 256 , a__ : int = 32 , a__ : Optional[int] = None , a__ : float = 0.18_215 , a__ : str = "group" , ):
super().__init__()
# pass init params to Encoder
UpperCAmelCase = Encoder(
in_channels=a__ , out_channels=a__ , down_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , act_fn=a__ , norm_num_groups=a__ , double_z=a__ , )
UpperCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels
UpperCAmelCase = nn.Convad(a__ , a__ , 1 )
UpperCAmelCase = VectorQuantizer(a__ , a__ , beta=0.25 , remap=a__ , sane_index_shape=a__ )
UpperCAmelCase = nn.Convad(a__ , a__ , 1 )
# pass init params to Decoder
UpperCAmelCase = Decoder(
in_channels=a__ , out_channels=a__ , up_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , act_fn=a__ , norm_num_groups=a__ , norm_type=a__ , )
@apply_forward_hook
def __snake_case ( self : Tuple , a__ : torch.FloatTensor , a__ : bool = True ):
UpperCAmelCase = self.encoder(a__ )
UpperCAmelCase = self.quant_conv(a__ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=a__ )
@apply_forward_hook
def __snake_case ( self : str , a__ : torch.FloatTensor , a__ : bool = False , a__ : bool = True ):
# also go through quantization layer
if not force_not_quantize:
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = self.quantize(a__ )
else:
UpperCAmelCase = h
UpperCAmelCase = self.post_quant_conv(a__ )
UpperCAmelCase = self.decoder(a__ , quant if self.config.norm_type == '''spatial''' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=a__ )
def __snake_case ( self : List[Any] , a__ : torch.FloatTensor , a__ : bool = True ):
UpperCAmelCase = sample
UpperCAmelCase = self.encode(a__ ).latents
UpperCAmelCase = self.decode(a__ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=a__ )
| 51 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =StableUnCLIPPipeline
_lowerCamelCase =TEXT_TO_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_lowerCamelCase =False
def __snake_case ( self : str ):
UpperCAmelCase = 32
UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , )
torch.manual_seed(0 )
UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ )
UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , )
torch.manual_seed(0 )
UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL()
UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __snake_case ( self : List[Any] ):
UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=a__ )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' )
UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(a__ , a__ )
def __snake_case ( self : str ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 51 | 1 |
'''simple docstring'''
import gc
import threading
import time
import psutil
import torch
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Tuple ):
UpperCAmelCase = psutil.Process()
UpperCAmelCase = False
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = -1
while True:
UpperCAmelCase = max(self.process.memory_info().rss , self.cpu_memory_peak )
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def __snake_case ( self : Dict ):
UpperCAmelCase = True
UpperCAmelCase = threading.Thread(target=self.peak_monitor )
UpperCAmelCase = True
self.thread.start()
def __snake_case ( self : str ):
UpperCAmelCase = False
self.thread.join()
return self.cpu_memory_peak
a__ : List[Any] = PeakCPUMemory()
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = {'''time''': time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
UpperCAmelCase = psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count() ):
UpperCAmelCase = torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ )
torch.cuda.reset_peak_memory_stats()
return measures
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = {'''time''': time.time() - start_measures['''time''']}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
UpperCAmelCase = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20
UpperCAmelCase = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20
# GPU mem
for i in range(torch.cuda.device_count() ):
UpperCAmelCase = (torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20
UpperCAmelCase = (torch.cuda.max_memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20
return measures
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]:
"""simple docstring"""
print(f"{description}:" )
print(f"- Time: {measures['time']:.2f}s" )
for i in range(torch.cuda.device_count() ):
print(f"- GPU {i} allocated: {measures[str(SCREAMING_SNAKE_CASE_ )]:.2f}MiB" )
UpperCAmelCase = measures[f"{i}-peak"]
print(f"- GPU {i} peak: {peak:.2f}MiB" )
print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" )
print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
| 51 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict:
"""simple docstring"""
if not head:
return True
# split the list to two parts
UpperCAmelCase, UpperCAmelCase = head.next, head
while fast and fast.next:
UpperCAmelCase = fast.next.next
UpperCAmelCase = slow.next
UpperCAmelCase = slow.next
UpperCAmelCase = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase = None
while second:
UpperCAmelCase = second.next
UpperCAmelCase = node
UpperCAmelCase = second
UpperCAmelCase = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase = node.next
UpperCAmelCase = head.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]:
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head
while fast and fast.next:
UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase = [slow.val]
while slow.next:
UpperCAmelCase = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase = cur.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
"""simple docstring"""
if not head or not head.next:
return True
UpperCAmelCase = {}
UpperCAmelCase = 0
while head:
if head.val in d:
d[head.val].append(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = [pos]
UpperCAmelCase = head.next
pos += 1
UpperCAmelCase = pos - 1
UpperCAmelCase = 0
for v in d.values():
if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase = 0
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 51 | 1 |
'''simple docstring'''
import enum
import shutil
import sys
a__ , a__ : List[str] = shutil.get_terminal_size()
a__ : Any = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'}
class lowerCAmelCase__ ( enum.Enum ):
'''simple docstring'''
_lowerCamelCase =0
_lowerCamelCase =1
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]="" ) -> Tuple:
"""simple docstring"""
sys.stdout.write(str(SCREAMING_SNAKE_CASE_ ) + end )
sys.stdout.flush()
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" ) -> str:
"""simple docstring"""
forceWrite(f"\u001b[{color}m{content}\u001b[0m" , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> Tuple:
"""simple docstring"""
forceWrite('''\r''' )
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]:
"""simple docstring"""
forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}" )
def __snake_case ( ) -> Union[str, Any]:
"""simple docstring"""
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def __snake_case ( ) -> Union[str, Any]:
"""simple docstring"""
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __snake_case ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , )
return self.image_processor_class
@property
def __snake_case ( self : List[Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , )
return self.image_processor
| 51 | 1 |
'''simple docstring'''
# using dfs for finding eulerian path traversal
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str]=None ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
UpperCAmelCase, UpperCAmelCase = True, True
UpperCAmelCase = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return path
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase = 0
UpperCAmelCase = -1
for i in range(SCREAMING_SNAKE_CASE_ ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
UpperCAmelCase = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
UpperCAmelCase, UpperCAmelCase = check_circuit_or_path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if check == 3:
print('''graph is not Eulerian''' )
print('''no path''' )
return
UpperCAmelCase = 1
if check == 2:
UpperCAmelCase = odd_node
print('''graph has a Euler path''' )
if check == 1:
print('''graph has a Euler cycle''' )
UpperCAmelCase = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
UpperCAmelCase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
UpperCAmelCase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
UpperCAmelCase = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
UpperCAmelCase = {
1: [],
2: []
# all degree is zero
}
UpperCAmelCase = 10
check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main()
| 51 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =XGLMTokenizer
_lowerCamelCase =XGLMTokenizerFast
_lowerCamelCase =True
_lowerCamelCase =True
def __snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = '''<pad>'''
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(a__ ) , 1008 )
def __snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __snake_case ( self : Optional[Any] ):
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def __snake_case ( self : Optional[int] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(a__ , f.name )
UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ )
UpperCAmelCase = pickle.dumps(a__ )
pickle.loads(a__ )
def __snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase = tokenizer.tokenize(a__ )
UpperCAmelCase = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = tokenizer.encode(a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
@slow
def __snake_case ( self : int ):
UpperCAmelCase = '''Hello World!'''
UpperCAmelCase = [2, 31227, 4447, 35]
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : List[str] ):
UpperCAmelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : Any ):
# fmt: off
UpperCAmelCase = {
'''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
| 51 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import RegNetForImageClassification, RegNetModel
from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : List[str] , a__ : Dict , a__ : List[Any]=3 , a__ : str=32 , a__ : List[Any]=3 , a__ : str=10 , a__ : List[Any]=[10, 20, 30, 40] , a__ : Dict=[1, 1, 2, 1] , a__ : Tuple=True , a__ : List[Any]=True , a__ : List[str]="relu" , a__ : List[Any]=3 , a__ : Union[str, Any]=None , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = image_size
UpperCAmelCase = num_channels
UpperCAmelCase = embeddings_size
UpperCAmelCase = hidden_sizes
UpperCAmelCase = depths
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = hidden_act
UpperCAmelCase = num_labels
UpperCAmelCase = scope
UpperCAmelCase = len(a__ )
def __snake_case ( self : List[str] ):
UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def __snake_case ( self : Any ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def __snake_case ( self : Optional[int] , a__ : List[Any] , a__ : List[Any] , a__ : Tuple ):
UpperCAmelCase = RegNetModel(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __snake_case ( self : int , a__ : List[Any] , a__ : Union[str, Any] , a__ : Union[str, Any] ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = RegNetForImageClassification(a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs
UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
_lowerCamelCase =(
{"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification}
if is_torch_available()
else {}
)
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : List[str] ):
UpperCAmelCase = RegNetModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ )
def __snake_case ( self : Tuple ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __snake_case ( self : Optional[int] ):
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def __snake_case ( self : Optional[int] ):
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def __snake_case ( self : Tuple ):
pass
def __snake_case ( self : int ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase = [*signature.parameters.keys()]
UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(config=a__ )
for name, module in model.named_modules():
if isinstance(a__ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
def __snake_case ( self : Dict ):
def check_hidden_states_output(a__ : List[Any] , a__ : List[Any] , a__ : str ):
UpperCAmelCase = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase = self.model_tester.num_stages
self.assertEqual(len(a__ ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCAmelCase = layer_type
UpperCAmelCase = True
check_hidden_states_output(a__ , a__ , a__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase = True
check_hidden_states_output(a__ , a__ , a__ )
def __snake_case ( self : str ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a__ )
@slow
def __snake_case ( self : str ):
for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = RegNetModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
def __snake_case ( ) -> Dict:
"""simple docstring"""
UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __snake_case ( self : int ):
return (
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __snake_case ( self : List[str] ):
UpperCAmelCase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(a__ )
UpperCAmelCase = self.default_image_processor
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ )
# forward pass
with torch.no_grad():
UpperCAmelCase = model(**a__ )
# verify the logits
UpperCAmelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , a__ )
UpperCAmelCase = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(a__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
| 51 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a__ : str = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig:
"""simple docstring"""
UpperCAmelCase = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase = 192
UpperCAmelCase = 768
UpperCAmelCase = 12
UpperCAmelCase = 3
UpperCAmelCase = [800, 1_333]
UpperCAmelCase = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = 330
UpperCAmelCase = 14
UpperCAmelCase = 6
UpperCAmelCase = 1_320
elif "yolos_s" in yolos_name:
UpperCAmelCase = 384
UpperCAmelCase = 1_536
UpperCAmelCase = 12
UpperCAmelCase = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase = [800, 1_344]
UpperCAmelCase = 91
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''coco-detection-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase = in_proj_bias[: config.hidden_size]
UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
if "backbone" in name:
UpperCAmelCase = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[2] )
UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[
dim : dim * 2, :
]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def __snake_case ( ) -> torch.Tensor:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model''']
# load 🤗 model
UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512
UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes
UpperCAmelCase, UpperCAmelCase = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
UpperCAmelCase = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
UpperCAmelCase = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
UpperCAmelCase = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
UpperCAmelCase = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
UpperCAmelCase = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
UpperCAmelCase = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
UpperCAmelCase = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
UpperCAmelCase = model_mapping[yolos_name]
image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
if __name__ == "__main__":
a__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a__ : Optional[Any] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 51 | 1 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> list:
"""simple docstring"""
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
UpperCAmelCase = gray_code_sequence_string(SCREAMING_SNAKE_CASE_ )
#
# convert them to integers
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
UpperCAmelCase = int(sequence[i] , 2 )
return sequence
def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> list:
"""simple docstring"""
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
UpperCAmelCase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
UpperCAmelCase = gray_code_sequence_string(bit_count - 1 )
UpperCAmelCase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
UpperCAmelCase = '''0''' + smaller_sequence[i]
sequence.append(SCREAMING_SNAKE_CASE_ )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
UpperCAmelCase = '''1''' + smaller_sequence[i]
sequence.append(SCREAMING_SNAKE_CASE_ )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a__ : List[Any] = logging.get_logger(__name__)
a__ : int = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
a__ : Any = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
a__ : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="whisper"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ):
UpperCAmelCase = vocab_size
UpperCAmelCase = num_mel_bins
UpperCAmelCase = d_model
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(a__ , direction='''inputs''' )
return common_inputs
def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ):
UpperCAmelCase = OrderedDict()
UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , )
UpperCAmelCase = encoder_inputs['''input_features'''].shape[2]
UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , a__ , a__ , a__ , a__ )
UpperCAmelCase = encoder_inputs.pop('''input_features''' )
UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
UpperCAmelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def __snake_case ( self : Dict ):
return 1e-3
| 51 | 1 |
'''simple docstring'''
from math import loga
def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int:
"""simple docstring"""
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise TypeError('''Input value must be a \'int\' type''' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =LEDConfig
_lowerCamelCase ={}
_lowerCamelCase ="gelu"
def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = eos_token_id
UpperCAmelCase = pad_token_id
UpperCAmelCase = bos_token_id
UpperCAmelCase = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ )
UpperCAmelCase = tf.concat(
[tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , )
UpperCAmelCase = global_attention_mask
return config, inputs_dict
def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ):
UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder()
UpperCAmelCase = inputs_dict['''input_ids''']
UpperCAmelCase = input_ids[:1, :]
UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase = 1
# first forward pass
UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ )
UpperCAmelCase, UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase = model(a__ , attention_mask=a__ )[0]
UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(a__ , a__ , rtol=1e-3 )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase =(
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = TFLEDModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ )
def __snake_case ( self : int ):
self.config_tester.run_common_tests()
def __snake_case ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] )
UpperCAmelCase = 2
UpperCAmelCase = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
UpperCAmelCase = True
UpperCAmelCase = self.model_tester.seq_length
UpperCAmelCase = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(a__ : Tuple ):
UpperCAmelCase = outputs.decoder_attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(a__ : int ):
UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = len(a__ )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
if self.is_encoder_decoder:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_decoder_attentions_output(a__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) )
self.assertEqual(model.config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def __snake_case ( self : Any ):
pass
def __snake_case ( self : Union[str, Any] ):
# TODO: Head-masking not yet implement
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple:
"""simple docstring"""
return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa )
a__ : int = 1e-4
@slow
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, 768)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 )
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
| 51 | 1 |
'''simple docstring'''
import string
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
UpperCAmelCase = ''''''
for i in sequence:
UpperCAmelCase = ord(SCREAMING_SNAKE_CASE_ )
if 65 <= extract <= 90:
output += chr(155 - extract )
elif 97 <= extract <= 122:
output += chr(219 - extract )
else:
output += i
return output
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
UpperCAmelCase = string.ascii_letters
UpperCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1]
return "".join(
letters_reversed[letters.index(SCREAMING_SNAKE_CASE_ )] if c in letters else c for c in sequence )
def __snake_case ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Running performance benchmarks...''' )
UpperCAmelCase = '''from string import printable ; from __main__ import atbash, atbash_slow'''
print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=SCREAMING_SNAKE_CASE_ )} seconds" )
print(f"> atbash(): {timeit('atbash(printable)' , setup=SCREAMING_SNAKE_CASE_ )} seconds" )
if __name__ == "__main__":
for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"):
print(F"""{example} encrypted in atbash: {atbash(example)}""")
benchmark()
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : str , a__ : List[Any] , a__ : str=13 , a__ : Tuple=[30, 30] , a__ : int=2 , a__ : Any=3 , a__ : Any=True , a__ : int=True , a__ : List[Any]=32 , a__ : int=5 , a__ : int=4 , a__ : Optional[Any]=37 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Any=0.1 , a__ : Union[str, Any]=10 , a__ : Any=0.02 , a__ : str=3 , a__ : Tuple=None , a__ : str=8 , a__ : List[str]=10 , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = image_size
UpperCAmelCase = patch_size
UpperCAmelCase = num_channels
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = scope
UpperCAmelCase = n_targets
UpperCAmelCase = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
UpperCAmelCase = (image_size[1] // patch_size) * (image_size[0] // patch_size)
UpperCAmelCase = num_patches + 1 + self.num_detection_tokens
def __snake_case ( self : List[str] ):
UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
UpperCAmelCase = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
UpperCAmelCase = []
for i in range(self.batch_size ):
UpperCAmelCase = {}
UpperCAmelCase = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=a__ )
UpperCAmelCase = torch.rand(self.n_targets , 4 , device=a__ )
labels.append(a__ )
UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def __snake_case ( self : Any ):
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def __snake_case ( self : int , a__ : Tuple , a__ : Optional[int] , a__ : str ):
UpperCAmelCase = YolosModel(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def __snake_case ( self : Optional[int] , a__ : Union[str, Any] , a__ : str , a__ : int ):
UpperCAmelCase = YolosForObjectDetection(a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(pixel_values=a__ )
UpperCAmelCase = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
UpperCAmelCase = model(pixel_values=a__ , labels=a__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs
UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(YolosModel, YolosForObjectDetection) if is_torch_available() else ()
_lowerCamelCase =(
{"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {}
)
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : List[Any] , a__ : List[str] , a__ : Dict , a__ : Dict=False ):
UpperCAmelCase = super()._prepare_for_class(a__ , a__ , return_labels=a__ )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
UpperCAmelCase = []
for i in range(self.model_tester.batch_size ):
UpperCAmelCase = {}
UpperCAmelCase = torch.ones(
size=(self.model_tester.n_targets,) , device=a__ , dtype=torch.long )
UpperCAmelCase = torch.ones(
self.model_tester.n_targets , 4 , device=a__ , dtype=torch.float )
labels.append(a__ )
UpperCAmelCase = labels
return inputs_dict
def __snake_case ( self : Dict ):
UpperCAmelCase = YolosModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 )
def __snake_case ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def __snake_case ( self : Dict ):
# YOLOS does not use inputs_embeds
pass
def __snake_case ( self : int ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(a__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a__ , nn.Linear ) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase = [*signature.parameters.keys()]
UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , a__ )
def __snake_case ( self : List[str] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def __snake_case ( self : Dict ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = True
# in YOLOS, the seq_len is different
UpperCAmelCase = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = outputs.attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = outputs.attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
UpperCAmelCase = len(a__ )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = 1
self.assertEqual(out_len + added_hidden_states , len(a__ ) )
UpperCAmelCase = outputs.attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def __snake_case ( self : Union[str, Any] ):
def check_hidden_states_output(a__ : Optional[Any] , a__ : Dict , a__ : Optional[Any] ):
UpperCAmelCase = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = outputs.hidden_states
UpperCAmelCase = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(a__ ) , a__ )
# YOLOS has a different seq_length
UpperCAmelCase = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = True
check_hidden_states_output(a__ , a__ , a__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase = True
check_hidden_states_output(a__ , a__ , a__ )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*a__ )
@slow
def __snake_case ( self : str ):
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = YolosModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
def __snake_case ( ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __snake_case ( self : List[str] ):
return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None
@slow
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(a__ )
UpperCAmelCase = self.default_image_processor
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ )
# forward pass
with torch.no_grad():
UpperCAmelCase = model(inputs.pixel_values )
# verify outputs
UpperCAmelCase = torch.Size((1, 100, 92) )
self.assertEqual(outputs.logits.shape , a__ )
UpperCAmelCase = torch.tensor(
[[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a__ , )
UpperCAmelCase = torch.tensor(
[[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a__ , atol=1e-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a__ , atol=1e-4 ) )
# verify postprocessing
UpperCAmelCase = image_processor.post_process_object_detection(
a__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
UpperCAmelCase = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a__ )
UpperCAmelCase = [75, 75, 17, 63, 17]
UpperCAmelCase = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a__ )
self.assertEqual(len(results['''scores'''] ) , 5 )
self.assertTrue(torch.allclose(results['''scores'''] , a__ , atol=1e-4 ) )
self.assertSequenceEqual(results['''labels'''].tolist() , a__ )
self.assertTrue(torch.allclose(results['''boxes'''][0, :] , a__ ) )
| 51 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a__ : List[Any] = 'sshleifer/mar_enro_6_3_student'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Dict ):
super().setUp()
UpperCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , )
UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def __snake_case ( self : Optional[int] ):
MarianMTModel.from_pretrained(a__ )
@slow
@require_torch_gpu
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __snake_case ( self : Any ):
UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
UpperCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
UpperCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' )
UpperCAmelCase = 6
UpperCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
'''--gpus=1''',
'''--learning_rate=1e-3''',
f"--num_train_epochs={epochs}",
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
UpperCAmelCase = distill_main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 51 | 1 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 51 | 1 |
'''simple docstring'''
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a__ : Optional[int] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt')
def __snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : int = 16_000 ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = int(round(sample_rate * max_length ) )
if len(SCREAMING_SNAKE_CASE_ ) <= sample_length:
return wav
UpperCAmelCase = randint(0 , len(SCREAMING_SNAKE_CASE_ ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(default=UpperCAmelCase_ , metadata={"help": "Name of a dataset from the datasets package"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "A file containing the training audio paths and labels."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "A file containing the validation audio paths and labels."} )
_lowerCamelCase =field(
default="train" , metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
} , )
_lowerCamelCase =field(
default="validation" , metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
)
} , )
_lowerCamelCase =field(
default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , )
_lowerCamelCase =field(
default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
_lowerCamelCase =field(
default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} )
_lowerCamelCase =field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Name or path of preprocessor config."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def __snake_case ( self : Union[str, Any] ):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''will be removed in a future version. Use `--freeze_feature_encoder`'''
'''instead. Setting `freeze_feature_encoder==True`.''' , a__ , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''should not be used in combination with `--freeze_feature_encoder`.'''
'''Only make use of `--freeze_feature_encoder`.''' )
def __snake_case ( ) -> int:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_audio_classification''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase = training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE_ )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
UpperCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to train from scratch.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Initialize our dataset and prepare it for the audio classification task.
UpperCAmelCase = DatasetDict()
UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , )
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
'''Make sure to set `--audio_column_name` to the correct audio column - one of '''
f"{', '.join(raw_datasets['train'].column_names )}." )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
'''Make sure to set `--label_column_name` to the correct text column - one of '''
f"{', '.join(raw_datasets['train'].column_names )}." )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
UpperCAmelCase = raw_datasets.cast_column(
data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
UpperCAmelCase = feature_extractor.model_input_names[0]
def train_transforms(SCREAMING_SNAKE_CASE_ : int ):
UpperCAmelCase = []
for audio in batch[data_args.audio_column_name]:
UpperCAmelCase = random_subsample(
audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=feature_extractor.sampling_rate )
UpperCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )}
UpperCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(SCREAMING_SNAKE_CASE_ : List[Any] ):
UpperCAmelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]]
UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=feature_extractor.sampling_rate )
UpperCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )}
UpperCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
UpperCAmelCase = raw_datasets['''train'''].features[data_args.label_column_name].names
UpperCAmelCase, UpperCAmelCase = {}, {}
for i, label in enumerate(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = label
# Load the accuracy metric from the datasets package
UpperCAmelCase = evaluate.load('''accuracy''' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(SCREAMING_SNAKE_CASE_ : Dict ):
UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 )
return metric.compute(predictions=SCREAMING_SNAKE_CASE_ , references=eval_pred.label_ids )
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE_ ) , labelaid=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
UpperCAmelCase = (
raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE_ , output_all_columns=SCREAMING_SNAKE_CASE_ )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
UpperCAmelCase = (
raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE_ , output_all_columns=SCREAMING_SNAKE_CASE_ )
# Initialize our trainer
UpperCAmelCase = Trainer(
model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , )
# Training
if training_args.do_train:
UpperCAmelCase = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase = last_checkpoint
UpperCAmelCase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
UpperCAmelCase = trainer.evaluate()
trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE_ )
trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE_ )
# Write model card and (optionally) push to hub
UpperCAmelCase = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''audio-classification''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''audio-classification'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ )
else:
trainer.create_model_card(**SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main()
| 51 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 | 1 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
_lowerCamelCase =42
_lowerCamelCase =jnp.floataa
def __snake_case ( self : List[str] ):
UpperCAmelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[Any] , a__ : int ):
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = hidden_states.shape
UpperCAmelCase = jax.image.resize(
a__ , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , )
UpperCAmelCase = self.conv(a__ )
return hidden_states
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
_lowerCamelCase =42
_lowerCamelCase =jnp.floataa
def __snake_case ( self : List[Any] ):
UpperCAmelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : Any , a__ : Dict ):
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
UpperCAmelCase = self.conv(a__ )
return hidden_states
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
_lowerCamelCase =42
_lowerCamelCase =None
_lowerCamelCase =0.0
_lowerCamelCase =None
_lowerCamelCase =jnp.floataa
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.in_channels if self.out_channels is None else self.out_channels
UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
UpperCAmelCase = nn.Conv(
a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
UpperCAmelCase = nn.Dense(a__ , dtype=self.dtype )
UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
UpperCAmelCase = nn.Dropout(self.dropout_prob )
UpperCAmelCase = nn.Conv(
a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
UpperCAmelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
UpperCAmelCase = None
if use_nin_shortcut:
UpperCAmelCase = nn.Conv(
a__ , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , )
def __call__( self : Dict , a__ : Optional[Any] , a__ : int , a__ : Dict=True ):
UpperCAmelCase = hidden_states
UpperCAmelCase = self.norma(a__ )
UpperCAmelCase = nn.swish(a__ )
UpperCAmelCase = self.conva(a__ )
UpperCAmelCase = self.time_emb_proj(nn.swish(a__ ) )
UpperCAmelCase = jnp.expand_dims(jnp.expand_dims(a__ , 1 ) , 1 )
UpperCAmelCase = hidden_states + temb
UpperCAmelCase = self.norma(a__ )
UpperCAmelCase = nn.swish(a__ )
UpperCAmelCase = self.dropout(a__ , a__ )
UpperCAmelCase = self.conva(a__ )
if self.conv_shortcut is not None:
UpperCAmelCase = self.conv_shortcut(a__ )
return hidden_states + residual
| 51 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ):
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str:
"""simple docstring"""
UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict:
"""simple docstring"""
UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ):
UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __snake_case ( self : int , a__ : Dict , a__ : Tuple ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def __snake_case ( self : str ):
pass
@slow
@require_torch
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871}
] , )
# fmt: on
@require_torch
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = '''facebook/sam-vit-huge'''
UpperCAmelCase = pipeline('''mask-generation''' , model=a__ )
UpperCAmelCase = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
] , )
| 51 | 1 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a__ : Any = datasets.utils.logging.get_logger(__name__)
a__ : str = ['names', 'prefix']
a__ : Any = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
a__ : Dict = ['encoding_errors', 'on_bad_lines']
a__ : Optional[Any] = ['date_format']
@dataclass
class lowerCAmelCase__ ( datasets.BuilderConfig ):
'''simple docstring'''
_lowerCamelCase =","
_lowerCamelCase =None
_lowerCamelCase ="infer"
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =True
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =False
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =True
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =True
_lowerCamelCase =None
_lowerCamelCase ="."
_lowerCamelCase =None
_lowerCamelCase ='"'
_lowerCamelCase =0
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =True
_lowerCamelCase =True
_lowerCamelCase =0
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =None
_lowerCamelCase =1_00_00
_lowerCamelCase =None
_lowerCamelCase ="strict"
_lowerCamelCase ="error"
_lowerCamelCase =None
def __snake_case ( self : Any ):
if self.delimiter is not None:
UpperCAmelCase = self.delimiter
if self.column_names is not None:
UpperCAmelCase = self.column_names
@property
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , a__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
_lowerCamelCase =CsvConfig
def __snake_case ( self : Optional[int] ):
return datasets.DatasetInfo(features=self.config.features )
def __snake_case ( self : int , a__ : List[str] ):
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" )
UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(a__ , (str, list, tuple) ):
UpperCAmelCase = data_files
if isinstance(a__ , a__ ):
UpperCAmelCase = [files]
UpperCAmelCase = [dl_manager.iter_files(a__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
UpperCAmelCase = []
for split_name, files in data_files.items():
if isinstance(a__ , a__ ):
UpperCAmelCase = [files]
UpperCAmelCase = [dl_manager.iter_files(a__ ) for file in files]
splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={'''files''': files} ) )
return splits
def __snake_case ( self : Any , a__ : pa.Table ):
if self.config.features is not None:
UpperCAmelCase = self.config.features.arrow_schema
if all(not require_storage_cast(a__ ) for feature in self.config.features.values() ):
# cheaper cast
UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=a__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCAmelCase = table_cast(a__ , a__ )
return pa_table
def __snake_case ( self : Any , a__ : Tuple ):
UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCAmelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(a__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ):
UpperCAmelCase = pd.read_csv(a__ , iterator=a__ , dtype=a__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(a__ ):
UpperCAmelCase = pa.Table.from_pandas(a__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(a__ )
except ValueError as e:
logger.error(f"Failed to read file '{file}' with error {type(a__ )}: {e}" )
raise
| 51 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =VideoToVideoSDPipeline
_lowerCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"}
_lowerCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"}
_lowerCamelCase =PipelineTesterMixin.required_optional_params - {"latents"}
_lowerCamelCase =False
# No `output_type`.
_lowerCamelCase =frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback",
"callback_steps",
] )
def __snake_case ( self : List[str] ):
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , )
UpperCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=a__ , set_alpha_to_one=a__ , )
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
UpperCAmelCase = CLIPTextModel(a__ )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def __snake_case ( self : Any , a__ : int , a__ : int=0 ):
# 3 frames
UpperCAmelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ )
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''video''': video,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def __snake_case ( self : Dict ):
UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = VideoToVideoSDPipeline(**a__ )
UpperCAmelCase = sd_pipe.to(a__ )
sd_pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = '''np'''
UpperCAmelCase = sd_pipe(**a__ ).frames
UpperCAmelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
UpperCAmelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __snake_case ( self : Tuple ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a__ , expected_max_diff=5e-3 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def __snake_case ( self : List[str] ):
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def __snake_case ( self : Any ):
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def __snake_case ( self : str ):
pass
def __snake_case ( self : List[str] ):
return super().test_progress_bar()
@slow
@skip_mps
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : List[str] ):
UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase = torch.randn((1, 10, 3, 1024, 576) , generator=a__ )
UpperCAmelCase = video.to('''cuda''' )
UpperCAmelCase = '''Spiderman is surfing'''
UpperCAmelCase = pipe(a__ , video=a__ , generator=a__ , num_inference_steps=3 , output_type='''pt''' ).frames
UpperCAmelCase = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
| 51 |
'''simple docstring'''
import torch
from transformers import AutoModel
class lowerCAmelCase__ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ):
super(a__ , self ).__init__()
UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ )
UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 )
UpperCAmelCase = torch.nn.Softmax(dim=1 )
def __snake_case ( self : List[Any] , **a__ : Tuple ):
return self.bert(**a__ ).last_hidden_state
def __snake_case ( self : int , a__ : List[str] ):
return token_embeddings.sum(2 , keepdim=a__ )
def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ):
return self.softmax(T * self.cos(a__ , a__ ) )
def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ):
UpperCAmelCase = W_supports['''sizes'''].tolist()
UpperCAmelCase = W_supports['''start_token_id'''].item()
UpperCAmelCase = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = W_supports['''input_ids'''] == start_token_id
UpperCAmelCase = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(a__ ):
if i == 0:
UpperCAmelCase = 0
else:
UpperCAmelCase = support_sizes[i - 1]
UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]]
UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]]
UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCAmelCase = torch.vstack((p_starts, p_start) )
UpperCAmelCase = torch.vstack((p_ends, p_end) )
else:
UpperCAmelCase = p_start
UpperCAmelCase = p_end
return p_starts, p_ends
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
a__ : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
a__ : list[int] = [ord(letter) for letter in string.ascii_lowercase]
a__ : set[int] = {ord(char) for char in VALID_CHARS}
a__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : tuple[int, ...] ) -> str | None:
"""simple docstring"""
UpperCAmelCase = ""
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(SCREAMING_SNAKE_CASE_ )
return decoded
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[int] ) -> list[str]:
"""simple docstring"""
UpperCAmelCase = []
for key in product(SCREAMING_SNAKE_CASE_ , repeat=3 ):
UpperCAmelCase = try_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if encoded is not None:
possibles.append(SCREAMING_SNAKE_CASE_ )
return possibles
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[str] , SCREAMING_SNAKE_CASE_ : str ) -> list[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def __snake_case ( SCREAMING_SNAKE_CASE_ : str = "p059_cipher.txt" ) -> int:
"""simple docstring"""
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ).parent.joinpath(SCREAMING_SNAKE_CASE_ ).read_text(encoding='''utf-8''' )
UpperCAmelCase = [int(SCREAMING_SNAKE_CASE_ ) for number in data.strip().split(''',''' )]
UpperCAmelCase = filter_valid_chars(SCREAMING_SNAKE_CASE_ )
for common_word in COMMON_WORDS:
UpperCAmelCase = filter_common_word(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
UpperCAmelCase = possibles[0]
return sum(ord(SCREAMING_SNAKE_CASE_ ) for char in decoded_text )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 51 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(EulerDiscreteScheduler,)
_lowerCamelCase =10
def __snake_case ( self : str , **a__ : Tuple ):
UpperCAmelCase = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[int] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=a__ , beta_end=a__ )
def __snake_case ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a__ )
def __snake_case ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 51 | 1 |
'''simple docstring'''
from math import factorial
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int:
"""simple docstring"""
return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 51 |
'''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
metadata={"help": "The csv file to plot."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
_lowerCamelCase =list_field(
default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
try:
int(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
try:
float(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a__ : Optional[int] ):
UpperCAmelCase = args
UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
UpperCAmelCase = csv.DictReader(a__ )
for row in reader:
UpperCAmelCase = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
UpperCAmelCase = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
UpperCAmelCase = float(row['''result'''] )
def __snake_case ( self : Dict ):
UpperCAmelCase, UpperCAmelCase = plt.subplots()
UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage'''
UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
UpperCAmelCase = self.result_dict[model_name]['''result''']
((UpperCAmelCase), (UpperCAmelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
UpperCAmelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
UpperCAmelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , )
else:
UpperCAmelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((UpperCAmelCase), (UpperCAmelCase)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )]
plt.scatter(
a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" )
plt.plot(a__ , a__ , '''--''' )
title_str += f" {label_model_name} vs."
UpperCAmelCase = title_str[:-4]
UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(a__ )
plt.xlabel(a__ )
plt.ylabel(a__ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ )
plot.plot()
if __name__ == "__main__":
main()
| 51 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =CTRLTokenizer
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : List[str] ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>''']
UpperCAmelCase = dict(zip(a__ , range(len(a__ ) ) ) )
UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', '''''']
UpperCAmelCase = {'''unk_token''': '''<unk>'''}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(a__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(a__ ) )
def __snake_case ( self : Union[str, Any] , **a__ : int ):
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **a__ )
def __snake_case ( self : List[str] , a__ : List[Any] ):
UpperCAmelCase = '''adapt react readapt apt'''
UpperCAmelCase = '''adapt react readapt apt'''
return input_text, output_text
def __snake_case ( self : int ):
UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase = '''adapt react readapt apt'''
UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split()
UpperCAmelCase = tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = tokens + [tokenizer.unk_token]
UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
| 51 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
print('''Loading config file...''' )
def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ):
UpperCAmelCase = []
for k, v in d.items():
UpperCAmelCase = parent_key + sep + k if parent_key else k
if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() )
else:
items.append((new_key, v) )
return dict(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = argparse.Namespace()
with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file:
try:
UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader )
UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ )
for k, v in flat_cfg.items():
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) )
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = MobileViTVaConfig()
UpperCAmelCase = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase = 151
UpperCAmelCase = 512
UpperCAmelCase = '''ade20k-id2label.json'''
UpperCAmelCase = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase = 21
UpperCAmelCase = 512
UpperCAmelCase = '''pascal-voc-id2label.json'''
UpperCAmelCase = True
# orig_config
UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ )
assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = val
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int:
"""simple docstring"""
if base_model:
UpperCAmelCase = ''''''
else:
UpperCAmelCase = '''mobilevitv2.'''
UpperCAmelCase = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase = k[8:]
else:
UpperCAmelCase = k
if ".block." in k:
UpperCAmelCase = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." )
for i in [1, 2]:
if f"layer_{i}." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f"layer_{i}.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if f"layer_{i}.1.local_rep.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if f"layer_{i}.1.local_rep.1." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase = [0, 1]
elif i == 4:
UpperCAmelCase = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase = [0, 1, 2]
for j in j_in:
if f"layer_{i}.1.global_rep.{j}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if f"layer_{i}.1.global_rep.{j+1}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." )
if f"layer_{i}.1.conv_proj." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(SCREAMING_SNAKE_CASE_ )
for k in keys_to_ignore:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
else:
UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
# remove and rename some keys of load the original model
UpperCAmelCase = checkpoint
remove_unused_keys(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load modified state_dict
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase = outputs.logits
UpperCAmelCase = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] )
assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task',
default='imagenet1k_256',
type=str,
help=(
'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '
'\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n '
),
choices=[
'imagenet1k_256',
'imagenet1k_384',
'imagenet21k_to_1k_256',
'imagenet21k_to_1k_384',
'ade20k_deeplabv3',
'voc_deeplabv3',
],
)
parser.add_argument(
'--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
a__ : str = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 51 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Tuple = {
'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="dpt"
def __init__( self : Optional[int] , a__ : int=768 , a__ : List[Any]=12 , a__ : Union[str, Any]=12 , a__ : List[str]=3072 , a__ : Optional[int]="gelu" , a__ : List[Any]=0.0 , a__ : List[str]=0.0 , a__ : Dict=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Any=384 , a__ : List[str]=16 , a__ : Tuple=3 , a__ : int=False , a__ : List[Any]=True , a__ : Any=[2, 5, 8, 11] , a__ : Any="project" , a__ : Any=[4, 2, 1, 0.5] , a__ : Union[str, Any]=[96, 192, 384, 768] , a__ : Dict=256 , a__ : Dict=-1 , a__ : str=False , a__ : Union[str, Any]=True , a__ : Optional[Any]=0.4 , a__ : Union[str, Any]=255 , a__ : int=0.1 , a__ : str=[1, 1024, 24, 24] , a__ : str=[0, 1] , a__ : Union[str, Any]=None , **a__ : str , ):
super().__init__(**a__ )
UpperCAmelCase = hidden_size
UpperCAmelCase = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
UpperCAmelCase = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
UpperCAmelCase = BitConfig(**a__ )
elif isinstance(a__ , a__ ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
UpperCAmelCase = BitConfig(**a__ )
elif isinstance(a__ , a__ ):
UpperCAmelCase = backbone_config
else:
raise ValueError(
f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." )
UpperCAmelCase = backbone_featmap_shape
UpperCAmelCase = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = []
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = image_size
UpperCAmelCase = patch_size
UpperCAmelCase = num_channels
UpperCAmelCase = qkv_bias
UpperCAmelCase = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
UpperCAmelCase = readout_type
UpperCAmelCase = reassemble_factors
UpperCAmelCase = neck_hidden_sizes
UpperCAmelCase = fusion_hidden_size
UpperCAmelCase = head_in_index
UpperCAmelCase = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
UpperCAmelCase = use_auxiliary_head
UpperCAmelCase = auxiliary_loss_weight
UpperCAmelCase = semantic_loss_ignore_index
UpperCAmelCase = semantic_classifier_dropout
def __snake_case ( self : List[str] ):
UpperCAmelCase = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase = self.backbone_config.to_dict()
UpperCAmelCase = self.__class__.model_type
return output
| 51 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[int] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="megatron-bert"
def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ):
super().__init__(pad_token_id=a__ , **a__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
| 51 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a__ : Dict = {
'configuration_mobilenet_v2': [
'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP',
'MobileNetV2Config',
'MobileNetV2OnnxConfig',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = ['MobileNetV2FeatureExtractor']
a__ : List[str] = ['MobileNetV2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileNetV2ForImageClassification',
'MobileNetV2ForSemanticSegmentation',
'MobileNetV2Model',
'MobileNetV2PreTrainedModel',
'load_tf_weights_in_mobilenet_v2',
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
a__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 |
'''simple docstring'''
from __future__ import annotations
a__ : List[str] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ):
UpperCAmelCase = graph
# mapping node to its parent in resulting breadth first tree
UpperCAmelCase = {}
UpperCAmelCase = source_vertex
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = {self.source_vertex}
UpperCAmelCase = None
UpperCAmelCase = [self.source_vertex] # first in first out queue
while queue:
UpperCAmelCase = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(a__ )
UpperCAmelCase = vertex
queue.append(a__ )
def __snake_case ( self : Any , a__ : str ):
if target_vertex == self.source_vertex:
return self.source_vertex
UpperCAmelCase = self.parent.get(a__ )
if target_vertex_parent is None:
UpperCAmelCase = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(a__ )
return self.shortest_path(a__ ) + f"->{target_vertex}"
if __name__ == "__main__":
a__ : Tuple = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[int] ) -> bool:
"""simple docstring"""
return len(set(SCREAMING_SNAKE_CASE_ ) ) == len(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] )
@pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] )
@pytest.mark.parametrize('''revision''' , [None, '''v2'''] )
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase = hf_hub_url(repo_id=SCREAMING_SNAKE_CASE_ , path=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ )
assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(SCREAMING_SNAKE_CASE_ )}"
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Any = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] ) -> bool:
"""simple docstring"""
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if curr_ind == len(SCREAMING_SNAKE_CASE_ ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if valid_connection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
# Insert current vertex into path as next transition
UpperCAmelCase = next_ver
# Validate created path
if util_hamilton_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , curr_ind + 1 ):
return True
# Backtrack
UpperCAmelCase = -1
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int = 0 ) -> list[int]:
"""simple docstring"""
UpperCAmelCase = [-1] * (len(SCREAMING_SNAKE_CASE_ ) + 1)
# initialize start and end of path with starting index
UpperCAmelCase = UpperCAmelCase = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) else []
| 51 |
'''simple docstring'''
from math import factorial
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int:
"""simple docstring"""
return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 51 | 1 |
'''simple docstring'''
import math
class lowerCAmelCase__ :
'''simple docstring'''
def __snake_case ( self : List[Any] , a__ : list[list[float]] , a__ : list[int] ):
UpperCAmelCase = 0.0
UpperCAmelCase = 0.0
for i in range(len(a__ ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def __snake_case ( self : Union[str, Any] , a__ : list[list[int | float]] , a__ : list[int] , a__ : int , a__ : float ):
for i in range(len(a__ ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def __snake_case ( ) -> None:
"""simple docstring"""
UpperCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
UpperCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
UpperCAmelCase = SelfOrganizingMap()
UpperCAmelCase = 3
UpperCAmelCase = 0.5
for _ in range(SCREAMING_SNAKE_CASE_ ):
for j in range(len(SCREAMING_SNAKE_CASE_ ) ):
# training sample
UpperCAmelCase = training_samples[j]
# Compute the winning vector
UpperCAmelCase = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Update the winning vector
UpperCAmelCase = self_organizing_map.update(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# classify test sample
UpperCAmelCase = [0, 0, 0, 1]
UpperCAmelCase = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# results
print(f"Clusters that the test sample belongs to : {winner}" )
print(f"Weights that have been trained : {weights}" )
# running the main() function
if __name__ == "__main__":
main()
| 51 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =StableUnCLIPPipeline
_lowerCamelCase =TEXT_TO_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_lowerCamelCase =False
def __snake_case ( self : str ):
UpperCAmelCase = 32
UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , )
torch.manual_seed(0 )
UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ )
UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , )
torch.manual_seed(0 )
UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL()
UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __snake_case ( self : List[Any] ):
UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=a__ )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' )
UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(a__ , a__ )
def __snake_case ( self : str ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 51 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None ) -> Union[str, Any]:
"""simple docstring"""
if subparsers is not None:
UpperCAmelCase = subparsers.add_parser('''test''' )
else:
UpperCAmelCase = argparse.ArgumentParser('''Accelerate test command''' )
parser.add_argument(
'''--config_file''' , default=SCREAMING_SNAKE_CASE_ , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
return parser
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] )
if args.config_file is None:
UpperCAmelCase = script_name
else:
UpperCAmelCase = f"--config_file={args.config_file} {script_name}"
UpperCAmelCase = ['''accelerate-launch'''] + test_args.split()
UpperCAmelCase = execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
if result.returncode == 0:
print('''Test is a success! You are ready for your distributed training!''' )
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = test_command_parser()
UpperCAmelCase = parser.parse_args()
test_command(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main()
| 51 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict:
"""simple docstring"""
if not head:
return True
# split the list to two parts
UpperCAmelCase, UpperCAmelCase = head.next, head
while fast and fast.next:
UpperCAmelCase = fast.next.next
UpperCAmelCase = slow.next
UpperCAmelCase = slow.next
UpperCAmelCase = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase = None
while second:
UpperCAmelCase = second.next
UpperCAmelCase = node
UpperCAmelCase = second
UpperCAmelCase = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase = node.next
UpperCAmelCase = head.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]:
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head
while fast and fast.next:
UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase = [slow.val]
while slow.next:
UpperCAmelCase = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase = cur.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
"""simple docstring"""
if not head or not head.next:
return True
UpperCAmelCase = {}
UpperCAmelCase = 0
while head:
if head.val in d:
d[head.val].append(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = [pos]
UpperCAmelCase = head.next
pos += 1
UpperCAmelCase = pos - 1
UpperCAmelCase = 0
for v in d.values():
if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase = 0
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) // 2
# choose the middle 3 elements
UpperCAmelCase = lst[m - 1 : m + 2]
# if middle element is peak
if three[1] > three[0] and three[1] > three[2]:
return three[1]
# if increasing, recurse on right
elif three[0] < three[2]:
if len(lst[:m] ) == 2:
m -= 1
return peak(lst[m:] )
# decreasing
else:
if len(lst[:m] ) == 2:
m += 1
return peak(lst[:m] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __snake_case ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , )
return self.image_processor_class
@property
def __snake_case ( self : List[Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , )
return self.image_processor
| 51 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
a__ : List[str] = None
a__ : Tuple = logging.get_logger(__name__)
a__ : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
a__ : Optional[int] = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json',
},
}
a__ : str = {
'camembert-base': 512,
}
a__ : Union[str, Any] = '▁'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =VOCAB_FILES_NAMES
_lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase =["input_ids", "attention_mask"]
_lowerCamelCase =CamembertTokenizer
def __init__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[Any]=None , a__ : int="<s>" , a__ : List[str]="</s>" , a__ : int="</s>" , a__ : int="<s>" , a__ : Optional[int]="<unk>" , a__ : List[Any]="<pad>" , a__ : Tuple="<mask>" , a__ : Dict=["<s>NOTUSED", "</s>NOTUSED"] , **a__ : Optional[int] , ):
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token
super().__init__(
a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , additional_special_tokens=a__ , **a__ , )
UpperCAmelCase = vocab_file
UpperCAmelCase = False if not self.vocab_file else True
def __snake_case ( self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
UpperCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __snake_case ( self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None ):
UpperCAmelCase = [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __snake_case ( self : Tuple , a__ : str , a__ : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(a__ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase = os.path.join(
a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ):
copyfile(self.vocab_file , a__ )
return (out_vocab_file,)
| 51 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =XGLMTokenizer
_lowerCamelCase =XGLMTokenizerFast
_lowerCamelCase =True
_lowerCamelCase =True
def __snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = '''<pad>'''
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(a__ ) , 1008 )
def __snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __snake_case ( self : Optional[Any] ):
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def __snake_case ( self : Optional[int] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(a__ , f.name )
UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ )
UpperCAmelCase = pickle.dumps(a__ )
pickle.loads(a__ )
def __snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase = tokenizer.tokenize(a__ )
UpperCAmelCase = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = tokenizer.encode(a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
@slow
def __snake_case ( self : int ):
UpperCAmelCase = '''Hello World!'''
UpperCAmelCase = [2, 31227, 4447, 35]
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : List[str] ):
UpperCAmelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : Any ):
# fmt: off
UpperCAmelCase = {
'''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
| 51 | 1 |
'''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
metadata={"help": "The csv file to plot."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
_lowerCamelCase =list_field(
default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
try:
int(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
try:
float(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a__ : Optional[int] ):
UpperCAmelCase = args
UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
UpperCAmelCase = csv.DictReader(a__ )
for row in reader:
UpperCAmelCase = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
UpperCAmelCase = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
UpperCAmelCase = float(row['''result'''] )
def __snake_case ( self : Dict ):
UpperCAmelCase, UpperCAmelCase = plt.subplots()
UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage'''
UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
UpperCAmelCase = self.result_dict[model_name]['''result''']
((UpperCAmelCase), (UpperCAmelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
UpperCAmelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
UpperCAmelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , )
else:
UpperCAmelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((UpperCAmelCase), (UpperCAmelCase)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )]
plt.scatter(
a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" )
plt.plot(a__ , a__ , '''--''' )
title_str += f" {label_model_name} vs."
UpperCAmelCase = title_str[:-4]
UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(a__ )
plt.xlabel(a__ )
plt.ylabel(a__ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ )
plot.plot()
if __name__ == "__main__":
main()
| 51 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a__ : str = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig:
"""simple docstring"""
UpperCAmelCase = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase = 192
UpperCAmelCase = 768
UpperCAmelCase = 12
UpperCAmelCase = 3
UpperCAmelCase = [800, 1_333]
UpperCAmelCase = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = 330
UpperCAmelCase = 14
UpperCAmelCase = 6
UpperCAmelCase = 1_320
elif "yolos_s" in yolos_name:
UpperCAmelCase = 384
UpperCAmelCase = 1_536
UpperCAmelCase = 12
UpperCAmelCase = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase = [800, 1_344]
UpperCAmelCase = 91
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''coco-detection-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase = in_proj_bias[: config.hidden_size]
UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
if "backbone" in name:
UpperCAmelCase = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[2] )
UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[
dim : dim * 2, :
]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def __snake_case ( ) -> torch.Tensor:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model''']
# load 🤗 model
UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512
UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes
UpperCAmelCase, UpperCAmelCase = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
UpperCAmelCase = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
UpperCAmelCase = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
UpperCAmelCase = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
UpperCAmelCase = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
UpperCAmelCase = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
UpperCAmelCase = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
UpperCAmelCase = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
UpperCAmelCase = model_mapping[yolos_name]
image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
if __name__ == "__main__":
a__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a__ : Optional[Any] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 51 | 1 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
a__ : Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Dict , *a__ : Optional[Any] , **a__ : List[Any] ):
super().__init__(*a__ , **a__ )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def __snake_case ( self : int , a__ : Union[str, Any]=None ):
UpperCAmelCase = {}
if top_k is not None:
UpperCAmelCase = top_k
return {}, {}, postprocess_params
def __call__( self : Any , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : List[str] ):
return super().__call__(a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : Dict ):
UpperCAmelCase = load_image(a__ )
UpperCAmelCase = self.image_processor(images=a__ , return_tensors=self.framework )
return model_inputs
def __snake_case ( self : str , a__ : Optional[Any] ):
UpperCAmelCase = self.model(**a__ )
return model_outputs
def __snake_case ( self : Union[str, Any] , a__ : Tuple , a__ : Union[str, Any]=5 ):
if top_k > self.model.config.num_labels:
UpperCAmelCase = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase, UpperCAmelCase = probs.topk(a__ )
elif self.framework == "tf":
UpperCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase = tf.math.top_k(a__ , k=a__ )
UpperCAmelCase, UpperCAmelCase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f"Unsupported framework: {self.framework}" )
UpperCAmelCase = scores.tolist()
UpperCAmelCase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a__ , a__ )]
| 51 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a__ : List[Any] = logging.get_logger(__name__)
a__ : int = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
a__ : Any = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
a__ : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="whisper"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ):
UpperCAmelCase = vocab_size
UpperCAmelCase = num_mel_bins
UpperCAmelCase = d_model
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(a__ , direction='''inputs''' )
return common_inputs
def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ):
UpperCAmelCase = OrderedDict()
UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , )
UpperCAmelCase = encoder_inputs['''input_features'''].shape[2]
UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , a__ , a__ , a__ , a__ )
UpperCAmelCase = encoder_inputs.pop('''input_features''' )
UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
UpperCAmelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def __snake_case ( self : Dict ):
return 1e-3
| 51 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , a__ : Optional[Any] , a__ : Any=13 , a__ : str=3 , a__ : List[Any]=224 , a__ : Any=30 , a__ : List[Any]=400 , a__ : Optional[int]=True , a__ : str=None , a__ : Dict=True , a__ : Tuple=[0.5, 0.5, 0.5] , a__ : List[str]=[0.5, 0.5, 0.5] , ):
UpperCAmelCase = size if size is not None else {'''height''': 18, '''width''': 18}
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = num_channels
UpperCAmelCase = image_size
UpperCAmelCase = min_resolution
UpperCAmelCase = max_resolution
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean
UpperCAmelCase = image_std
def __snake_case ( self : List[str] ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =ViTImageProcessor if is_vision_available() else None
def __snake_case ( self : int ):
UpperCAmelCase = EfficientFormerImageProcessorTester(self )
@property
def __snake_case ( self : Optional[int] ):
return self.image_proc_tester.prepare_image_processor_dict()
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a__ , '''image_mean''' ) )
self.assertTrue(hasattr(a__ , '''image_std''' ) )
self.assertTrue(hasattr(a__ , '''do_normalize''' ) )
self.assertTrue(hasattr(a__ , '''do_resize''' ) )
self.assertTrue(hasattr(a__ , '''size''' ) )
def __snake_case ( self : Optional[int] ):
pass
def __snake_case ( self : List[str] ):
# Initialize image_processor
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , Image.Image )
# Test not batched input
UpperCAmelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
UpperCAmelCase = image_processor(a__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
def __snake_case ( self : int ):
# Initialize image_processor
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=a__ , numpify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , np.ndarray )
# Test not batched input
UpperCAmelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
UpperCAmelCase = image_processor(a__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
def __snake_case ( self : List[Any] ):
# Initialize image_processor
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=a__ , torchify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , torch.Tensor )
# Test not batched input
UpperCAmelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
UpperCAmelCase = image_processor(a__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
| 51 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =LEDConfig
_lowerCamelCase ={}
_lowerCamelCase ="gelu"
def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = eos_token_id
UpperCAmelCase = pad_token_id
UpperCAmelCase = bos_token_id
UpperCAmelCase = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ )
UpperCAmelCase = tf.concat(
[tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , )
UpperCAmelCase = global_attention_mask
return config, inputs_dict
def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ):
UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder()
UpperCAmelCase = inputs_dict['''input_ids''']
UpperCAmelCase = input_ids[:1, :]
UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase = 1
# first forward pass
UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ )
UpperCAmelCase, UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase = model(a__ , attention_mask=a__ )[0]
UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(a__ , a__ , rtol=1e-3 )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase =(
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = TFLEDModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ )
def __snake_case ( self : int ):
self.config_tester.run_common_tests()
def __snake_case ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] )
UpperCAmelCase = 2
UpperCAmelCase = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
UpperCAmelCase = True
UpperCAmelCase = self.model_tester.seq_length
UpperCAmelCase = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(a__ : Tuple ):
UpperCAmelCase = outputs.decoder_attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(a__ : int ):
UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = len(a__ )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
if self.is_encoder_decoder:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_decoder_attentions_output(a__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) )
self.assertEqual(model.config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def __snake_case ( self : Any ):
pass
def __snake_case ( self : Union[str, Any] ):
# TODO: Head-masking not yet implement
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple:
"""simple docstring"""
return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa )
a__ : int = 1e-4
@slow
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, 768)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 )
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
| 51 | 1 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a__ : List[Any] = 'sshleifer/mar_enro_6_3_student'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Dict ):
super().setUp()
UpperCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , )
UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def __snake_case ( self : Optional[int] ):
MarianMTModel.from_pretrained(a__ )
@slow
@require_torch_gpu
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __snake_case ( self : Any ):
UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
UpperCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
UpperCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' )
UpperCAmelCase = 6
UpperCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
'''--gpus=1''',
'''--learning_rate=1e-3''',
f"--num_train_epochs={epochs}",
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
UpperCAmelCase = distill_main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : List[Any] , a__ : str ):
with open(a__ , encoding='''utf-8''' ) as input_file:
UpperCAmelCase = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' )
UpperCAmelCase = input_file.read()
UpperCAmelCase = regexp.search(a__ )
return match
def __snake_case ( self : Any , a__ : str ):
with open(a__ , encoding='''utf-8''' ) as input_file:
UpperCAmelCase = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL )
UpperCAmelCase = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase = regexp.finditer(a__ )
UpperCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = Path('''./datasets''' )
UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(a__ ) ):
raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" )
def __snake_case ( self : int ):
UpperCAmelCase = Path('''./datasets''' )
UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_print_statements(str(a__ ) ):
raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
| 51 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a__ : List[Any] = 'sshleifer/mar_enro_6_3_student'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Dict ):
super().setUp()
UpperCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , )
UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def __snake_case ( self : Optional[int] ):
MarianMTModel.from_pretrained(a__ )
@slow
@require_torch_gpu
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __snake_case ( self : Any ):
UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
UpperCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
UpperCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' )
UpperCAmelCase = 6
UpperCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
'''--gpus=1''',
'''--learning_rate=1e-3''',
f"--num_train_epochs={epochs}",
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
UpperCAmelCase = distill_main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 51 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Optional[int] = logging.get_logger(__name__)
a__ : Optional[int] = {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="speech_to_text"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , a__ : Any=10000 , a__ : Union[str, Any]=12 , a__ : List[str]=2048 , a__ : List[Any]=4 , a__ : Optional[Any]=6 , a__ : Dict=2048 , a__ : Optional[int]=4 , a__ : Dict=0.0 , a__ : List[str]=0.0 , a__ : Dict=True , a__ : str=True , a__ : Tuple="relu" , a__ : str=256 , a__ : Tuple=0.1 , a__ : Tuple=0.0 , a__ : List[str]=0.0 , a__ : Dict=0.02 , a__ : List[Any]=2 , a__ : Union[str, Any]=True , a__ : Optional[Any]=1 , a__ : Tuple=0 , a__ : Optional[int]=2 , a__ : List[str]=6000 , a__ : List[str]=1024 , a__ : Dict=2 , a__ : int=(5, 5) , a__ : Union[str, Any]=1024 , a__ : Optional[Any]=80 , a__ : Tuple=1 , **a__ : Optional[int] , ):
UpperCAmelCase = vocab_size
UpperCAmelCase = d_model
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
UpperCAmelCase = num_conv_layers
UpperCAmelCase = list(a__ )
UpperCAmelCase = conv_channels
UpperCAmelCase = input_feat_per_channel
UpperCAmelCase = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '''
f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, "
f"`config.num_conv_layers = {self.num_conv_layers}`." )
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , **a__ , )
| 51 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 51 | 1 |
'''simple docstring'''
import qiskit
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> qiskit.result.counts.Counts:
"""simple docstring"""
UpperCAmelCase = qiskit.Aer.get_backend('''aer_simulator''' )
# Create a Quantum Circuit acting on the q register
UpperCAmelCase = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
UpperCAmelCase = qiskit.execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1_000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
| 51 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 | 1 |
'''simple docstring'''
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Dict ):
UpperCAmelCase = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(a__ ) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = [
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(a__ ) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
'''unet/diffusion_pytorch_model.bin''',
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(a__ ) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = [
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(a__ ) )
def __snake_case ( self : Dict ):
UpperCAmelCase = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
# Removed: 'text_encoder/model.safetensors',
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertFalse(is_safetensors_compatible(a__ ) )
def __snake_case ( self : Tuple ):
UpperCAmelCase = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
UpperCAmelCase = '''fp16'''
self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) )
def __snake_case ( self : Tuple ):
UpperCAmelCase = [
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
UpperCAmelCase = '''fp16'''
self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) )
def __snake_case ( self : Any ):
# pass variant but use the non-variant filenames
UpperCAmelCase = [
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
UpperCAmelCase = '''fp16'''
self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
'''unet/diffusion_pytorch_model.fp16.bin''',
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
UpperCAmelCase = '''fp16'''
self.assertFalse(is_safetensors_compatible(a__ , variant=a__ ) )
def __snake_case ( self : List[str] ):
UpperCAmelCase = [
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
]
UpperCAmelCase = '''fp16'''
self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) )
def __snake_case ( self : str ):
# pass variant but use the non-variant filenames
UpperCAmelCase = [
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
]
UpperCAmelCase = '''fp16'''
self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
# 'text_encoder/model.fp16.safetensors',
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
UpperCAmelCase = '''fp16'''
self.assertFalse(is_safetensors_compatible(a__ , variant=a__ ) )
| 51 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ):
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str:
"""simple docstring"""
UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict:
"""simple docstring"""
UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ):
UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __snake_case ( self : int , a__ : Dict , a__ : Tuple ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def __snake_case ( self : str ):
pass
@slow
@require_torch
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871}
] , )
# fmt: on
@require_torch
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = '''facebook/sam-vit-huge'''
UpperCAmelCase = pipeline('''mask-generation''' , model=a__ )
UpperCAmelCase = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
] , )
| 51 | 1 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any=1_000 ) -> Any:
"""simple docstring"""
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
UpperCAmelCase = n - 1
UpperCAmelCase = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
UpperCAmelCase = 0
while count < prec:
UpperCAmelCase = random.randint(2 , n - 1 )
UpperCAmelCase = bin_exp_mod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if b != 1:
UpperCAmelCase = True
for _ in range(SCREAMING_SNAKE_CASE_ ):
if b == n - 1:
UpperCAmelCase = False
break
UpperCAmelCase = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
a__ : List[Any] = abs(int(input('Enter bound : ').strip()))
print('Here\'s the list of primes:')
print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 51 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 | 1 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int:
"""simple docstring"""
return int((input_a, input_a).count(0 ) != 0 )
def __snake_case ( ) -> None:
"""simple docstring"""
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 51 |
'''simple docstring'''
import torch
from transformers import AutoModel
class lowerCAmelCase__ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ):
super(a__ , self ).__init__()
UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ )
UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 )
UpperCAmelCase = torch.nn.Softmax(dim=1 )
def __snake_case ( self : List[Any] , **a__ : Tuple ):
return self.bert(**a__ ).last_hidden_state
def __snake_case ( self : int , a__ : List[str] ):
return token_embeddings.sum(2 , keepdim=a__ )
def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ):
return self.softmax(T * self.cos(a__ , a__ ) )
def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ):
UpperCAmelCase = W_supports['''sizes'''].tolist()
UpperCAmelCase = W_supports['''start_token_id'''].item()
UpperCAmelCase = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = W_supports['''input_ids'''] == start_token_id
UpperCAmelCase = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(a__ ):
if i == 0:
UpperCAmelCase = 0
else:
UpperCAmelCase = support_sizes[i - 1]
UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]]
UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]]
UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCAmelCase = torch.vstack((p_starts, p_start) )
UpperCAmelCase = torch.vstack((p_ends, p_end) )
else:
UpperCAmelCase = p_start
UpperCAmelCase = p_end
return p_starts, p_ends
| 51 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Any , a__ : int , a__ : int , a__ : float = 0 ):
UpperCAmelCase, UpperCAmelCase = row, column
UpperCAmelCase = [[default_value for c in range(a__ )] for r in range(a__ )]
def __str__( self : int ):
UpperCAmelCase = f"Matrix consist of {self.row} rows and {self.column} columns\n"
# Make string identifier
UpperCAmelCase = 0
for row_vector in self.array:
for obj in row_vector:
UpperCAmelCase = max(a__ , len(str(a__ ) ) )
UpperCAmelCase = f"%{max_element_length}s"
# Make string and return
def single_line(a__ : list[float] ) -> str:
nonlocal string_format_identifier
UpperCAmelCase = '''['''
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(a__ ) for row_vector in self.array )
return s
def __repr__( self : Optional[Any] ):
return str(self )
def __snake_case ( self : Dict , a__ : tuple[int, int] ):
if not (isinstance(a__ , (list, tuple) ) and len(a__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Optional[int] , a__ : tuple[int, int] ):
assert self.validate_indicies(a__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Dict , a__ : tuple[int, int] , a__ : float ):
assert self.validate_indicies(a__ )
UpperCAmelCase = value
def __add__( self : int , a__ : Matrix ):
assert isinstance(a__ , a__ )
assert self.row == another.row and self.column == another.column
# Add
UpperCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase = self[r, c] + another[r, c]
return result
def __neg__( self : List[Any] ):
UpperCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase = -self[r, c]
return result
def __sub__( self : List[str] , a__ : Matrix ):
return self + (-another)
def __mul__( self : Any , a__ : int | float | Matrix ):
if isinstance(a__ , (int, float) ): # Scalar multiplication
UpperCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase = self[r, c] * another
return result
elif isinstance(a__ , a__ ): # Matrix multiplication
assert self.column == another.row
UpperCAmelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
UpperCAmelCase = f"Unsupported type given for another ({type(a__ )})"
raise TypeError(a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase = self[r, c]
return result
def __snake_case ( self : Optional[Any] , a__ : Matrix , a__ : Matrix ):
assert isinstance(a__ , a__ ) and isinstance(a__ , a__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
UpperCAmelCase = v.transpose()
UpperCAmelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def __snake_case ( ) -> None:
"""simple docstring"""
UpperCAmelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
UpperCAmelCase = 1
print(f"a^(-1) is {ainv}" )
# u, v
UpperCAmelCase = Matrix(3 , 1 , 0 )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = 1, 2, -3
UpperCAmelCase = Matrix(3 , 1 , 0 )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = 4, -2, 5
print(f"u is {u}" )
print(f"v is {v}" )
print(f"uv^T is {u * v.transpose()}" )
# Sherman Morrison
print(f"(a + uv^T)^(-1) is {ainv.sherman_morrison(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}" )
def __snake_case ( ) -> None:
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 51 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(EulerDiscreteScheduler,)
_lowerCamelCase =10
def __snake_case ( self : str , **a__ : Tuple ):
UpperCAmelCase = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[int] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=a__ , beta_end=a__ )
def __snake_case ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a__ )
def __snake_case ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 51 | 1 |
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
a__ : Optional[Any] = TypeVar('KEY')
a__ : List[str] = TypeVar('VAL')
@dataclass(frozen=UpperCAmelCase_ , slots=UpperCAmelCase_ )
class lowerCAmelCase__ ( Generic[KEY, VAL] ):
'''simple docstring'''
_lowerCamelCase =42
_lowerCamelCase =42
class lowerCAmelCase__ ( _Item ):
'''simple docstring'''
def __init__( self : Dict ):
super().__init__(a__ , a__ )
def __bool__( self : str ):
return False
a__ : List[Any] = _DeletedItem()
class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ):
'''simple docstring'''
def __init__( self : int , a__ : int = 8 , a__ : float = 0.75 ):
UpperCAmelCase = initial_block_size
UpperCAmelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
UpperCAmelCase = capacity_factor
UpperCAmelCase = 0
def __snake_case ( self : Dict , a__ : KEY ):
return hash(a__ ) % len(self._buckets )
def __snake_case ( self : Optional[Any] , a__ : int ):
return (ind + 1) % len(self._buckets )
def __snake_case ( self : Any , a__ : int , a__ : KEY , a__ : VAL ):
UpperCAmelCase = self._buckets[ind]
if not stored:
UpperCAmelCase = _Item(a__ , a__ )
self._len += 1
return True
elif stored.key == key:
UpperCAmelCase = _Item(a__ , a__ )
return True
else:
return False
def __snake_case ( self : Tuple ):
UpperCAmelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(a__ )
def __snake_case ( self : Any ):
if len(self._buckets ) <= self._initial_block_size:
return False
UpperCAmelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __snake_case ( self : List[Any] , a__ : int ):
UpperCAmelCase = self._buckets
UpperCAmelCase = [None] * new_size
UpperCAmelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __snake_case ( self : Optional[int] ):
self._resize(len(self._buckets ) * 2 )
def __snake_case ( self : Union[str, Any] ):
self._resize(len(self._buckets ) // 2 )
def __snake_case ( self : Dict , a__ : KEY ):
UpperCAmelCase = self._get_bucket_index(a__ )
for _ in range(len(self._buckets ) ):
yield ind
UpperCAmelCase = self._get_next_ind(a__ )
def __snake_case ( self : Union[str, Any] , a__ : KEY , a__ : VAL ):
for ind in self._iterate_buckets(a__ ):
if self._try_set(a__ , a__ , a__ ):
break
def __setitem__( self : Union[str, Any] , a__ : KEY , a__ : VAL ):
if self._is_full():
self._size_up()
self._add_item(a__ , a__ )
def __delitem__( self : Optional[int] , a__ : KEY ):
for ind in self._iterate_buckets(a__ ):
UpperCAmelCase = self._buckets[ind]
if item is None:
raise KeyError(a__ )
if item is _deleted:
continue
if item.key == key:
UpperCAmelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : int , a__ : KEY ):
for ind in self._iterate_buckets(a__ ):
UpperCAmelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(a__ )
def __len__( self : str ):
return self._len
def __iter__( self : int ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ):
UpperCAmelCase = ''' ,'''.join(
f"{item.key}: {item.val}" for item in self._buckets if item )
return f"HashMap({val_string})"
| 51 |
'''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
metadata={"help": "The csv file to plot."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
_lowerCamelCase =list_field(
default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
try:
int(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
try:
float(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a__ : Optional[int] ):
UpperCAmelCase = args
UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
UpperCAmelCase = csv.DictReader(a__ )
for row in reader:
UpperCAmelCase = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
UpperCAmelCase = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
UpperCAmelCase = float(row['''result'''] )
def __snake_case ( self : Dict ):
UpperCAmelCase, UpperCAmelCase = plt.subplots()
UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage'''
UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
UpperCAmelCase = self.result_dict[model_name]['''result''']
((UpperCAmelCase), (UpperCAmelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
UpperCAmelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
UpperCAmelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , )
else:
UpperCAmelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((UpperCAmelCase), (UpperCAmelCase)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )]
plt.scatter(
a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" )
plt.plot(a__ , a__ , '''--''' )
title_str += f" {label_model_name} vs."
UpperCAmelCase = title_str[:-4]
UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(a__ )
plt.xlabel(a__ )
plt.ylabel(a__ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ )
plot.plot()
if __name__ == "__main__":
main()
| 51 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ : int = logging.get_logger(__name__)
a__ : Dict = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="roformer"
def __init__( self : Dict , a__ : Any=50000 , a__ : Union[str, Any]=None , a__ : int=768 , a__ : Dict=12 , a__ : Dict=12 , a__ : Tuple=3072 , a__ : Dict="gelu" , a__ : Union[str, Any]=0.1 , a__ : List[str]=0.1 , a__ : Any=1536 , a__ : Optional[Any]=2 , a__ : int=0.02 , a__ : Dict=1e-1_2 , a__ : Optional[int]=0 , a__ : Optional[int]=False , a__ : Dict=True , **a__ : Any , ):
super().__init__(pad_token_id=a__ , **a__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size if embedding_size is None else embedding_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = rotary_value
UpperCAmelCase = use_cache
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def __snake_case ( self : int ):
if self.task == "multiple-choice":
UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 51 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
print('''Loading config file...''' )
def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ):
UpperCAmelCase = []
for k, v in d.items():
UpperCAmelCase = parent_key + sep + k if parent_key else k
if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() )
else:
items.append((new_key, v) )
return dict(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = argparse.Namespace()
with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file:
try:
UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader )
UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ )
for k, v in flat_cfg.items():
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) )
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = MobileViTVaConfig()
UpperCAmelCase = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase = 151
UpperCAmelCase = 512
UpperCAmelCase = '''ade20k-id2label.json'''
UpperCAmelCase = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase = 21
UpperCAmelCase = 512
UpperCAmelCase = '''pascal-voc-id2label.json'''
UpperCAmelCase = True
# orig_config
UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ )
assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = val
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int:
"""simple docstring"""
if base_model:
UpperCAmelCase = ''''''
else:
UpperCAmelCase = '''mobilevitv2.'''
UpperCAmelCase = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase = k[8:]
else:
UpperCAmelCase = k
if ".block." in k:
UpperCAmelCase = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." )
for i in [1, 2]:
if f"layer_{i}." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f"layer_{i}.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if f"layer_{i}.1.local_rep.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if f"layer_{i}.1.local_rep.1." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase = [0, 1]
elif i == 4:
UpperCAmelCase = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase = [0, 1, 2]
for j in j_in:
if f"layer_{i}.1.global_rep.{j}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if f"layer_{i}.1.global_rep.{j+1}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." )
if f"layer_{i}.1.conv_proj." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(SCREAMING_SNAKE_CASE_ )
for k in keys_to_ignore:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
else:
UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
# remove and rename some keys of load the original model
UpperCAmelCase = checkpoint
remove_unused_keys(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load modified state_dict
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase = outputs.logits
UpperCAmelCase = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] )
assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task',
default='imagenet1k_256',
type=str,
help=(
'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '
'\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n '
),
choices=[
'imagenet1k_256',
'imagenet1k_384',
'imagenet21k_to_1k_256',
'imagenet21k_to_1k_384',
'ade20k_deeplabv3',
'voc_deeplabv3',
],
)
parser.add_argument(
'--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
a__ : str = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 51 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Any = logging.get_logger(__name__)
a__ : Optional[Any] = {
'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json',
# See all AltCLIP models at https://huggingface.co/models?filter=altclip
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="altclip_text_model"
def __init__( self : Any , a__ : Dict=250002 , a__ : int=1024 , a__ : Tuple=24 , a__ : Union[str, Any]=16 , a__ : List[Any]=4096 , a__ : Union[str, Any]="gelu" , a__ : Optional[Any]=0.1 , a__ : Any=0.1 , a__ : List[Any]=514 , a__ : str=1 , a__ : Tuple=0.02 , a__ : Optional[Any]=0.02 , a__ : int=1e-0_5 , a__ : str=1 , a__ : Tuple=0 , a__ : List[Any]=2 , a__ : List[str]="absolute" , a__ : Union[str, Any]=True , a__ : int=768 , **a__ : str , ):
super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = initializer_factor
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
UpperCAmelCase = project_dim
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="altclip_vision_model"
def __init__( self : Dict , a__ : Tuple=768 , a__ : Dict=3072 , a__ : Any=512 , a__ : Any=12 , a__ : List[Any]=12 , a__ : int=3 , a__ : Dict=224 , a__ : Any=32 , a__ : Tuple="quick_gelu" , a__ : Tuple=1e-5 , a__ : Optional[int]=0.0 , a__ : List[Any]=0.02 , a__ : List[Any]=1.0 , **a__ : Dict , ):
super().__init__(**a__ )
UpperCAmelCase = hidden_size
UpperCAmelCase = intermediate_size
UpperCAmelCase = projection_dim
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = image_size
UpperCAmelCase = initializer_range
UpperCAmelCase = initializer_factor
UpperCAmelCase = attention_dropout
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = hidden_act
@classmethod
def __snake_case ( cls : Tuple , a__ : Union[str, os.PathLike] , **a__ : Optional[int] ):
cls._set_token_in_kwargs(a__ )
UpperCAmelCase, UpperCAmelCase = cls.get_config_dict(a__ , **a__ )
# get the vision config dict if we are loading from AltCLIPConfig
if config_dict.get('''model_type''' ) == "altclip":
UpperCAmelCase = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a__ , **a__ )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="altclip"
_lowerCamelCase =True
def __init__( self : Optional[Any] , a__ : List[Any]=None , a__ : Any=None , a__ : Optional[Any]=768 , a__ : List[Any]=2.6_592 , **a__ : str ):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
UpperCAmelCase = kwargs.pop('''text_config_dict''' , a__ )
UpperCAmelCase = kwargs.pop('''vision_config_dict''' , a__ )
super().__init__(**a__ )
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
UpperCAmelCase = {}
# This is the complete result when using `text_config_dict`.
UpperCAmelCase = AltCLIPTextConfig(**a__ ).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
UpperCAmelCase = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f"The value `text_config_dict[\"{key}\"]` will be used instead."
)
# If inferred from default argument values (just to be super careful)
else:
UpperCAmelCase = (
f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The "
f"value `text_config[\"{key}\"]` will be overriden."
)
logger.warning(a__ )
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict )
if vision_config_dict is not None:
if vision_config is None:
UpperCAmelCase = {}
# This is the complete result when using `vision_config_dict`.
UpperCAmelCase = AltCLIPVisionConfig(**a__ ).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
UpperCAmelCase = {
str(a__ ): value for key, value in _vision_config_dict['''id2label'''].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
UpperCAmelCase = (
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
f"values. The value `vision_config_dict[\"{key}\"]` will be used instead."
)
# If inferred from default argument values (just to be super careful)
else:
UpperCAmelCase = (
f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. "
f"The value `vision_config[\"{key}\"]` will be overriden."
)
logger.warning(a__ )
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict )
if text_config is None:
UpperCAmelCase = {}
logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' )
if vision_config is None:
UpperCAmelCase = {}
logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' )
UpperCAmelCase = AltCLIPTextConfig(**a__ )
UpperCAmelCase = AltCLIPVisionConfig(**a__ )
UpperCAmelCase = projection_dim
UpperCAmelCase = logit_scale_init_value
UpperCAmelCase = 1.0
@classmethod
def __snake_case ( cls : int , a__ : AltCLIPTextConfig , a__ : AltCLIPVisionConfig , **a__ : Any ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a__ )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = copy.deepcopy(self.__dict__ )
UpperCAmelCase = self.text_config.to_dict()
UpperCAmelCase = self.vision_config.to_dict()
UpperCAmelCase = self.__class__.model_type
return output
| 51 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[int] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="megatron-bert"
def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ):
super().__init__(pad_token_id=a__ , **a__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
| 51 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : int ):
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = BlipImageProcessor()
UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' )
UpperCAmelCase = BlipProcessor(a__ , a__ )
processor.save_pretrained(self.tmpdirname )
def __snake_case ( self : Dict , **a__ : Dict ):
return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).tokenizer
def __snake_case ( self : Dict , **a__ : List[str] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor
def __snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def __snake_case ( self : Tuple ):
UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
UpperCAmelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __snake_case ( self : List[str] ):
UpperCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
UpperCAmelCase = self.get_image_processor(do_normalize=a__ , padding_value=1.0 )
UpperCAmelCase = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=a__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , a__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ )
UpperCAmelCase = self.prepare_image_inputs()
UpperCAmelCase = image_processor(a__ , return_tensors='''np''' )
UpperCAmelCase = processor(images=a__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __snake_case ( self : Any ):
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ )
UpperCAmelCase = '''lower newer'''
UpperCAmelCase = processor(text=a__ )
UpperCAmelCase = tokenizer(a__ , return_token_type_ids=a__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __snake_case ( self : str ):
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ )
UpperCAmelCase = '''lower newer'''
UpperCAmelCase = self.prepare_image_inputs()
UpperCAmelCase = processor(text=a__ , images=a__ )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
# test if it raises when no input is passed
with pytest.raises(a__ ):
processor()
def __snake_case ( self : List[str] ):
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ )
UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase = processor.batch_decode(a__ )
UpperCAmelCase = tokenizer.batch_decode(a__ )
self.assertListEqual(a__ , a__ )
def __snake_case ( self : int ):
UpperCAmelCase = self.get_image_processor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ )
UpperCAmelCase = '''lower newer'''
UpperCAmelCase = self.prepare_image_inputs()
UpperCAmelCase = processor(text=a__ , images=a__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
| 51 |
'''simple docstring'''
from __future__ import annotations
a__ : List[str] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ):
UpperCAmelCase = graph
# mapping node to its parent in resulting breadth first tree
UpperCAmelCase = {}
UpperCAmelCase = source_vertex
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = {self.source_vertex}
UpperCAmelCase = None
UpperCAmelCase = [self.source_vertex] # first in first out queue
while queue:
UpperCAmelCase = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(a__ )
UpperCAmelCase = vertex
queue.append(a__ )
def __snake_case ( self : Any , a__ : str ):
if target_vertex == self.source_vertex:
return self.source_vertex
UpperCAmelCase = self.parent.get(a__ )
if target_vertex_parent is None:
UpperCAmelCase = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(a__ )
return self.shortest_path(a__ ) + f"->{target_vertex}"
if __name__ == "__main__":
a__ : Tuple = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 51 | 1 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : list ) -> int:
"""simple docstring"""
if not grid or not grid[0]:
raise TypeError('''The grid does not contain the appropriate information''' )
for cell_n in range(1 , len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
UpperCAmelCase = grid[0]
for row_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ):
UpperCAmelCase = grid[row_n]
UpperCAmelCase = fill_row(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = grid[row_n]
return grid[-1][-1]
def __snake_case ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ) -> list:
"""simple docstring"""
current_row[0] += row_above[0]
for cell_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ):
current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
'''simple docstring'''
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 51 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Any = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 1 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(""">=""", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
SCREAMING_SNAKE_CASE__ : List[Any] = get_logger(__name__)
def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case=0 ):
"""simple docstring"""
os.makedirs(snake_case, exist_ok=snake_case )
with FSDP.state_dict_type(
snake_case, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
__magic_name__ :Tuple = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__magic_name__ :List[Any] = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin'''
__magic_name__ :int = os.path.join(snake_case, snake_case )
if accelerator.process_index == 0:
logger.info(f'''Saving model to {output_model_file}''' )
torch.save(snake_case, snake_case )
logger.info(f'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__magic_name__ :Optional[int] = (
f'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
__magic_name__ :List[Any] = os.path.join(snake_case, snake_case )
logger.info(f'''Saving model to {output_model_file}''' )
torch.save(snake_case, snake_case )
logger.info(f'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__magic_name__ :Optional[Any] = os.path.join(snake_case, f'''{MODEL_NAME}_{model_index}''' )
os.makedirs(snake_case, exist_ok=snake_case )
logger.info(f'''Saving model to {ckpt_dir}''' )
__magic_name__ :List[Any] = {'''model''': state_dict}
dist_cp.save_state_dict(
state_dict=snake_case, storage_writer=dist_cp.FileSystemWriter(snake_case ), planner=DefaultSavePlanner(), )
logger.info(f'''Model saved to {ckpt_dir}''' )
def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case=0 ):
"""simple docstring"""
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
snake_case, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(snake_case ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'''Set the `sync_module_states` flag to `True` so that model states are synced across processes when '''
'''initializing FSDP object''' )
return
__magic_name__ :List[Any] = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin'''
__magic_name__ :Any = os.path.join(snake_case, snake_case )
logger.info(f'''Loading model from {input_model_file}''' )
__magic_name__ :Any = torch.load(snake_case )
logger.info(f'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__magic_name__ :Union[str, Any] = (
f'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
__magic_name__ :Tuple = os.path.join(snake_case, snake_case )
logger.info(f'''Loading model from {input_model_file}''' )
__magic_name__ :List[Any] = torch.load(snake_case )
logger.info(f'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__magic_name__ :Tuple = (
os.path.join(snake_case, f'''{MODEL_NAME}_{model_index}''' )
if f'''{MODEL_NAME}''' not in input_dir
else input_dir
)
logger.info(f'''Loading model from {ckpt_dir}''' )
__magic_name__ :Any = {'''model''': model.state_dict()}
dist_cp.load_state_dict(
state_dict=snake_case, storage_reader=dist_cp.FileSystemReader(snake_case ), planner=DefaultLoadPlanner(), )
__magic_name__ :Any = state_dict['''model''']
logger.info(f'''Model loaded from {ckpt_dir}''' )
model.load_state_dict(snake_case )
def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case, snake_case=0 ):
"""simple docstring"""
os.makedirs(snake_case, exist_ok=snake_case )
with FSDP.state_dict_type(
snake_case, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
__magic_name__ :List[Any] = FSDP.optim_state_dict(snake_case, snake_case )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
__magic_name__ :Optional[int] = (
f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
__magic_name__ :str = os.path.join(snake_case, snake_case )
logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' )
torch.save(snake_case, snake_case )
logger.info(f'''Optimizer state saved in {output_optimizer_file}''' )
else:
__magic_name__ :Tuple = os.path.join(snake_case, f'''{OPTIMIZER_NAME}_{optimizer_index}''' )
os.makedirs(snake_case, exist_ok=snake_case )
logger.info(f'''Saving Optimizer state to {ckpt_dir}''' )
dist_cp.save_state_dict(
state_dict={'''optimizer''': optim_state}, storage_writer=dist_cp.FileSystemWriter(snake_case ), planner=DefaultSavePlanner(), )
logger.info(f'''Optimizer state saved in {ckpt_dir}''' )
def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case, snake_case=0 ):
"""simple docstring"""
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
snake_case, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__magic_name__ :Tuple = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
__magic_name__ :Optional[Any] = (
f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
__magic_name__ :str = os.path.join(snake_case, snake_case )
logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' )
__magic_name__ :Optional[int] = torch.load(snake_case )
logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' )
else:
__magic_name__ :Tuple = (
os.path.join(snake_case, f'''{OPTIMIZER_NAME}_{optimizer_index}''' )
if f'''{OPTIMIZER_NAME}''' not in input_dir
else input_dir
)
logger.info(f'''Loading Optimizer from {ckpt_dir}''' )
__magic_name__ :List[str] = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict(), optimizer_key='''optimizer''', storage_reader=dist_cp.FileSystemReader(snake_case ), )
__magic_name__ :str = optim_state['''optimizer''']
logger.info(f'''Optimizer loaded from {ckpt_dir}''' )
__magic_name__ :Tuple = FSDP.optim_state_dict_to_load(snake_case, snake_case, snake_case )
optimizer.load_state_dict(snake_case )
| 0 |
'''simple docstring'''
from math import factorial
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int:
"""simple docstring"""
return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 51 | 0 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() )
@pytest.fixture
def _A ( _lowercase ) -> int:
"""simple docstring"""
class __lowerCamelCase :
def __init__( self: Optional[Any],A_: Tuple ):
'''simple docstring'''
__UpperCamelCase = metric_id
class __lowerCamelCase :
_lowercase = [MetricMock(_a ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]]
def snake_case_ ( self: Any ):
'''simple docstring'''
return self._metrics
monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() )
@pytest.mark.parametrize(
'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str:
"""simple docstring"""
if "tmp_path" in args:
__UpperCamelCase = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args )
with pytest.warns(_lowercase , match='https://huggingface.co/docs/evaluate' ):
func(*_lowercase )
| 1 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =StableUnCLIPPipeline
_lowerCamelCase =TEXT_TO_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_lowerCamelCase =False
def __snake_case ( self : str ):
UpperCAmelCase = 32
UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , )
torch.manual_seed(0 )
UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ )
UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , )
torch.manual_seed(0 )
UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL()
UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __snake_case ( self : List[Any] ):
UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=a__ )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' )
UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(a__ , a__ )
def __snake_case ( self : str ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 51 | 0 |
import logging
import os
from .state import PartialState
class lowerCamelCase__ ( logging.LoggerAdapter):
"""simple docstring"""
@staticmethod
def snake_case_ ( __lowerCAmelCase : Optional[int] ) -> Dict:
_A = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def snake_case_ ( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , *__lowerCAmelCase : str , **__lowerCAmelCase : Any ) -> str:
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_A = kwargs.pop('''main_process_only''' , __lowerCAmelCase )
_A = kwargs.pop('''in_order''' , __lowerCAmelCase )
if self.isEnabledFor(__lowerCAmelCase ):
if self._should_log(__lowerCAmelCase ):
_A , _A = self.process(__lowerCAmelCase , __lowerCAmelCase )
self.logger.log(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase )
elif in_order:
_A = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_A , _A = self.process(__lowerCAmelCase , __lowerCAmelCase )
self.logger.log(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase )
state.wait_for_everyone()
def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str = None ) -> int:
if log_level is None:
_A = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _snake_case )
_A = logging.getLogger(_snake_case )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_snake_case , {} )
| 2 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict:
"""simple docstring"""
if not head:
return True
# split the list to two parts
UpperCAmelCase, UpperCAmelCase = head.next, head
while fast and fast.next:
UpperCAmelCase = fast.next.next
UpperCAmelCase = slow.next
UpperCAmelCase = slow.next
UpperCAmelCase = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase = None
while second:
UpperCAmelCase = second.next
UpperCAmelCase = node
UpperCAmelCase = second
UpperCAmelCase = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase = node.next
UpperCAmelCase = head.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]:
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head
while fast and fast.next:
UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase = [slow.val]
while slow.next:
UpperCAmelCase = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase = cur.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
"""simple docstring"""
if not head or not head.next:
return True
UpperCAmelCase = {}
UpperCAmelCase = 0
while head:
if head.val in d:
d[head.val].append(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = [pos]
UpperCAmelCase = head.next
pos += 1
UpperCAmelCase = pos - 1
UpperCAmelCase = 0
for v in d.values():
if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase = 0
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 51 | 0 |
'''simple docstring'''
from random import shuffle
import tensorflow as tf
from numpy import array
def A_( A : Any , A : List[Any]):
UpperCamelCase = int(A)
assert noofclusters < len(A)
# Find out the dimensionality
UpperCamelCase = len(vectors[0])
# Will help select random centroids from among the available vectors
UpperCamelCase = list(range(len(A)))
shuffle(A)
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
UpperCamelCase = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
UpperCamelCase = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
UpperCamelCase = [
tf.Variable(vectors[vector_indices[i]]) for i in range(A)
]
##These nodes will assign the centroid Variables the appropriate
##values
UpperCamelCase = tf.placeholder('float64' , [dim])
UpperCamelCase = []
for centroid in centroids:
cent_assigns.append(tf.assign(A , A))
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
UpperCamelCase = [tf.Variable(0) for i in range(len(A))]
##These nodes will assign an assignment Variable the appropriate
##value
UpperCamelCase = tf.placeholder('int32')
UpperCamelCase = []
for assignment in assignments:
cluster_assigns.append(tf.assign(A , A))
##Now lets construct the node that will compute the mean
# The placeholder for the input
UpperCamelCase = tf.placeholder('float' , [None, dim])
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
UpperCamelCase = tf.reduce_mean(A , 0)
##Node for computing Euclidean distances
# Placeholders for input
UpperCamelCase = tf.placeholder('float' , [dim])
UpperCamelCase = tf.placeholder('float' , [dim])
UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A , A) , 2)))
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
UpperCamelCase = tf.placeholder('float' , [noofclusters])
UpperCamelCase = tf.argmin(A , 0)
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
UpperCamelCase = tf.initialize_all_variables()
# Initialize all variables
sess.run(A)
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
UpperCamelCase = 100
for _ in range(A):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(A)):
UpperCamelCase = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
UpperCamelCase = [
sess.run(A , feed_dict={va: vect, va: sess.run(A)})
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
UpperCamelCase = sess.run(
A , feed_dict={centroid_distances: distances})
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment})
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(A):
# Collect all the vectors assigned to this cluster
UpperCamelCase = [
vectors[i]
for i in range(len(A))
if sess.run(assignments[i]) == cluster_n
]
# Compute new centroid location
UpperCamelCase = sess.run(
A , feed_dict={mean_input: array(A)})
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location})
# Return centroids and assignments
UpperCamelCase = sess.run(A)
UpperCamelCase = sess.run(A)
return centroids, assignments
| 3 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __snake_case ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , )
return self.image_processor_class
@property
def __snake_case ( self : List[Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , )
return self.image_processor
| 51 | 0 |
"""simple docstring"""
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
__UpperCamelCase : Tuple = yaml.safe_load(
'''\
name: ""
allow_empty: false
allow_empty_text: true
subsections:
- name: "Dataset Card for X" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: "Table of Contents"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Dataset Description"
allow_empty: false
allow_empty_text: false
subsections:
- name: "Dataset Summary"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Supported Tasks and Leaderboards"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: false
allow_empty_text: true
subsections: null
'''
)
__UpperCamelCase : Union[str, Any] = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
__UpperCamelCase : Dict = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
__UpperCamelCase : List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
#### Extra Ignored Subsection
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
__UpperCamelCase : Any = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Extra Ignored Subsection''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
}
],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
__UpperCamelCase : int = '''\
---
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
__UpperCamelCase : Dict = (
'''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'''
)
__UpperCamelCase : int = '''\
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
__UpperCamelCase : int = (
'''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'''
)
__UpperCamelCase : Tuple = '''\
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
__UpperCamelCase : int = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'''
__UpperCamelCase : List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
__UpperCamelCase : Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'''
__UpperCamelCase : int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
'''
__UpperCamelCase : Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'''
__UpperCamelCase : Any = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Languages
Language Text
'''
__UpperCamelCase : Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'''
__UpperCamelCase : Optional[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
'''
__UpperCamelCase : int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'''
__UpperCamelCase : str = '''\
---
language:
- zh
- en
---
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
__UpperCamelCase : str = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'''
__UpperCamelCase : Optional[int] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
# Dataset Card My Dataset
'''
__UpperCamelCase : Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'''
__UpperCamelCase : str = '''\
---
language:
- zh
- en
---
# Dataset Card My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
__UpperCamelCase : List[Any] = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'''
__UpperCamelCase : Tuple = ''''''
__UpperCamelCase : Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'''
__UpperCamelCase : List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
__UpperCamelCase : Optional[Any] = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'''
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ):
assert ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase ).to_dict() == expected_dict
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
with pytest.raises(_UpperCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
lowerCAmelCase = ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ):
with pytest.raises(_UpperCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ):
ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
ReadMe.from_string(_UpperCAmelCase , _UpperCAmelCase , suppress_parsing_errors=_UpperCAmelCase )
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ):
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase = Path(_UpperCAmelCase ) / 'README.md'
with open(_UpperCAmelCase , 'w+' ) as readme_file:
readme_file.write(_UpperCAmelCase )
lowerCAmelCase = ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : int ):
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase = Path(_UpperCAmelCase ) / 'README.md'
with open(_UpperCAmelCase , 'w+' ) as readme_file:
readme_file.write(_UpperCAmelCase )
lowerCAmelCase = expected_error.format(path=_UpperCAmelCase )
with pytest.raises(_UpperCAmelCase , match=re.escape(_UpperCAmelCase ) ):
lowerCAmelCase = ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Any ):
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase = Path(_UpperCAmelCase ) / 'README.md'
with open(_UpperCAmelCase , 'w+' ) as readme_file:
readme_file.write(_UpperCAmelCase )
lowerCAmelCase = expected_error.format(path=_UpperCAmelCase )
with pytest.raises(_UpperCAmelCase , match=re.escape(_UpperCAmelCase ) ):
ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] ):
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase = Path(_UpperCAmelCase ) / 'README.md'
with open(_UpperCAmelCase , 'w+' ) as readme_file:
readme_file.write(_UpperCAmelCase )
ReadMe.from_readme(_UpperCAmelCase , _UpperCAmelCase , suppress_parsing_errors=_UpperCAmelCase )
| 4 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =XGLMTokenizer
_lowerCamelCase =XGLMTokenizerFast
_lowerCamelCase =True
_lowerCamelCase =True
def __snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = '''<pad>'''
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(a__ ) , 1008 )
def __snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __snake_case ( self : Optional[Any] ):
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def __snake_case ( self : Optional[int] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(a__ , f.name )
UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ )
UpperCAmelCase = pickle.dumps(a__ )
pickle.loads(a__ )
def __snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase = tokenizer.tokenize(a__ )
UpperCAmelCase = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = tokenizer.encode(a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
@slow
def __snake_case ( self : int ):
UpperCAmelCase = '''Hello World!'''
UpperCAmelCase = [2, 31227, 4447, 35]
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : List[str] ):
UpperCAmelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : Any ):
# fmt: off
UpperCAmelCase = {
'''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
| 51 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""",
# See all SEW models at https://huggingface.co/models?filter=sew
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : Optional[int] = '''sew'''
def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase=2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=0 , _lowercase=1 , _lowercase=2 , **_lowercase , ):
"""simple docstring"""
super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = feat_extract_norm
_lowerCAmelCase = feat_extract_activation
_lowerCAmelCase = list(_lowercase )
_lowerCAmelCase = list(_lowercase )
_lowerCAmelCase = list(_lowercase )
_lowerCAmelCase = conv_bias
_lowerCAmelCase = num_conv_pos_embeddings
_lowerCAmelCase = num_conv_pos_embedding_groups
_lowerCAmelCase = len(self.conv_dim )
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = squeeze_factor
_lowerCAmelCase = hidden_act
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = feat_proj_dropout
_lowerCAmelCase = final_dropout
_lowerCAmelCase = layerdrop
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect."""
"""It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"""
F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCAmelCase = apply_spec_augment
_lowerCAmelCase = mask_time_prob
_lowerCAmelCase = mask_time_length
_lowerCAmelCase = mask_time_min_masks
_lowerCAmelCase = mask_feature_prob
_lowerCAmelCase = mask_feature_length
_lowerCAmelCase = mask_feature_min_masks
# ctc loss
_lowerCAmelCase = ctc_loss_reduction
_lowerCAmelCase = ctc_zero_infinity
# sequence classification
_lowerCAmelCase = use_weighted_layer_sum
_lowerCAmelCase = classifier_proj_size
@property
def _lowercase ( self ):
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 5 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a__ : str = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig:
"""simple docstring"""
UpperCAmelCase = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase = 192
UpperCAmelCase = 768
UpperCAmelCase = 12
UpperCAmelCase = 3
UpperCAmelCase = [800, 1_333]
UpperCAmelCase = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = 330
UpperCAmelCase = 14
UpperCAmelCase = 6
UpperCAmelCase = 1_320
elif "yolos_s" in yolos_name:
UpperCAmelCase = 384
UpperCAmelCase = 1_536
UpperCAmelCase = 12
UpperCAmelCase = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase = [800, 1_344]
UpperCAmelCase = 91
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''coco-detection-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase = in_proj_bias[: config.hidden_size]
UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
if "backbone" in name:
UpperCAmelCase = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[2] )
UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[
dim : dim * 2, :
]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def __snake_case ( ) -> torch.Tensor:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model''']
# load 🤗 model
UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512
UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes
UpperCAmelCase, UpperCAmelCase = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
UpperCAmelCase = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
UpperCAmelCase = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
UpperCAmelCase = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
UpperCAmelCase = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
UpperCAmelCase = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
UpperCAmelCase = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
UpperCAmelCase = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
UpperCAmelCase = model_mapping[yolos_name]
image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
if __name__ == "__main__":
a__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a__ : Optional[Any] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 51 | 0 |
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
return 1 / (1 + np.exp(-z ))
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Tuple ):
return (-y * np.log(UpperCamelCase__ ) - (1 - y) * np.log(1 - h )).mean()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Tuple ):
SCREAMING_SNAKE_CASE__ = np.dot(UpperCamelCase__ , UpperCamelCase__ )
return np.sum(y * scores - np.log(1 + np.exp(UpperCamelCase__ ) ) )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any]=70_000 ):
SCREAMING_SNAKE_CASE__ = np.zeros(x.shape[1] )
for iterations in range(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = np.dot(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = sigmoid_function(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = np.dot(x.T , h - y ) / y.size
SCREAMING_SNAKE_CASE__ = theta - alpha * gradient # updating the weights
SCREAMING_SNAKE_CASE__ = np.dot(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = sigmoid_function(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cost_function(UpperCamelCase__ , UpperCamelCase__ )
if iterations % 100 == 0:
print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
_lowerCamelCase = datasets.load_iris()
_lowerCamelCase = iris.data[:, :2]
_lowerCamelCase = (iris.target != 0) * 1
_lowerCamelCase = 0.1
_lowerCamelCase = logistic_reg(alpha, x, y, max_iterations=70000)
print('theta: ', theta) # printing the theta i.e our weights vector
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
return sigmoid_function(
np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1')
((_lowerCamelCase) , (_lowerCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((_lowerCamelCase) , (_lowerCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((_lowerCamelCase) , (_lowerCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
_lowerCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
_lowerCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black')
plt.legend()
plt.show()
| 6 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a__ : List[Any] = logging.get_logger(__name__)
a__ : int = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
a__ : Any = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
a__ : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="whisper"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ):
UpperCAmelCase = vocab_size
UpperCAmelCase = num_mel_bins
UpperCAmelCase = d_model
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(a__ , direction='''inputs''' )
return common_inputs
def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ):
UpperCAmelCase = OrderedDict()
UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , )
UpperCAmelCase = encoder_inputs['''input_features'''].shape[2]
UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , a__ , a__ , a__ , a__ )
UpperCAmelCase = encoder_inputs.pop('''input_features''' )
UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
UpperCAmelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def __snake_case ( self : Dict ):
return 1e-3
| 51 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''',
# See all ViT models at https://huggingface.co/models?filter=vit
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''vit'''
def __init__( self : Dict , _UpperCAmelCase : Dict=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=3_072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=16 , **_UpperCAmelCase : List[Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = encoder_stride
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = version.parse('''1.11''' )
@property
def lowerCAmelCase_ ( self : int ):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def lowerCAmelCase_ ( self : int ):
return 1E-4
| 7 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =LEDConfig
_lowerCamelCase ={}
_lowerCamelCase ="gelu"
def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = eos_token_id
UpperCAmelCase = pad_token_id
UpperCAmelCase = bos_token_id
UpperCAmelCase = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ )
UpperCAmelCase = tf.concat(
[tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , )
UpperCAmelCase = global_attention_mask
return config, inputs_dict
def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ):
UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder()
UpperCAmelCase = inputs_dict['''input_ids''']
UpperCAmelCase = input_ids[:1, :]
UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase = 1
# first forward pass
UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ )
UpperCAmelCase, UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase = model(a__ , attention_mask=a__ )[0]
UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(a__ , a__ , rtol=1e-3 )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase =(
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = TFLEDModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ )
def __snake_case ( self : int ):
self.config_tester.run_common_tests()
def __snake_case ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] )
UpperCAmelCase = 2
UpperCAmelCase = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
UpperCAmelCase = True
UpperCAmelCase = self.model_tester.seq_length
UpperCAmelCase = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(a__ : Tuple ):
UpperCAmelCase = outputs.decoder_attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(a__ : int ):
UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = len(a__ )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
if self.is_encoder_decoder:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_decoder_attentions_output(a__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) )
self.assertEqual(model.config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def __snake_case ( self : Any ):
pass
def __snake_case ( self : Union[str, Any] ):
# TODO: Head-masking not yet implement
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple:
"""simple docstring"""
return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa )
a__ : int = 1e-4
@slow
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, 768)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 )
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
| 51 | 0 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = ['''image_processor''', '''tokenizer''']
lowerCAmelCase = '''AutoImageProcessor'''
lowerCAmelCase = '''AutoTokenizer'''
def __init__( self , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
super().__init__(_UpperCAmelCase , _UpperCAmelCase)
__A : Optional[Any] = self.image_processor
def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase):
'''simple docstring'''
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.')
if text is not None:
__A : int = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase)
if images is not None:
__A : List[Any] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase)
if text is not None and images is not None:
__A : int = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase) , tensor_type=_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase):
'''simple docstring'''
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase):
'''simple docstring'''
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase)
@property
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
'''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMAEForPreTraining''',
'''ViTMAELayer''',
'''ViTMAEModel''',
'''ViTMAEPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
'''TFViTMAEForPreTraining''',
'''TFViTMAEModel''',
'''TFViTMAEPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 9 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a__ : List[Any] = 'sshleifer/mar_enro_6_3_student'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Dict ):
super().setUp()
UpperCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , )
UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def __snake_case ( self : Optional[int] ):
MarianMTModel.from_pretrained(a__ )
@slow
@require_torch_gpu
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __snake_case ( self : Any ):
UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
UpperCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
UpperCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' )
UpperCAmelCase = 6
UpperCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
'''--gpus=1''',
'''--learning_rate=1e-3''',
f"--num_train_epochs={epochs}",
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
UpperCAmelCase = distill_main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 51 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"openai/imagegpt-small": "",
"openai/imagegpt-medium": "",
"openai/imagegpt-large": "",
}
class lowerCAmelCase_ ( __lowercase ):
UpperCAmelCase = "imagegpt"
UpperCAmelCase = ["past_key_values"]
UpperCAmelCase = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : int , _A : Any=512 + 1 , _A : Tuple=32 * 32 , _A : Union[str, Any]=512 , _A : Union[str, Any]=24 , _A : Dict=8 , _A : List[str]=None , _A : List[Any]="quick_gelu" , _A : int=0.1 , _A : Optional[Any]=0.1 , _A : int=0.1 , _A : int=1e-5 , _A : List[str]=0.02 , _A : Optional[Any]=True , _A : List[str]=True , _A : Any=False , _A : Optional[Any]=False , _A : List[str]=False , **_A : Any , ):
_UpperCamelCase = vocab_size
_UpperCamelCase = n_positions
_UpperCamelCase = n_embd
_UpperCamelCase = n_layer
_UpperCamelCase = n_head
_UpperCamelCase = n_inner
_UpperCamelCase = activation_function
_UpperCamelCase = resid_pdrop
_UpperCamelCase = embd_pdrop
_UpperCamelCase = attn_pdrop
_UpperCamelCase = layer_norm_epsilon
_UpperCamelCase = initializer_range
_UpperCamelCase = scale_attn_weights
_UpperCamelCase = use_cache
_UpperCamelCase = scale_attn_by_inverse_layer_idx
_UpperCamelCase = reorder_and_upcast_attn
_UpperCamelCase = tie_word_embeddings
super().__init__(tie_word_embeddings=_A , **_A )
class lowerCAmelCase_ ( __lowercase ):
@property
def UpperCamelCase_ ( self : List[str] ):
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
] )
def UpperCamelCase_ ( self : Any , _A : "FeatureExtractionMixin" , _A : int = 1 , _A : int = -1 , _A : bool = False , _A : Optional["TensorType"] = None , _A : int = 3 , _A : int = 32 , _A : int = 32 , ):
_UpperCamelCase = self._generate_dummy_images(_A , _A , _A , _A )
_UpperCamelCase = dict(preprocessor(images=_A , return_tensors=_A ) )
return inputs
| 10 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 51 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["DeiTFeatureExtractor"]
lowercase_ = ["DeiTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
"DeiTForImageClassificationWithTeacher",
"DeiTForMaskedImageModeling",
"DeiTModel",
"DeiTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 11 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 | 0 |
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
lowercase__ : int = credit_card_number
lowercase__ : Dict = 0
lowercase__ : Dict = len(lowercase_ ) - 2
for i in range(lowercase_ , -1 , -2 ):
# double the value of every second digit
lowercase__ : str = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
lowercase__ : Optional[int] = cc_number[:i] + str(lowercase_ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(lowercase_ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def UpperCamelCase ( lowercase_ ) -> bool:
'''simple docstring'''
lowercase__ : str = F'{credit_card_number} is an invalid credit card number because'
if not credit_card_number.isdigit():
print(F'{error_message} it has nonnumerical characters.' )
return False
if not 13 <= len(lowercase_ ) <= 16:
print(F'{error_message} of its length.' )
return False
if not validate_initial_digits(lowercase_ ):
print(F'{error_message} of its first two digits.' )
return False
if not luhn_validation(lowercase_ ):
print(F'{error_message} it fails the Luhn check.' )
return False
print(F'{credit_card_number} is a valid credit card number.' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 12 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ):
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str:
"""simple docstring"""
UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict:
"""simple docstring"""
UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ):
UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __snake_case ( self : int , a__ : Dict , a__ : Tuple ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def __snake_case ( self : str ):
pass
@slow
@require_torch
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871}
] , )
# fmt: on
@require_torch
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = '''facebook/sam-vit-huge'''
UpperCAmelCase = pipeline('''mask-generation''' , model=a__ )
UpperCAmelCase = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
] , )
| 51 | 0 |
'''simple docstring'''
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
A__ : Union[str, Any] = logging.get_logger(__name__)
A__ : Union[str, Any] = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ) -> Union[str, Any]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' )
if tokenizer_name is None:
__lowerCamelCase : List[str] = TOKENIZER_CLASSES
else:
__lowerCamelCase : List[Any] = {tokenizer_name: getattr(UpperCAmelCase_ , tokenizer_name + 'Fast' )}
logger.info(F'Loading tokenizer classes: {tokenizer_names}' )
for tokenizer_name in tokenizer_names:
__lowerCamelCase : Dict = TOKENIZER_CLASSES[tokenizer_name]
__lowerCamelCase : Optional[Any] = True
if checkpoint_name is None:
__lowerCamelCase : Dict = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowerCamelCase : int = [checkpoint_name]
logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' )
for checkpoint in checkpoint_names:
logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' )
# Load tokenizer
__lowerCamelCase : Any = tokenizer_class.from_pretrained(UpperCAmelCase_ , force_download=UpperCAmelCase_ )
# Save fast tokenizer
logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowerCamelCase , __lowerCamelCase : Dict = checkpoint.split('/' )
__lowerCamelCase : List[Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
elif add_prefix:
__lowerCamelCase : int = checkpoint
__lowerCamelCase : Tuple = dump_path
else:
__lowerCamelCase : List[str] = None
__lowerCamelCase : str = dump_path
logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowerCamelCase : Any = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowerCamelCase : List[Any] = file_path.split(UpperCAmelCase_ )[-1][0]
if next_char == "/":
__lowerCamelCase : Tuple = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = None
logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' )
__lowerCamelCase : Union[str, Any] = tokenizer.save_pretrained(
UpperCAmelCase_ , legacy_format=UpperCAmelCase_ , filename_prefix=UpperCAmelCase_ )
logger.info(F'=> File names {file_names}' )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(UpperCAmelCase_ )
logger.info(F'=> removing {file_name}' )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
A__ : List[str] = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 13 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 | 0 |
def __UpperCAmelCase ( __a : int ) -> str:
"""simple docstring"""
_a : List[str] = int(__a )
if decimal in (0, 1): # Exit cases for the recursion
return str(__a )
_a , _a : List[Any] = divmod(__a ,2 )
return binary_recursive(__a ) + str(__a )
def __UpperCAmelCase ( __a : str ) -> str:
"""simple docstring"""
_a : Union[str, Any] = str(__a ).strip()
if not number:
raise ValueError('''No input value was provided''' )
_a : List[Any] = '''-''' if number.startswith('''-''' ) else ''''''
_a : Union[str, Any] = number.lstrip('''-''' )
if not number.isnumeric():
raise ValueError('''Input value is not an integer''' )
return F"""{negative}0b{binary_recursive(int(__a ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 |
'''simple docstring'''
import torch
from transformers import AutoModel
class lowerCAmelCase__ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ):
super(a__ , self ).__init__()
UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ )
UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 )
UpperCAmelCase = torch.nn.Softmax(dim=1 )
def __snake_case ( self : List[Any] , **a__ : Tuple ):
return self.bert(**a__ ).last_hidden_state
def __snake_case ( self : int , a__ : List[str] ):
return token_embeddings.sum(2 , keepdim=a__ )
def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ):
return self.softmax(T * self.cos(a__ , a__ ) )
def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ):
UpperCAmelCase = W_supports['''sizes'''].tolist()
UpperCAmelCase = W_supports['''start_token_id'''].item()
UpperCAmelCase = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = W_supports['''input_ids'''] == start_token_id
UpperCAmelCase = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(a__ ):
if i == 0:
UpperCAmelCase = 0
else:
UpperCAmelCase = support_sizes[i - 1]
UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]]
UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]]
UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCAmelCase = torch.vstack((p_starts, p_start) )
UpperCAmelCase = torch.vstack((p_ends, p_end) )
else:
UpperCAmelCase = p_start
UpperCAmelCase = p_end
return p_starts, p_ends
| 51 | 0 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
A : Optional[Any] = logging.get_logger(__name__)
A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
A : Any = {
'vocab_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Dict = {
'vocab_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : Optional[int] = {
'vocab_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'
),
},
}
A : int = {
'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2,
'facebook/dpr-ctx_encoder-multiset-base': 5_1_2,
}
A : Optional[Any] = {
'facebook/dpr-question_encoder-single-nq-base': 5_1_2,
'facebook/dpr-question_encoder-multiset-base': 5_1_2,
}
A : Any = {
'facebook/dpr-reader-single-nq-base': 5_1_2,
'facebook/dpr-reader-multiset-base': 5_1_2,
}
A : Union[str, Any] = {
'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True},
}
A : Tuple = {
'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True},
'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True},
}
A : Any = {
'facebook/dpr-reader-single-nq-base': {'do_lower_case': True},
'facebook/dpr-reader-multiset-base': {'do_lower_case': True},
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRContextEncoderTokenizer
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ = DPRQuestionEncoderTokenizer
A : Any = collections.namedtuple(
'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text']
)
A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits'])
A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n '
@add_start_docstrings(UpperCAmelCase__ )
class A :
'''simple docstring'''
def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding:
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
elif titles is None or texts is None:
lowercase__ = titles if texts is None else texts
return super().__call__(
_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles]
lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages
assert len(_UpperCAmelCase ) == len(
_UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.'''
lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""]
lowercase__ = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase )
]
}
if return_attention_mask is not False:
lowercase__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowercase__ = attention_mask
return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = reader_input["""input_ids"""]
lowercase__ , lowercase__ , lowercase__ = reader_output[:3]
lowercase__ = len(_UpperCAmelCase )
lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ )
lowercase__ = []
for doc_id in sorted_docs:
lowercase__ = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowercase__ = sequence_ids.index(self.pad_token_id )
else:
lowercase__ = len(_UpperCAmelCase )
lowercase__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_UpperCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]:
"""simple docstring"""
lowercase__ = []
for start_index, start_score in enumerate(_UpperCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
lowercase__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowercase__ = end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_UpperCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class A ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
A__ = VOCAB_FILES_NAMES
A__ = READER_PRETRAINED_VOCAB_FILES_MAP
A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = READER_PRETRAINED_INIT_CONFIGURATION
A__ = ['''input_ids''', '''attention_mask''']
A__ = DPRReaderTokenizer
| 15 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(EulerDiscreteScheduler,)
_lowerCamelCase =10
def __snake_case ( self : str , **a__ : Tuple ):
UpperCAmelCase = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[int] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=a__ , beta_end=a__ )
def __snake_case ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a__ )
def __snake_case ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 51 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = KandinskyVaaControlnetPipeline
lowerCamelCase__ = ["image_embeds", "negative_image_embeds", "hint"]
lowerCamelCase__ = ["image_embeds", "negative_image_embeds", "hint"]
lowerCamelCase__ = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
lowerCamelCase__ = False
@property
def _snake_case ( self : Union[str, Any] ):
return 32
@property
def _snake_case ( self : Optional[Any] ):
return 32
@property
def _snake_case ( self : Optional[Any] ):
return self.time_input_dim
@property
def _snake_case ( self : Tuple ):
return self.time_input_dim * 4
@property
def _snake_case ( self : str ):
return 100
@property
def _snake_case ( self : Any ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = {
"in_channels": 8,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image_hint",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
SCREAMING_SNAKE_CASE = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def _snake_case ( self : Dict ):
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def _snake_case ( self : Union[str, Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs )
return model
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = self.dummy_unet
SCREAMING_SNAKE_CASE = self.dummy_movq
SCREAMING_SNAKE_CASE = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _snake_case ( self : int , __lowerCamelCase : Any , __lowerCamelCase : Any=0 ):
SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create hint
SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
if str(__lowerCamelCase ).startswith("mps" ):
SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase )
else:
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"hint": hint,
"generator": generator,
"height": 64,
"width": 64,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "cpu"
SCREAMING_SNAKE_CASE = self.get_dummy_components()
SCREAMING_SNAKE_CASE = self.pipeline_class(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : int ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" )
SCREAMING_SNAKE_CASE = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/hint_image_cat.png" )
SCREAMING_SNAKE_CASE = torch.from_numpy(np.array(__lowerCamelCase ) ).float() / 255.0
SCREAMING_SNAKE_CASE = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = KandinskyVaaControlnetPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "A robot, 4k photo"
SCREAMING_SNAKE_CASE = torch.Generator(device="cuda" ).manual_seed(0 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
SCREAMING_SNAKE_CASE = torch.Generator(device="cuda" ).manual_seed(0 )
SCREAMING_SNAKE_CASE = pipeline(
image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , hint=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , output_type="np" , )
SCREAMING_SNAKE_CASE = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 16 |
'''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
metadata={"help": "The csv file to plot."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
_lowerCamelCase =list_field(
default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
try:
int(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
try:
float(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a__ : Optional[int] ):
UpperCAmelCase = args
UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
UpperCAmelCase = csv.DictReader(a__ )
for row in reader:
UpperCAmelCase = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
UpperCAmelCase = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
UpperCAmelCase = float(row['''result'''] )
def __snake_case ( self : Dict ):
UpperCAmelCase, UpperCAmelCase = plt.subplots()
UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage'''
UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
UpperCAmelCase = self.result_dict[model_name]['''result''']
((UpperCAmelCase), (UpperCAmelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
UpperCAmelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
UpperCAmelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , )
else:
UpperCAmelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((UpperCAmelCase), (UpperCAmelCase)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )]
plt.scatter(
a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" )
plt.plot(a__ , a__ , '''--''' )
title_str += f" {label_model_name} vs."
UpperCAmelCase = title_str[:-4]
UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(a__ )
plt.xlabel(a__ )
plt.ylabel(a__ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ )
plot.plot()
if __name__ == "__main__":
main()
| 51 | 0 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
UpperCAmelCase_ : Dict = '''▁'''
UpperCAmelCase_ : List[str] = {
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
UpperCAmelCase_ : Dict = {
'''vocab_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''',
},
'''spm_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_config_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''',
},
}
UpperCAmelCase_ : Optional[Any] = {
'''facebook/m2m100_418M''': 1_024,
}
# fmt: off
UpperCAmelCase_ : List[Any] = {
'''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''],
'''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de''']
}
class lowerCamelCase_ ( _lowercase ):
_lowercase : Optional[Any] = VOCAB_FILES_NAMES
_lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : str = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Any = ['''input_ids''', '''attention_mask''']
_lowercase : List[int] = []
_lowercase : List[int] = []
def __init__( self : Dict , __A : Optional[Any] , __A : Any , __A : Tuple=None , __A : List[str]=None , __A : int="<s>" , __A : Union[str, Any]="</s>" , __A : Optional[Any]="</s>" , __A : Tuple="<pad>" , __A : List[str]="<unk>" , __A : Optional[Any]="m2m100" , __A : Optional[Dict[str, Any]] = None , __A : Any=8 , **__A : List[str] , ):
__A : int = {} if sp_model_kwargs is None else sp_model_kwargs
__A : List[Any] = language_codes
__A : List[str] = FAIRSEQ_LANGUAGE_CODES[language_codes]
__A : str = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code}
__A : Optional[int] = kwargs.get("""additional_special_tokens""" , [] )
kwargs["additional_special_tokens"] += [
self.get_lang_token(__A )
for lang_code in fairseq_language_code
if self.get_lang_token(__A ) not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=__A , tgt_lang=__A , bos_token=__A , eos_token=__A , sep_token=__A , unk_token=__A , pad_token=__A , language_codes=__A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__A , **__A , )
__A : Any = vocab_file
__A : Any = load_json(__A )
__A : Union[str, Any] = {v: k for k, v in self.encoder.items()}
__A : Optional[int] = spm_file
__A : Dict = load_spm(__A , self.sp_model_kwargs )
__A : int = len(self.encoder )
__A : Optional[Any] = {
self.get_lang_token(__A ): self.encoder_size + i for i, lang_code in enumerate(__A )
}
__A : Any = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__A )}
__A : Union[str, Any] = {v: k for k, v in self.lang_token_to_id.items()}
__A : Tuple = src_lang if src_lang is not None else """en"""
__A : Dict = tgt_lang
__A : List[Any] = self.get_lang_id(self._src_lang )
self.set_src_lang_special_tokens(self._src_lang )
__A : str = num_madeup_words
@property
def lowerCAmelCase_ ( self : Any ):
return len(self.encoder ) + len(self.lang_token_to_id )
@property
def lowerCAmelCase_ ( self : int ):
return self._src_lang
@src_lang.setter
def lowerCAmelCase_ ( self : int , __A : str ):
__A : Optional[Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowerCAmelCase_ ( self : str , __A : str ):
return self.sp_model.encode(__A , out_type=__A )
def lowerCAmelCase_ ( self : str , __A : Union[str, Any] ):
if token in self.lang_token_to_id:
return self.lang_token_to_id[token]
return self.encoder.get(__A , self.encoder[self.unk_token] )
def lowerCAmelCase_ ( self : int , __A : int ):
if index in self.id_to_lang_token:
return self.id_to_lang_token[index]
return self.decoder.get(__A , self.unk_token )
def lowerCAmelCase_ ( self : Tuple , __A : Optional[Any] ):
__A : Dict = []
__A : Tuple = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__A ) + token
__A : Dict = []
else:
current_sub_tokens.append(__A )
out_string += self.sp_model.decode(__A )
return out_string.strip()
def lowerCAmelCase_ ( self : List[str] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
__A : Optional[Any] = [1] * len(self.prefix_tokens )
__A : Optional[Any] = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__A )) + suffix_ones
return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones
def lowerCAmelCase_ ( self : Optional[int] , __A : List[int] , __A : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowerCAmelCase_ ( self : List[str] ):
__A : Tuple = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ):
__A : List[str] = self.__dict__.copy()
__A : Union[str, Any] = None
return state
def __setstate__( self : Dict , __A : Dict ):
__A : List[str] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__A : Union[str, Any] = {}
__A : str = load_spm(self.spm_file , self.sp_model_kwargs )
def lowerCAmelCase_ ( self : str , __A : str , __A : Optional[str] = None ):
__A : str = Path(__A )
if not save_dir.is_dir():
raise OSError(F"""{save_directory} should be a directory""" )
__A : str = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""]
)
__A : Dict = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""]
)
save_json(self.encoder , __A )
if os.path.abspath(self.spm_file ) != os.path.abspath(__A ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __A )
elif not os.path.isfile(self.spm_file ):
with open(__A , """wb""" ) as fi:
__A : str = self.sp_model.serialized_model_proto()
fi.write(__A )
return (str(__A ), str(__A ))
def lowerCAmelCase_ ( self : Union[str, Any] , __A : List[str] , __A : str = "en" , __A : Optional[List[str]] = None , __A : str = "ro" , **__A : Optional[int] , ):
__A : Any = src_lang
__A : Optional[Any] = tgt_lang
self.set_src_lang_special_tokens(self.src_lang )
return super().prepare_seqaseq_batch(__A , __A , **__A )
def lowerCAmelCase_ ( self : int , __A : Dict , __A : Optional[str] , __A : Optional[str] , **__A : List[str] ):
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
__A : List[Any] = src_lang
__A : str = self(__A , add_special_tokens=__A , **__A )
__A : Optional[int] = self.get_lang_id(__A )
__A : Optional[Any] = tgt_lang_id
return inputs
def lowerCAmelCase_ ( self : List[str] ):
self.set_src_lang_special_tokens(self.src_lang )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowerCAmelCase_ ( self : Dict , __A : str ):
__A : Any = self.get_lang_token(__A )
__A : Any = self.lang_token_to_id[lang_token]
__A : Any = [self.cur_lang_id]
__A : Optional[Any] = [self.eos_token_id]
def lowerCAmelCase_ ( self : int , __A : str ):
__A : Tuple = self.get_lang_token(__A )
__A : Dict = self.lang_token_to_id[lang_token]
__A : Union[str, Any] = [self.cur_lang_id]
__A : str = [self.eos_token_id]
def lowerCAmelCase_ ( self : Tuple , __A : str ):
return self.lang_code_to_token[lang]
def lowerCAmelCase_ ( self : str , __A : str ):
__A : List[Any] = self.get_lang_token(__A )
return self.lang_token_to_id[lang_token]
def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
__A : Optional[int] = sentencepiece.SentencePieceProcessor(**a__ )
spm.Load(str(a__ ) )
return spm
def __SCREAMING_SNAKE_CASE ( a__ : str ) -> Union[Dict, List]:
with open(a__ ,"""r""" ) as f:
return json.load(a__ )
def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : str ) -> None:
with open(a__ ,"""w""" ) as f:
json.dump(a__ ,a__ ,indent=2 )
| 17 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
print('''Loading config file...''' )
def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ):
UpperCAmelCase = []
for k, v in d.items():
UpperCAmelCase = parent_key + sep + k if parent_key else k
if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() )
else:
items.append((new_key, v) )
return dict(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = argparse.Namespace()
with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file:
try:
UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader )
UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ )
for k, v in flat_cfg.items():
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) )
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = MobileViTVaConfig()
UpperCAmelCase = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase = 151
UpperCAmelCase = 512
UpperCAmelCase = '''ade20k-id2label.json'''
UpperCAmelCase = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase = 21
UpperCAmelCase = 512
UpperCAmelCase = '''pascal-voc-id2label.json'''
UpperCAmelCase = True
# orig_config
UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ )
assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = val
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int:
"""simple docstring"""
if base_model:
UpperCAmelCase = ''''''
else:
UpperCAmelCase = '''mobilevitv2.'''
UpperCAmelCase = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase = k[8:]
else:
UpperCAmelCase = k
if ".block." in k:
UpperCAmelCase = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." )
for i in [1, 2]:
if f"layer_{i}." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f"layer_{i}.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if f"layer_{i}.1.local_rep.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if f"layer_{i}.1.local_rep.1." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase = [0, 1]
elif i == 4:
UpperCAmelCase = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase = [0, 1, 2]
for j in j_in:
if f"layer_{i}.1.global_rep.{j}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if f"layer_{i}.1.global_rep.{j+1}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." )
if f"layer_{i}.1.conv_proj." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(SCREAMING_SNAKE_CASE_ )
for k in keys_to_ignore:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
else:
UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
# remove and rename some keys of load the original model
UpperCAmelCase = checkpoint
remove_unused_keys(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load modified state_dict
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase = outputs.logits
UpperCAmelCase = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] )
assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task',
default='imagenet1k_256',
type=str,
help=(
'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '
'\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n '
),
choices=[
'imagenet1k_256',
'imagenet1k_384',
'imagenet21k_to_1k_256',
'imagenet21k_to_1k_384',
'ade20k_deeplabv3',
'voc_deeplabv3',
],
)
parser.add_argument(
'--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
a__ : str = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 51 | 0 |
'''simple docstring'''
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=0.999 , SCREAMING_SNAKE_CASE_ : List[str]="cosine" , ):
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : List[Any] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : str ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
_lowerCAmelCase = []
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = i / num_diffusion_timesteps
_lowerCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) )
return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa )
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ):
__lowerCamelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers]
__lowerCamelCase : Any = 2
@register_to_config
def __init__( self , _lowerCAmelCase = 1000 , _lowerCAmelCase = 0.00085 , _lowerCAmelCase = 0.012 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = 1.0 , _lowerCAmelCase = "linspace" , _lowerCAmelCase = 0 , ) -> Union[str, Any]:
if trained_betas is not None:
_lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
_lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
_lowerCAmelCase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
_lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="cosine" )
elif beta_schedule == "exp":
_lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="exp" )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
_lowerCAmelCase = 1.0 - self.betas
_lowerCAmelCase = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = use_karras_sigmas
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]:
if schedule_timesteps is None:
_lowerCAmelCase = self.timesteps
_lowerCAmelCase = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
_lowerCAmelCase = 1 if len(_lowerCAmelCase ) > 1 else 0
else:
_lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep
_lowerCAmelCase = self._index_counter[timestep_int]
return indices[pos].item()
@property
def _snake_case ( self ) -> Union[str, Any]:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , ) -> torch.FloatTensor:
_lowerCAmelCase = self.index_for_timestep(_lowerCAmelCase )
_lowerCAmelCase = self.sigmas[step_index]
_lowerCAmelCase = sample / ((sigma**2 + 1) ** 0.5)
return sample
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Any:
_lowerCAmelCase = num_inference_steps
_lowerCAmelCase = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
_lowerCAmelCase = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy()
elif self.config.timestep_spacing == "leading":
_lowerCAmelCase = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
_lowerCAmelCase = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
_lowerCAmelCase = (np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
_lowerCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
_lowerCAmelCase = np.log(_lowerCAmelCase )
_lowerCAmelCase = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase )
if self.config.use_karras_sigmas:
_lowerCAmelCase = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps )
_lowerCAmelCase = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] )
_lowerCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
_lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase )
_lowerCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] )
_lowerCAmelCase = torch.from_numpy(_lowerCAmelCase )
_lowerCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] )
if str(_lowerCAmelCase ).startswith("mps" ):
# mps does not support float64
_lowerCAmelCase = timesteps.to(_lowerCAmelCase , dtype=torch.floataa )
else:
_lowerCAmelCase = timesteps.to(device=_lowerCAmelCase )
# empty dt and derivative
_lowerCAmelCase = None
_lowerCAmelCase = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
_lowerCAmelCase = defaultdict(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]:
# get log sigma
_lowerCAmelCase = np.log(_lowerCAmelCase )
# get distribution
_lowerCAmelCase = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
_lowerCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 )
_lowerCAmelCase = low_idx + 1
_lowerCAmelCase = log_sigmas[low_idx]
_lowerCAmelCase = log_sigmas[high_idx]
# interpolate sigmas
_lowerCAmelCase = (low - log_sigma) / (low - high)
_lowerCAmelCase = np.clip(_lowerCAmelCase , 0 , 1 )
# transform interpolation to time range
_lowerCAmelCase = (1 - w) * low_idx + w * high_idx
_lowerCAmelCase = t.reshape(sigma.shape )
return t
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> torch.FloatTensor:
_lowerCAmelCase = in_sigmas[-1].item()
_lowerCAmelCase = in_sigmas[0].item()
_lowerCAmelCase = 7.0 # 7.0 is the value used in the paper
_lowerCAmelCase = np.linspace(0 , 1 , _lowerCAmelCase )
_lowerCAmelCase = sigma_min ** (1 / rho)
_lowerCAmelCase = sigma_max ** (1 / rho)
_lowerCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def _snake_case ( self ) -> Tuple:
return self.dt is None
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]:
_lowerCAmelCase = self.index_for_timestep(_lowerCAmelCase )
# advance index counter by 1
_lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
_lowerCAmelCase = self.sigmas[step_index]
_lowerCAmelCase = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
_lowerCAmelCase = self.sigmas[step_index - 1]
_lowerCAmelCase = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
_lowerCAmelCase = 0
_lowerCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
_lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next
_lowerCAmelCase = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
_lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next
_lowerCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
_lowerCAmelCase = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.config.clip_sample:
_lowerCAmelCase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
_lowerCAmelCase = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
_lowerCAmelCase = sigma_next - sigma_hat
# store for 2nd order step
_lowerCAmelCase = derivative
_lowerCAmelCase = dt
_lowerCAmelCase = sample
else:
# 2. 2nd order / Heun's method
_lowerCAmelCase = (sample - pred_original_sample) / sigma_next
_lowerCAmelCase = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
_lowerCAmelCase = self.dt
_lowerCAmelCase = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
_lowerCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ):
# mps does not support float64
_lowerCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa )
_lowerCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
_lowerCAmelCase = self.timesteps.to(original_samples.device )
_lowerCAmelCase = timesteps.to(original_samples.device )
_lowerCAmelCase = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps]
_lowerCAmelCase = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
_lowerCAmelCase = sigma.unsqueeze(-1 )
_lowerCAmelCase = original_samples + noise * sigma
return noisy_samples
def __len__( self ) -> List[str]:
return self.config.num_train_timesteps
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Optional[int] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="megatron-bert"
def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ):
super().__init__(pad_token_id=a__ , **a__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
| 51 | 0 |
"""simple docstring"""
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def lowerCamelCase__ ( ) -> Dict:
"""simple docstring"""
_UpperCamelCase = HfArgumentParser(__snake_case )
_UpperCamelCase = parser.parse_args_into_dataclasses()[0]
_UpperCamelCase = TensorFlowBenchmark(args=__snake_case )
try:
_UpperCamelCase = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
_UpperCamelCase = '''Arg --no_{0} is no longer used, please use --no-{0} instead.'''
_UpperCamelCase = ''' '''.join(str(__snake_case ).split(''' ''' )[:-1] )
_UpperCamelCase = ''''''
_UpperCamelCase = eval(str(__snake_case ).split(''' ''' )[-1] )
_UpperCamelCase = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(__snake_case )
if len(__snake_case ) > 0:
_UpperCamelCase = full_error_msg + begin_error_msg + str(__snake_case )
raise ValueError(__snake_case )
benchmark.run()
if __name__ == "__main__":
main()
| 19 |
'''simple docstring'''
from __future__ import annotations
a__ : List[str] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Optional[int] , a__ : dict[str, list[str]] , a__ : str ):
UpperCAmelCase = graph
# mapping node to its parent in resulting breadth first tree
UpperCAmelCase = {}
UpperCAmelCase = source_vertex
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = {self.source_vertex}
UpperCAmelCase = None
UpperCAmelCase = [self.source_vertex] # first in first out queue
while queue:
UpperCAmelCase = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(a__ )
UpperCAmelCase = vertex
queue.append(a__ )
def __snake_case ( self : Any , a__ : str ):
if target_vertex == self.source_vertex:
return self.source_vertex
UpperCAmelCase = self.parent.get(a__ )
if target_vertex_parent is None:
UpperCAmelCase = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(a__ )
return self.shortest_path(a__ ) + f"->{target_vertex}"
if __name__ == "__main__":
a__ : Tuple = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 51 | 0 |
def _lowercase( __a : int , __a : int ):
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
a__ =str(bin(__a ) )
binary_number += "0" * shift_amount
return binary_number
def _lowercase( __a : int , __a : int ):
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
a__ =str(bin(__a ) )[2:]
if shift_amount >= len(__a ):
return "0b0"
a__ =binary_number[: len(__a ) - shift_amount]
return "0b" + shifted_binary_number
def _lowercase( __a : int , __a : int ):
if number >= 0: # Get binary representation of positive number
a__ ='0' + str(bin(__a ) ).strip('-' )[2:]
else: # Get binary (2's complement) representation of negative number
a__ =len(bin(__a )[3:] ) # Find 2's complement of number
a__ =bin(abs(__a ) - (1 << binary_number_length) )[3:]
a__ =(
'1' + '0' * (binary_number_length - len(__a )) + binary_number
)
if shift_amount >= len(__a ):
return "0b" + binary_number[0] * len(__a )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__a ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a__ : Tuple = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ : Optional[Any] = {
"configuration_table_transformer": [
"TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TableTransformerConfig",
"TableTransformerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[int] = [
"TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TableTransformerForObjectDetection",
"TableTransformerModel",
"TableTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TableTransformerConfig,
TableTransformerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TableTransformerForObjectDetection,
TableTransformerModel,
TableTransformerPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Any = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 0 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : list , UpperCamelCase : list ):
'''simple docstring'''
_validate_point(UpperCamelCase )
_validate_point(UpperCamelCase )
if len(UpperCamelCase ) != len(UpperCamelCase ):
raise ValueError('''Both points must be in the same n-dimensional space''' )
return float(sum(abs(a - b ) for a, b in zip(UpperCamelCase , UpperCamelCase ) ) )
def snake_case_ (UpperCamelCase : list[float] ):
'''simple docstring'''
if point:
if isinstance(UpperCamelCase , UpperCamelCase ):
for item in point:
if not isinstance(UpperCamelCase , (int, float) ):
_a = (
'''Expected a list of numbers as input, found '''
f'{type(UpperCamelCase ).__name__}'
)
raise TypeError(UpperCamelCase )
else:
_a = f'Expected a list of numbers as input, found {type(UpperCamelCase ).__name__}'
raise TypeError(UpperCamelCase )
else:
raise ValueError('''Missing an input''' )
def snake_case_ (UpperCamelCase : list , UpperCamelCase : list ):
'''simple docstring'''
_validate_point(UpperCamelCase )
_validate_point(UpperCamelCase )
if len(UpperCamelCase ) != len(UpperCamelCase ):
raise ValueError('''Both points must be in the same n-dimensional space''' )
return float(sum(abs(x - y ) for x, y in zip(UpperCamelCase , UpperCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
'''simple docstring'''
from math import factorial
def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 100 ) -> int:
"""simple docstring"""
return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 51 | 0 |
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = f"""{sampling_rate}"""
UpperCamelCase_ = '1'
UpperCamelCase_ = 'f32le'
UpperCamelCase_ = [
'ffmpeg',
'-i',
'pipe:0',
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
try:
with subprocess.Popen(__lowercase , stdin=subprocess.PIPE , stdout=subprocess.PIPE) as ffmpeg_process:
UpperCamelCase_ = ffmpeg_process.communicate(__lowercase)
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to load audio files from filename') from error
UpperCamelCase_ = output_stream[0]
UpperCamelCase_ = np.frombuffer(__lowercase , np.floataa)
if audio.shape[0] == 0:
raise ValueError('Malformed soundfile')
return audio
def _snake_case (__lowercase , __lowercase , __lowercase = "f32le" , ):
UpperCamelCase_ = f"""{sampling_rate}"""
UpperCamelCase_ = '1'
if format_for_conversion == "s16le":
UpperCamelCase_ = 2
elif format_for_conversion == "f32le":
UpperCamelCase_ = 4
else:
raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""")
UpperCamelCase_ = platform.system()
if system == "Linux":
UpperCamelCase_ = 'alsa'
UpperCamelCase_ = 'default'
elif system == "Darwin":
UpperCamelCase_ = 'avfoundation'
UpperCamelCase_ = ':0'
elif system == "Windows":
UpperCamelCase_ = 'dshow'
UpperCamelCase_ = 'default'
UpperCamelCase_ = [
'ffmpeg',
'-f',
format_,
'-i',
input_,
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-fflags',
'nobuffer',
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
UpperCamelCase_ = int(round(sampling_rate * chunk_length_s)) * size_of_sample
UpperCamelCase_ = _ffmpeg_stream(__lowercase , __lowercase)
for item in iterator:
yield item
def _snake_case (__lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = "f32le" , ):
if stream_chunk_s is not None:
UpperCamelCase_ = stream_chunk_s
else:
UpperCamelCase_ = chunk_length_s
UpperCamelCase_ = ffmpeg_microphone(__lowercase , __lowercase , format_for_conversion=__lowercase)
if format_for_conversion == "s16le":
UpperCamelCase_ = np.intaa
UpperCamelCase_ = 2
elif format_for_conversion == "f32le":
UpperCamelCase_ = np.floataa
UpperCamelCase_ = 4
else:
raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""")
if stride_length_s is None:
UpperCamelCase_ = chunk_length_s / 6
UpperCamelCase_ = int(round(sampling_rate * chunk_length_s)) * size_of_sample
if isinstance(__lowercase , (int, float)):
UpperCamelCase_ = [stride_length_s, stride_length_s]
UpperCamelCase_ = int(round(sampling_rate * stride_length_s[0])) * size_of_sample
UpperCamelCase_ = int(round(sampling_rate * stride_length_s[1])) * size_of_sample
UpperCamelCase_ = datetime.datetime.now()
UpperCamelCase_ = datetime.timedelta(seconds=__lowercase)
for item in chunk_bytes_iter(__lowercase , __lowercase , stride=(stride_left, stride_right) , stream=__lowercase):
# Put everything back in numpy scale
UpperCamelCase_ = np.frombuffer(item['raw'] , dtype=__lowercase)
UpperCamelCase_ = (
item['stride'][0] // size_of_sample,
item['stride'][1] // size_of_sample,
)
UpperCamelCase_ = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase = False):
UpperCamelCase_ = B''
UpperCamelCase_ , UpperCamelCase_ = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""")
UpperCamelCase_ = 0
for raw in iterator:
acc += raw
if stream and len(__lowercase) < chunk_len:
UpperCamelCase_ = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(__lowercase) >= chunk_len:
# We are flushing the accumulator
UpperCamelCase_ = (_stride_left, stride_right)
UpperCamelCase_ = {'raw': acc[:chunk_len], 'stride': stride}
if stream:
UpperCamelCase_ = False
yield item
UpperCamelCase_ = stride_left
UpperCamelCase_ = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(__lowercase) > stride_left:
UpperCamelCase_ = {'raw': acc, 'stride': (_stride_left, 0)}
if stream:
UpperCamelCase_ = False
yield item
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = 2**24 # 16Mo
try:
with subprocess.Popen(__lowercase , stdout=subprocess.PIPE , bufsize=__lowercase) as ffmpeg_process:
while True:
UpperCamelCase_ = ffmpeg_process.stdout.read(__lowercase)
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to stream audio files from filename') from error
| 23 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =StableUnCLIPPipeline
_lowerCamelCase =TEXT_TO_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
_lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_lowerCamelCase =False
def __snake_case ( self : str ):
UpperCAmelCase = 32
UpperCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , )
torch.manual_seed(0 )
UpperCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ )
UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , )
torch.manual_seed(0 )
UpperCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL()
UpperCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __snake_case ( self : List[Any] ):
UpperCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=a__ )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' )
UpperCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(a__ , a__ )
def __snake_case ( self : str ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 51 | 0 |
'''simple docstring'''
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class lowerCAmelCase ( nn.Module):
def __init__( self , __SCREAMING_SNAKE_CASE = 16 , __SCREAMING_SNAKE_CASE = 88 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = None , ) -> Optional[int]:
'''simple docstring'''
super().__init__()
__snake_case = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
__snake_case = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
__snake_case = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
__snake_case = [1, 0]
def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = True , ) -> List[str]:
'''simple docstring'''
__snake_case = hidden_states
__snake_case = []
__snake_case = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
__snake_case = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
__snake_case = self.transformer_index_for_condition[i]
__snake_case = self.transformers[transformer_index](
__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
__snake_case = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
__snake_case = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
| 24 |
'''simple docstring'''
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict:
"""simple docstring"""
if not head:
return True
# split the list to two parts
UpperCAmelCase, UpperCAmelCase = head.next, head
while fast and fast.next:
UpperCAmelCase = fast.next.next
UpperCAmelCase = slow.next
UpperCAmelCase = slow.next
UpperCAmelCase = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase = None
while second:
UpperCAmelCase = second.next
UpperCAmelCase = node
UpperCAmelCase = second
UpperCAmelCase = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase = node.next
UpperCAmelCase = head.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]:
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head
while fast and fast.next:
UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase = [slow.val]
while slow.next:
UpperCAmelCase = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase = cur.next
return True
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
"""simple docstring"""
if not head or not head.next:
return True
UpperCAmelCase = {}
UpperCAmelCase = 0
while head:
if head.val in d:
d[head.val].append(SCREAMING_SNAKE_CASE_ )
else:
UpperCAmelCase = [pos]
UpperCAmelCase = head.next
pos += 1
UpperCAmelCase = pos - 1
UpperCAmelCase = 0
for v in d.values():
if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase = 0
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 51 | 0 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
a_ = 'true'
def lowerCamelCase__ ( _a , _a=82 , _a=16):
set_seed(42)
SCREAMING_SNAKE_CASE : List[Any] = RegressionModel()
SCREAMING_SNAKE_CASE : Optional[Any] = deepcopy(_a)
SCREAMING_SNAKE_CASE : Any = RegressionDataset(length=_a)
SCREAMING_SNAKE_CASE : List[Any] = DataLoader(_a , batch_size=_a)
model.to(accelerator.device)
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = accelerator.prepare(_a , _a)
return model, ddp_model, dataloader
def lowerCamelCase__ ( _a , _a=False):
SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased")
SCREAMING_SNAKE_CASE : Optional[int] = load_dataset("glue" , "mrpc" , split="validation")
def tokenize_function(_a):
SCREAMING_SNAKE_CASE : str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_a , max_length=_a)
return outputs
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE : Union[str, Any] = dataset.map(
_a , batched=_a , remove_columns=["idx", "sentence1", "sentence2"] , )
SCREAMING_SNAKE_CASE : Any = tokenized_datasets.rename_column("label" , "labels")
def collate_fn(_a):
if use_longest:
return tokenizer.pad(_a , padding="longest" , return_tensors="pt")
return tokenizer.pad(_a , padding="max_length" , max_length=128 , return_tensors="pt")
return DataLoader(_a , shuffle=_a , collate_fn=_a , batch_size=16)
def lowerCamelCase__ ( _a , _a):
SCREAMING_SNAKE_CASE : Any = Accelerator(dispatch_batches=_a , split_batches=_a)
SCREAMING_SNAKE_CASE : str = get_dataloader(_a , not dispatch_batches)
SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained(
"hf-internal-testing/mrpc-bert-base-cased" , return_dict=_a)
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(_a , _a)
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def lowerCamelCase__ ( _a , _a , _a):
SCREAMING_SNAKE_CASE : int = []
for batch in dataloader:
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = batch.values()
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = model(_a)
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = accelerator.gather_for_metrics((logit, target))
logits_and_targets.append((logit, target))
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = [], []
for logit, targ in logits_and_targets:
logits.append(_a)
targs.append(_a)
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = torch.cat(_a), torch.cat(_a)
return logits, targs
def lowerCamelCase__ ( _a , _a=82 , _a=False , _a=False , _a=16):
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = get_basic_setup(_a , _a , _a)
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = generate_predictions(_a , _a , _a)
assert (
len(_a) == num_samples
), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_a)}"
def lowerCamelCase__ ( _a = False , _a = False):
SCREAMING_SNAKE_CASE : List[str] = evaluate.load("glue" , "mrpc")
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = get_mrpc_setup(_a , _a)
# First do baseline
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = setup["no"]
model.to(_a)
model.eval()
for batch in dataloader:
batch.to(_a)
with torch.inference_mode():
SCREAMING_SNAKE_CASE : Union[str, Any] = model(**_a)
SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits.argmax(dim=-1)
metric.add_batch(predictions=_a , references=batch["labels"])
SCREAMING_SNAKE_CASE : Dict = metric.compute()
# Then do distributed
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = setup["ddp"]
model.eval()
for batch in dataloader:
with torch.inference_mode():
SCREAMING_SNAKE_CASE : Optional[int] = model(**_a)
SCREAMING_SNAKE_CASE : Tuple = outputs.logits.argmax(dim=-1)
SCREAMING_SNAKE_CASE : Union[str, Any] = batch["labels"]
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = accelerator.gather_for_metrics((preds, references))
metric.add_batch(predictions=_a , references=_a)
SCREAMING_SNAKE_CASE : Dict = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key]), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"
def lowerCamelCase__ ( ):
SCREAMING_SNAKE_CASE : Tuple = Accelerator(split_batches=_a , dispatch_batches=_a)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("**Testing gather_for_metrics**")
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`")
test_mrpc(_a , _a)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test torch metrics**")
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
SCREAMING_SNAKE_CASE : Tuple = Accelerator(split_batches=_a , dispatch_batches=_a)
if accelerator.is_local_main_process:
print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99")
test_torch_metrics(_a , 99)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test last batch is not dropped when perfectly divisible**")
SCREAMING_SNAKE_CASE : str = Accelerator()
test_torch_metrics(_a , 512)
accelerator.state._reset_state()
def lowerCamelCase__ ( _a):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 25 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : str ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __snake_case ( self : Optional[int] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , )
return self.image_processor_class
@property
def __snake_case ( self : List[Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , )
return self.image_processor
| 51 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase = {
"configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"],
"tokenization_deberta": ["DebertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ["DebertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaForMaskedLM",
"DebertaForQuestionAnswering",
"DebertaForSequenceClassification",
"DebertaForTokenClassification",
"DebertaModel",
"DebertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
"TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDebertaForMaskedLM",
"TFDebertaForQuestionAnswering",
"TFDebertaForSequenceClassification",
"TFDebertaForTokenClassification",
"TFDebertaModel",
"TFDebertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 26 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =XGLMTokenizer
_lowerCamelCase =XGLMTokenizerFast
_lowerCamelCase =True
_lowerCamelCase =True
def __snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = '''<pad>'''
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(a__ ) , 1008 )
def __snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = XGLMTokenizer(a__ , keep_accents=a__ )
UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __snake_case ( self : Optional[Any] ):
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def __snake_case ( self : Optional[int] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(a__ , f.name )
UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=a__ )
UpperCAmelCase = pickle.dumps(a__ )
pickle.loads(a__ )
def __snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase = tokenizer.tokenize(a__ )
UpperCAmelCase = rust_tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ )
self.assertListEqual(a__ , a__ )
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = tokenizer.encode(a__ )
UpperCAmelCase = rust_tokenizer.encode(a__ )
self.assertListEqual(a__ , a__ )
@slow
def __snake_case ( self : int ):
UpperCAmelCase = '''Hello World!'''
UpperCAmelCase = [2, 31227, 4447, 35]
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : List[str] ):
UpperCAmelCase = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) )
@slow
def __snake_case ( self : Any ):
# fmt: off
UpperCAmelCase = {
'''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name='''facebook/xglm-564M''' , padding=a__ , )
| 51 | 0 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
__A : Optional[Any] = object()
# For specifying empty leaf dict `{}`
__A : Union[str, Any] = object()
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_A = tuple((re.compile(x + '$' ) for x in qs) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE ) + 1 ):
_A = [x.match(_SCREAMING_SNAKE_CASE ) for x, y in zip(_SCREAMING_SNAKE_CASE , ks[i:] )]
if matches and all(_SCREAMING_SNAKE_CASE ):
return True
return False
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
def replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for rule, replacement in rules:
if _match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return replacement
return val
return replace
def __lowerCAmelCase( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P('mp' , _SCREAMING_SNAKE_CASE )),
(("transformer", "wte", "embedding"), P('mp' , _SCREAMING_SNAKE_CASE )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_SCREAMING_SNAKE_CASE , 'mp' )),
(("attention", "out_proj", "kernel"), P('mp' , _SCREAMING_SNAKE_CASE )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(_SCREAMING_SNAKE_CASE , 'mp' )),
(("mlp", "c_fc", "bias"), P('mp' )),
(("mlp", "c_proj", "kernel"), P('mp' , _SCREAMING_SNAKE_CASE )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_A = _get_partition_rules()
_A = _replacement_rules(_SCREAMING_SNAKE_CASE )
_A = {k: _unmatched for k in flatten_dict(_SCREAMING_SNAKE_CASE )}
_A = {k: replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(_SCREAMING_SNAKE_CASE ) )
| 27 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a__ : str = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> YolosConfig:
"""simple docstring"""
UpperCAmelCase = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase = 192
UpperCAmelCase = 768
UpperCAmelCase = 12
UpperCAmelCase = 3
UpperCAmelCase = [800, 1_333]
UpperCAmelCase = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = 330
UpperCAmelCase = 14
UpperCAmelCase = 6
UpperCAmelCase = 1_320
elif "yolos_s" in yolos_name:
UpperCAmelCase = 384
UpperCAmelCase = 1_536
UpperCAmelCase = 12
UpperCAmelCase = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase = [800, 1_344]
UpperCAmelCase = 91
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''coco-detection-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosConfig , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
UpperCAmelCase = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase = in_proj_bias[: config.hidden_size]
UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
if "backbone" in name:
UpperCAmelCase = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
UpperCAmelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
UpperCAmelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
UpperCAmelCase = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
UpperCAmelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
UpperCAmelCase = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def __snake_case ( SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : YolosForObjectDetection ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ )
if "qkv" in key:
UpperCAmelCase = key.split('''.''' )
UpperCAmelCase = int(key_split[2] )
UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase = val[:dim, :]
UpperCAmelCase = val[
dim : dim * 2, :
]
UpperCAmelCase = val[-dim:, :]
else:
UpperCAmelCase = val[:dim]
UpperCAmelCase = val[dim : dim * 2]
UpperCAmelCase = val[-dim:]
else:
UpperCAmelCase = val
return orig_state_dict
def __snake_case ( ) -> torch.Tensor:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
UpperCAmelCase = get_yolos_config(SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model''']
# load 🤗 model
UpperCAmelCase = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase = 800 if yolos_name != '''yolos_ti''' else 512
UpperCAmelCase = YolosImageProcessor(format='''coco_detection''' , size=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
UpperCAmelCase, UpperCAmelCase = outputs.logits, outputs.pred_boxes
UpperCAmelCase, UpperCAmelCase = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
UpperCAmelCase = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
UpperCAmelCase = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
UpperCAmelCase = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
UpperCAmelCase = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
UpperCAmelCase = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
UpperCAmelCase = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f"Unknown yolos_name: {yolos_name}" )
assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
UpperCAmelCase = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
UpperCAmelCase = model_mapping[yolos_name]
image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='''hustvl''' )
if __name__ == "__main__":
a__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a__ : Optional[Any] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 51 | 0 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ):
"""simple docstring"""
while a != 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = b % a, a
return b
def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ):
"""simple docstring"""
if gcd(__UpperCamelCase ,__UpperCamelCase ) != 1:
SCREAMING_SNAKE_CASE : Tuple = f"mod inverse of {a!r} and {m!r} does not exist"
raise ValueError(__UpperCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = 1, 0, a
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = 0, 1, m
while va != 0:
SCREAMING_SNAKE_CASE : Optional[Any] = ua // va
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 28 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a__ : List[Any] = logging.get_logger(__name__)
a__ : int = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
a__ : Any = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
a__ : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase ="whisper"
_lowerCamelCase =["past_key_values"]
_lowerCamelCase ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : List[Any] , a__ : Any=51865 , a__ : Any=80 , a__ : Dict=6 , a__ : int=4 , a__ : int=6 , a__ : str=4 , a__ : int=1536 , a__ : Optional[Any]=1536 , a__ : str=0.0 , a__ : Optional[int]=0.0 , a__ : Optional[int]=50257 , a__ : int=True , a__ : Optional[int]=True , a__ : str="gelu" , a__ : List[str]=256 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Any=0.0 , a__ : str=0.02 , a__ : str=False , a__ : int=1500 , a__ : Tuple=448 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Optional[Any]=50256 , a__ : Tuple=None , a__ : List[Any]=[220, 50256] , a__ : Optional[int]=False , a__ : Optional[Any]=256 , a__ : Any=False , a__ : int=0.05 , a__ : Optional[Any]=10 , a__ : Dict=2 , a__ : Optional[Any]=0.0 , a__ : Tuple=10 , a__ : Any=0 , a__ : str=7 , **a__ : Any , ):
UpperCAmelCase = vocab_size
UpperCAmelCase = num_mel_bins
UpperCAmelCase = d_model
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , suppress_tokens=a__ , begin_suppress_tokens=a__ , **a__ , )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
UpperCAmelCase = {0: '''batch'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(a__ , direction='''inputs''' )
return common_inputs
def __snake_case ( self : str , a__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 22050 , a__ : float = 5.0 , a__ : int = 220 , ):
UpperCAmelCase = OrderedDict()
UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=a__ , framework=a__ , sampling_rate=a__ , time_duration=a__ , frequency=a__ , )
UpperCAmelCase = encoder_inputs['''input_features'''].shape[2]
UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , a__ , a__ , a__ , a__ )
UpperCAmelCase = encoder_inputs.pop('''input_features''' )
UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
UpperCAmelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def __snake_case ( self : Dict ):
return 1e-3
| 51 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["""XLNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["""XLNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLNetForMultipleChoice""",
"""XLNetForQuestionAnswering""",
"""XLNetForQuestionAnsweringSimple""",
"""XLNetForSequenceClassification""",
"""XLNetForTokenClassification""",
"""XLNetLMHeadModel""",
"""XLNetModel""",
"""XLNetPreTrainedModel""",
"""load_tf_weights_in_xlnet""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"""TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLNetForMultipleChoice""",
"""TFXLNetForQuestionAnsweringSimple""",
"""TFXLNetForSequenceClassification""",
"""TFXLNetForTokenClassification""",
"""TFXLNetLMHeadModel""",
"""TFXLNetMainLayer""",
"""TFXLNetModel""",
"""TFXLNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 29 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =LEDConfig
_lowerCamelCase ={}
_lowerCamelCase ="gelu"
def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = eos_token_id
UpperCAmelCase = pad_token_id
UpperCAmelCase = bos_token_id
UpperCAmelCase = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ )
UpperCAmelCase = tf.concat(
[tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , )
UpperCAmelCase = global_attention_mask
return config, inputs_dict
def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ):
UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder()
UpperCAmelCase = inputs_dict['''input_ids''']
UpperCAmelCase = input_ids[:1, :]
UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase = 1
# first forward pass
UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ )
UpperCAmelCase, UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase = model(a__ , attention_mask=a__ )[0]
UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(a__ , a__ , rtol=1e-3 )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase =(
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = TFLEDModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ )
def __snake_case ( self : int ):
self.config_tester.run_common_tests()
def __snake_case ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*a__ )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] )
UpperCAmelCase = 2
UpperCAmelCase = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
UpperCAmelCase = True
UpperCAmelCase = self.model_tester.seq_length
UpperCAmelCase = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(a__ : Tuple ):
UpperCAmelCase = outputs.decoder_attentions
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(a__ : int ):
UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = len(a__ )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
if self.is_encoder_decoder:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_decoder_attentions_output(a__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
# Check attention is always last and order is fine
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) )
self.assertEqual(model.config.output_hidden_states , a__ )
check_encoder_attentions_output(a__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def __snake_case ( self : Any ):
pass
def __snake_case ( self : Union[str, Any] ):
# TODO: Head-masking not yet implement
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple:
"""simple docstring"""
return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa )
a__ : int = 1e-4
@slow
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, 768)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 )
def __snake_case ( self : str ):
UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ )
UpperCAmelCase = model(**a__ )[0]
UpperCAmelCase = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , a__ )
# change to expected output here
UpperCAmelCase = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
| 51 | 0 |
from __future__ import annotations
from math import pow, sqrt
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ):
'''simple docstring'''
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if resistance == 0:
return {"resistance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(_lowercase , 2 ) + pow(_lowercase , 2 ) )}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 30 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 51 | 0 |
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : list ) -> float:
_validate_point(__UpperCAmelCase )
_validate_point(__UpperCAmelCase )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError('Both points must be in the same n-dimensional space' )
return float(sum(abs(a - b ) for a, b in zip(__UpperCAmelCase , __UpperCAmelCase ) ) )
def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> None:
if point:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
for item in point:
if not isinstance(__UpperCAmelCase , (int, float) ):
SCREAMING_SNAKE_CASE_ = (
'Expected a list of numbers as input, found '
f"{type(__UpperCAmelCase ).__name__}"
)
raise TypeError(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ = f"Expected a list of numbers as input, found {type(__UpperCAmelCase ).__name__}"
raise TypeError(__UpperCAmelCase )
else:
raise ValueError('Missing an input' )
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : list ) -> float:
_validate_point(__UpperCAmelCase )
_validate_point(__UpperCAmelCase )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError('Both points must be in the same n-dimensional space' )
return float(sum(abs(x - y ) for x, y in zip(__UpperCAmelCase , __UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 31 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a__ : List[Any] = 'sshleifer/mar_enro_6_3_student'
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __snake_case ( self : Dict ):
super().setUp()
UpperCAmelCase = cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , )
UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def __snake_case ( self : Optional[int] ):
MarianMTModel.from_pretrained(a__ )
@slow
@require_torch_gpu
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = {
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def __snake_case ( self : Any ):
UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
UpperCAmelCase = {
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
UpperCAmelCase = (
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' )
UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' )
for k, v in env_vars_to_replace.items():
UpperCAmelCase = bash_script.replace(a__ , str(a__ ) )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' )
UpperCAmelCase = 6
UpperCAmelCase = (
['''distillation.py''']
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
'''--gpus=1''',
'''--learning_rate=1e-3''',
f"--num_train_epochs={epochs}",
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(a__ , '''argv''' , a__ ):
UpperCAmelCase = argparse.ArgumentParser()
UpperCAmelCase = pl.Trainer.add_argparse_args(a__ )
UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() )
UpperCAmelCase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
UpperCAmelCase = distill_main(a__ )
# Check metrics
UpperCAmelCase = load_json(model.metrics_save_path )
UpperCAmelCase = metrics['''val'''][0]
UpperCAmelCase = metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ )
# check lightning ckpt can be loaded and has a reasonable statedict
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0]
UpperCAmelCase = os.path.join(args.output_dir , a__ )
UpperCAmelCase = torch.load(a__ , map_location='''cpu''' )
UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
UpperCAmelCase = {os.path.basename(a__ ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 51 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class __UpperCamelCase ( A__ , A__ ):
__A : Union[str, Any] = """focalnet"""
def __init__( self , _UpperCamelCase=224 , _UpperCamelCase=4 , _UpperCamelCase=3 , _UpperCamelCase=96 , _UpperCamelCase=False , _UpperCamelCase=[192, 384, 768, 768] , _UpperCamelCase=[2, 2, 6, 2] , _UpperCamelCase=[2, 2, 2, 2] , _UpperCamelCase=[3, 3, 3, 3] , _UpperCamelCase="gelu" , _UpperCamelCase=4.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=False , _UpperCamelCase=1e-4 , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = embed_dim
_UpperCAmelCase = use_conv_embed
_UpperCAmelCase = hidden_sizes
_UpperCAmelCase = depths
_UpperCAmelCase = focal_levels
_UpperCAmelCase = focal_windows
_UpperCAmelCase = hidden_act
_UpperCAmelCase = mlp_ratio
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = use_layerscale
_UpperCAmelCase = layerscale_value
_UpperCAmelCase = use_post_layernorm
_UpperCAmelCase = use_post_layernorm_in_modulation
_UpperCAmelCase = normalize_modulator
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = encoder_stride
_UpperCAmelCase = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
_UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names )
| 32 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["image_processor", "tokenizer"]
_lowerCamelCase ="CLIPImageProcessor"
_lowerCamelCase =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self : Union[str, Any] , a__ : List[str]=None , a__ : Union[str, Any]=None , **a__ : Optional[Any] ):
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a__ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a__ , a__ )
def __call__( self : Any , a__ : Any=None , a__ : str=None , a__ : List[Any]=None , **a__ : List[str] ):
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ )
if images is not None:
UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ )
def __snake_case ( self : Optional[Any] , *a__ : int , **a__ : List[Any] ):
return self.tokenizer.batch_decode(*a__ , **a__ )
def __snake_case ( self : Any , *a__ : Union[str, Any] , **a__ : Any ):
return self.tokenizer.decode(*a__ , **a__ )
@property
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 51 | 0 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int:
snake_case__ = 1
snake_case__ = 2
for i in range(2 , max_n + 1 ):
snake_case__ = pre_numerator
snake_case__ = 2 * i // 3 if i % 3 == 0 else 1
snake_case__ = cur_numerator
snake_case__ = e_cont * pre_numerator + temp
return sum_digits(__lowerCAmelCase )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 33 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 51 | 0 |
"""simple docstring"""
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class snake_case_ ( lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
A_ = WavaVecaPhonemeCTCTokenizer
A_ = False
def UpperCAmelCase__ ( self) -> List[str]:
super().setUp()
UpperCamelCase = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''')
UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_))))
UpperCamelCase = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp:
fp.write(json.dumps(lowerCamelCase_) + '''\n''')
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=2_0 , lowerCamelCase_=5) -> Tuple[str, list]:
UpperCamelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase_)) for i in range(len(lowerCamelCase_))]
UpperCamelCase = list(filter(lambda lowerCamelCase_: [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCamelCase_) , lowerCamelCase_))
if max_length is not None and len(lowerCamelCase_) > max_length:
UpperCamelCase = toks[:max_length]
if min_length is not None and len(lowerCamelCase_) < min_length and len(lowerCamelCase_) > 0:
while len(lowerCamelCase_) < min_length:
UpperCamelCase = toks + toks
# toks_str = [t[1] for t in toks]
UpperCamelCase = [t[0] for t in toks]
# Ensure consistency
UpperCamelCase = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_)
if " " not in output_txt and len(lowerCamelCase_) > 1:
UpperCamelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase_)
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase_)
)
if with_prefix_space:
UpperCamelCase = ''' ''' + output_txt
UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_)
return output_txt, output_ids
def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Optional[int]:
kwargs.update(self.special_tokens_map)
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_)
def UpperCAmelCase__ ( self) -> Dict:
UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''')
# check adding a single token
tokenizer.add_tokens('''xxx''')
UpperCamelCase = tokenizer('''m xxx ɪ''' , do_phonemize=lowerCamelCase_).input_ids
self.assertEqual(lowerCamelCase_ , [1_3, 3_9_2, 1_7]) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''])
UpperCamelCase = tokenizer('''m aaa ɪ ccc''' , do_phonemize=lowerCamelCase_).input_ids
self.assertEqual(lowerCamelCase_ , [1_3, 3_9_3, 1_7, 3_9_5]) # aaa and ccc should be after xxx and 2 after aaa
UpperCamelCase = tokenizer('''maɪ c''' , do_phonemize=lowerCamelCase_).input_ids
self.assertEqual(lowerCamelCase_ , [3, 2_0_0]) # mai should be <unk> (=3)
def UpperCAmelCase__ ( self) -> str:
UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''')
UpperCamelCase = '''Hello how are you'''
UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''')
self.assertEqual(lowerCamelCase_ , '''h ə l oʊ h aʊ ɑːɹ j uː''')
def UpperCAmelCase__ ( self) -> Any:
UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''')
UpperCamelCase = '''Hello how are you'''
UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''')
self.assertEqual(tokenizer(lowerCamelCase_).input_ids , tokenizer(lowerCamelCase_ , do_phonemize=lowerCamelCase_).input_ids)
def UpperCAmelCase__ ( self) -> str:
UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''')
UpperCamelCase = '''Hello how are you'''
UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''')
UpperCamelCase = tokenizer.decode(tokenizer(lowerCamelCase_).input_ids)
self.assertEqual(lowerCamelCase_ , lowerCamelCase_)
def UpperCAmelCase__ ( self) -> str:
UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''')
UpperCamelCase = [
[1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8],
[2_4, 2_2, 5, 2_4, 2_2, 5, 7_7],
]
UpperCamelCase = tokenizer.decode(sample_ids[0])
UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_)
self.assertEqual(lowerCamelCase_ , batch_tokens[0])
self.assertEqual(lowerCamelCase_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''])
def UpperCAmelCase__ ( self) -> Optional[int]:
UpperCamelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''')
tokenizer.add_tokens('''|''')
UpperCamelCase = '''Hello how are you'''
UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''')
self.assertEqual(lowerCamelCase_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''')
def UpperCAmelCase__ ( self) -> Any:
UpperCamelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''')
tokenizer.add_tokens('''|''')
UpperCamelCase = '''Hello how are you'''
UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''')
self.assertEqual(tokenizer(lowerCamelCase_).input_ids , tokenizer(lowerCamelCase_ , do_phonemize=lowerCamelCase_).input_ids)
def UpperCAmelCase__ ( self) -> Union[str, Any]:
UpperCamelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''')
tokenizer.add_tokens('''|''')
# fmt: off
UpperCamelCase = [
[1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8],
[tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7],
]
# fmt: on
# decode with word_del_token filter
UpperCamelCase = tokenizer.decode(sample_ids[0])
UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_)
self.assertEqual(lowerCamelCase_ , batch_tokens[0])
self.assertEqual(lowerCamelCase_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''])
# decode with no word_del_token filter
UpperCamelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCamelCase_)
UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_ , filter_word_delimiter_token=lowerCamelCase_)
self.assertEqual(lowerCamelCase_ , batch_tokens[0])
self.assertEqual(lowerCamelCase_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''])
def UpperCAmelCase__ ( self) -> Dict:
UpperCamelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''')
tokenizer.add_tokens('''|''')
UpperCamelCase = '''Hello how are you'''
UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''')
UpperCamelCase = tokenizer.decode(tokenizer(lowerCamelCase_).input_ids , filter_word_delimiter_token=lowerCamelCase_)
self.assertEqual(lowerCamelCase_ , lowerCamelCase_)
def UpperCAmelCase__ ( self) -> int:
UpperCamelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''')
tokenizer.add_tokens('''|''')
UpperCamelCase = '''Hello how are you'''
UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''')
UpperCamelCase = tokenizer.decode(tokenizer(lowerCamelCase_).input_ids , filter_word_delimiter_token=lowerCamelCase_)
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''')]).strip() , lowerCamelCase_)
def UpperCAmelCase__ ( self) -> int:
UpperCamelCase = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=lowerCamelCase_)
UpperCamelCase = '''Hello how are you'''
UpperCamelCase = tokenizer(lowerCamelCase_ , phonemizer_lang='''en-us''').input_ids
UpperCamelCase = tokenizer(lowerCamelCase_ , phonemizer_lang='''fr-fr''').input_ids
self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase = tokenizer.decode(lowerCamelCase_)
UpperCamelCase = tokenizer.decode(lowerCamelCase_)
self.assertEqual(lowerCamelCase_ , '''h ə l oʊ h aʊ ɑːɹ j uː''')
self.assertEqual(lowerCamelCase_ , '''ɛ l o h aʊ a ʁ j u''')
def UpperCAmelCase__ ( self) -> Any:
UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''')
UpperCamelCase = '''Hello how Are you'''
UpperCamelCase = '''hello how are you'''
UpperCamelCase = tokenizer(lowerCamelCase_).input_ids
UpperCamelCase = tokenizer(lowerCamelCase_).input_ids
self.assertEqual(lowerCamelCase_ , lowerCamelCase_)
def UpperCAmelCase__ ( self) -> List[Any]:
UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''')
tokenizer.add_tokens(['''!''', '''?'''])
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''})
# fmt: off
UpperCamelCase = [
[1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4],
[2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4],
]
# fmt: on
UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_)
self.assertEqual(lowerCamelCase_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''])
@staticmethod
def UpperCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_) -> List[str]:
UpperCamelCase = [d[key] for d in offsets]
return retrieved_list
def UpperCAmelCase__ ( self) -> Union[str, Any]:
UpperCamelCase = self.get_tokenizer(word_delimiter_token='''|''')
tokenizer.add_tokens('''|''')
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
UpperCamelCase = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8]
# fmt: on
UpperCamelCase = tokenizer.decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_ , filter_word_delimiter_token=lowerCamelCase_)
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys()) , 2)
self.assertTrue('''text''' in outputs)
self.assertTrue('''char_offsets''' in outputs)
self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_))
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''')) , outputs.text)
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''') , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''])
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''') , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6])
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''') , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7])
def UpperCAmelCase__ ( self) -> Any:
UpperCamelCase = self.get_tokenizer(word_delimiter_token='''|''')
def check_list_tuples_equal(lowerCamelCase_ , lowerCamelCase_):
self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_))
self.assertTrue(isinstance(outputs_list[0] , lowerCamelCase_))
# transform list to ModelOutput
UpperCamelCase = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]})
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''])
def recursive_check(lowerCamelCase_ , lowerCamelCase_):
if isinstance(lowerCamelCase_ , lowerCamelCase_):
[recursive_check(lowerCamelCase_ , lowerCamelCase_) for la, la in zip(lowerCamelCase_ , lowerCamelCase_)]
self.assertEqual(lowerCamelCase_ , lowerCamelCase_)
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''])
# fmt: off
UpperCamelCase = [
[1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4],
[2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_)
UpperCamelCase = [tokenizer.decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_) for ids in sample_ids]
check_list_tuples_equal(lowerCamelCase_ , lowerCamelCase_)
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''')
def UpperCAmelCase__ ( self) -> Tuple:
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''')
def UpperCAmelCase__ ( self) -> Dict:
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''')
def UpperCAmelCase__ ( self) -> int:
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''')
def UpperCAmelCase__ ( self) -> Tuple:
pass
def UpperCAmelCase__ ( self) -> Tuple:
UpperCamelCase = self.get_tokenizers(do_lower_case=lowerCamelCase_)
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}'):
UpperCamelCase = tokenizer.vocab_size
UpperCamelCase = len(lowerCamelCase_)
self.assertNotEqual(lowerCamelCase_ , 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
UpperCamelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
UpperCamelCase = tokenizer.add_tokens(lowerCamelCase_)
UpperCamelCase = tokenizer.vocab_size
UpperCamelCase = len(lowerCamelCase_)
self.assertNotEqual(lowerCamelCase_ , 0)
self.assertEqual(lowerCamelCase_ , lowerCamelCase_)
self.assertEqual(lowerCamelCase_ , len(lowerCamelCase_))
self.assertEqual(lowerCamelCase_ , all_size + len(lowerCamelCase_))
UpperCamelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=lowerCamelCase_)
self.assertGreaterEqual(len(lowerCamelCase_) , 4)
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1)
UpperCamelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
UpperCamelCase = tokenizer.add_special_tokens(lowerCamelCase_)
UpperCamelCase = tokenizer.vocab_size
UpperCamelCase = len(lowerCamelCase_)
self.assertNotEqual(lowerCamelCase_ , 0)
self.assertEqual(lowerCamelCase_ , lowerCamelCase_)
self.assertEqual(lowerCamelCase_ , len(lowerCamelCase_))
self.assertEqual(lowerCamelCase_ , all_size_a + len(lowerCamelCase_))
UpperCamelCase = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=lowerCamelCase_)
self.assertGreaterEqual(len(lowerCamelCase_) , 6)
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[0] , tokens[1])
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3] , tokens[-4])
self.assertEqual(tokens[0] , tokenizer.eos_token_id)
self.assertEqual(tokens[-3] , tokenizer.pad_token_id)
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''')
def UpperCAmelCase__ ( self) -> Tuple:
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''')
def UpperCAmelCase__ ( self) -> Optional[int]:
pass
def UpperCAmelCase__ ( self) -> Optional[Any]:
# The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which
# is not the case for Wav2Vec2PhonemeCTCTokenizer.
UpperCamelCase = self.get_tokenizers(fast=lowerCamelCase_ , do_lower_case=lowerCamelCase_)
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}'):
UpperCamelCase = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
UpperCamelCase = tokenizer.convert_tokens_to_string(lowerCamelCase_)
self.assertIsInstance(output['''text'''] , lowerCamelCase_)
| 34 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase__ :
'''simple docstring'''
@staticmethod
def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ):
pass
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str:
"""simple docstring"""
UpperCAmelCase = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict:
"""simple docstring"""
UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_lowerCamelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ):
UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __snake_case ( self : int , a__ : Dict , a__ : Tuple ):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def __snake_case ( self : str ):
pass
@slow
@require_torch
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871}
] , )
# fmt: on
@require_torch
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = '''facebook/sam-vit-huge'''
UpperCAmelCase = pipeline('''mask-generation''' , model=a__ )
UpperCAmelCase = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(a__ , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053},
] , )
| 51 | 0 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase ( _UpperCAmelCase , unittest.TestCase ):
lowerCamelCase : Any = RobertaTokenizer
lowerCamelCase : List[Any] = RobertaTokenizerFast
lowerCamelCase : Optional[Any] = True
lowerCamelCase : Optional[Any] = {'''cls_token''': '''<s>'''}
def lowercase__ ( self : Optional[int] ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE__ : List[str] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
SCREAMING_SNAKE_CASE__ : List[str] = dict(zip(_lowercase , range(len(_lowercase ) ) ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
SCREAMING_SNAKE_CASE__ : Tuple = {'''unk_token''': '''<unk>'''}
SCREAMING_SNAKE_CASE__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_lowercase ) )
def lowercase__ ( self : str , **_lowercase : str ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase )
def lowercase__ ( self : Any , **_lowercase : str ):
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase )
def lowercase__ ( self : Union[str, Any] , _lowercase : List[str] ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = '''lower newer'''
SCREAMING_SNAKE_CASE__ : Optional[int] = '''lower newer'''
return input_text, output_text
def lowercase__ ( self : Dict ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''lower newer'''
SCREAMING_SNAKE_CASE__ : List[Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.tokenize(_lowercase ) # , add_prefix_space=True)
self.assertListEqual(_lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE__ : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase )
def lowercase__ ( self : Dict ):
SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=_lowercase ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=_lowercase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def lowercase__ ( self : List[str] ):
SCREAMING_SNAKE_CASE__ : int = self.tokenizer_class.from_pretrained('''roberta-base''' )
SCREAMING_SNAKE_CASE__ : Any = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.encode(
'''sequence builders''' , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowercase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def lowercase__ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : str = '''Encode this sequence.'''
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
SCREAMING_SNAKE_CASE__ : int = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(_lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
SCREAMING_SNAKE_CASE__ : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(_lowercase , _lowercase )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
SCREAMING_SNAKE_CASE__ : Any = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(_lowercase , _lowercase )
# Testing spaces after special tokens
SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase )} ) # mask token has a left space
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase )
SCREAMING_SNAKE_CASE__ : List[str] = '''Encode <mask> sequence'''
SCREAMING_SNAKE_CASE__ : List[Any] = '''Encode <mask>sequence'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.encode(_lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] = encoded.index(_lowercase )
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(_lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.encode(_lowercase )
SCREAMING_SNAKE_CASE__ : Tuple = encoded.index(_lowercase )
SCREAMING_SNAKE_CASE__ : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(_lowercase , _lowercase )
def lowercase__ ( self : Tuple ):
pass
def lowercase__ ( self : int ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
SCREAMING_SNAKE_CASE__ : List[str] = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
SCREAMING_SNAKE_CASE__ : Dict = '''A, <mask> AllenNLP sentence.'''
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase )
SCREAMING_SNAKE_CASE__ : int = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
SCREAMING_SNAKE_CASE__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
_lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
_lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def lowercase__ ( self : Any ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
SCREAMING_SNAKE_CASE__ : List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
SCREAMING_SNAKE_CASE__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , _lowercase )
self.assertEqual(post_processor_state['''add_prefix_space'''] , _lowercase )
self.assertEqual(post_processor_state['''trim_offsets'''] , _lowercase )
def lowercase__ ( self : Optional[int] ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
SCREAMING_SNAKE_CASE__ : Tuple = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
SCREAMING_SNAKE_CASE__ : int = f"""{text_of_1_token} {text_of_1_token}"""
SCREAMING_SNAKE_CASE__ : int = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , )
SCREAMING_SNAKE_CASE__ : List[str] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , )
SCREAMING_SNAKE_CASE__ : Dict = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
SCREAMING_SNAKE_CASE__ : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , )
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , )
SCREAMING_SNAKE_CASE__ : str = f""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
SCREAMING_SNAKE_CASE__ : List[Any] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
SCREAMING_SNAKE_CASE__ : int = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
SCREAMING_SNAKE_CASE__ : str = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
SCREAMING_SNAKE_CASE__ : Tuple = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
SCREAMING_SNAKE_CASE__ : str = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
| 35 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE_ ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =["pixel_values"]
def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ):
super().__init__(**a__ )
UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = offset
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ):
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
UpperCAmelCase = get_size_dict(a__ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ )
def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ):
UpperCAmelCase = image.astype(np.floataa )
if offset:
UpperCAmelCase = image - (scale / 2)
return rescale(a__ , scale=a__ , data_format=a__ , **a__ )
def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ):
return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ )
def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase = to_numpy_array(a__ )
if do_resize:
UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ )
if do_center_crop:
UpperCAmelCase = self.center_crop(a__ , size=a__ )
if do_rescale:
UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ )
if do_normalize:
UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ )
UpperCAmelCase = to_channel_dimension_format(a__ , a__ )
return image
def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ):
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = offset if offset is not None else self.offset
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' )
if not valid_images(a__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase = make_batched(a__ )
UpperCAmelCase = [
[
self._preprocess_image(
image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , )
for img in video
]
for video in videos
]
UpperCAmelCase = {'''pixel_values''': videos}
return BatchFeature(data=a__ , tensor_type=a__ )
| 51 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowercase : Dict = {
'''configuration_instructblip''': [
'''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InstructBlipConfig''',
'''InstructBlipQFormerConfig''',
'''InstructBlipVisionConfig''',
],
'''processing_instructblip''': ['''InstructBlipProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : Optional[int] = [
'''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InstructBlipQFormerModel''',
'''InstructBlipPreTrainedModel''',
'''InstructBlipForConditionalGeneration''',
'''InstructBlipVisionModel''',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
__lowercase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 36 |
'''simple docstring'''
import torch
from transformers import AutoModel
class lowerCAmelCase__ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , a__ : List[str]="sayef/fsner-bert-base-uncased" ):
super(a__ , self ).__init__()
UpperCAmelCase = AutoModel.from_pretrained(a__ , return_dict=a__ )
UpperCAmelCase = torch.nn.CosineSimilarity(3 , 1e-0_8 )
UpperCAmelCase = torch.nn.Softmax(dim=1 )
def __snake_case ( self : List[Any] , **a__ : Tuple ):
return self.bert(**a__ ).last_hidden_state
def __snake_case ( self : int , a__ : List[str] ):
return token_embeddings.sum(2 , keepdim=a__ )
def __snake_case ( self : str , a__ : str , a__ : str , a__ : int=1 ):
return self.softmax(T * self.cos(a__ , a__ ) )
def __snake_case ( self : Tuple , a__ : Tuple , a__ : str ):
UpperCAmelCase = W_supports['''sizes'''].tolist()
UpperCAmelCase = W_supports['''start_token_id'''].item()
UpperCAmelCase = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = self.BERT(**a__ )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = W_supports['''input_ids'''] == start_token_id
UpperCAmelCase = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(a__ ):
if i == 0:
UpperCAmelCase = 0
else:
UpperCAmelCase = support_sizes[i - 1]
UpperCAmelCase = S[s : s + size][start_token_masks[s : s + size]]
UpperCAmelCase = S[s : s + size][end_token_masks[s : s + size]]
UpperCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCAmelCase = torch.vstack((p_starts, p_start) )
UpperCAmelCase = torch.vstack((p_ends, p_end) )
else:
UpperCAmelCase = p_start
UpperCAmelCase = p_end
return p_starts, p_ends
| 51 | 0 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
UpperCamelCase : str = {
"""vocab_file""": {
"""gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""",
"""gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""",
"""gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""",
"""gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""",
"""distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""",
},
"""merges_file""": {
"""gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""",
"""gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""",
"""gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""",
"""gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""",
"""distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""",
"""gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""",
"""gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""",
"""gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""",
"""distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""",
},
}
UpperCamelCase : Optional[int] = {
"""gpt2""": 1024,
"""gpt2-medium""": 1024,
"""gpt2-large""": 1024,
"""gpt2-xl""": 1024,
"""distilgpt2""": 1024,
}
class A__ ( A__ ):
"""simple docstring"""
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = ['input_ids', 'attention_mask']
_lowercase = GPTaTokenizer
def __init__( self : Optional[Any] , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Any="<|endoftext|>" , lowerCamelCase__ : Dict="<|endoftext|>" , lowerCamelCase__ : Tuple="<|endoftext|>" , lowerCamelCase__ : str=False , **lowerCamelCase__ : Any , ):
super().__init__(
lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , )
a__ : Dict = kwargs.pop("add_bos_token" , lowerCamelCase__ )
a__ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space:
a__ : Optional[int] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) )
a__ : List[str] = add_prefix_space
a__ : Union[str, Any] = pre_tok_class(**lowerCamelCase__ )
a__ : int = add_prefix_space
def _UpperCamelCase( self : Union[str, Any] , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Optional[int] ):
a__ : str = kwargs.get("is_split_into_words" , lowerCamelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def _UpperCamelCase( self : Optional[Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : Optional[Any] ):
a__ : Any = kwargs.get("is_split_into_words" , lowerCamelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ):
a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ )
return tuple(lowerCamelCase__ )
def _UpperCamelCase( self : Any , lowerCamelCase__ : "Conversation" ):
a__ : Tuple = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] )
if len(lowerCamelCase__ ) > self.model_max_length:
a__ : Optional[int] = input_ids[-self.model_max_length :]
return input_ids
| 37 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( UpperCAmelCase_ ):
'''simple docstring'''
_lowerCamelCase =(EulerDiscreteScheduler,)
_lowerCamelCase =10
def __snake_case ( self : str , **a__ : Tuple ):
UpperCAmelCase = {
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**a__ )
return config
def __snake_case ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a__ )
def __snake_case ( self : Optional[int] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=a__ , beta_end=a__ )
def __snake_case ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a__ )
def __snake_case ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(a__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ )
scheduler.set_timesteps(self.num_inference_steps , device=a__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
UpperCAmelCase = sample.to(a__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(a__ , a__ )
UpperCAmelCase = model(a__ , a__ )
UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(a__ ) )
UpperCAmelCase = torch.mean(torch.abs(a__ ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 51 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : Dict = logging.get_logger(__name__)
A_ : List[str] = {
"weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''roc_bert'''
def __init__( self , __SCREAMING_SNAKE_CASE=3_0_5_2_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=9_1_0 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2_4_8_5_8 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : List[str] = vocab_size
snake_case__ : Optional[Any] = max_position_embeddings
snake_case__ : Optional[int] = hidden_size
snake_case__ : Dict = num_hidden_layers
snake_case__ : Optional[int] = num_attention_heads
snake_case__ : str = intermediate_size
snake_case__ : List[str] = hidden_act
snake_case__ : Optional[Any] = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : Optional[int] = initializer_range
snake_case__ : Any = type_vocab_size
snake_case__ : Dict = layer_norm_eps
snake_case__ : Optional[Any] = use_cache
snake_case__ : List[Any] = enable_pronunciation
snake_case__ : Tuple = enable_shape
snake_case__ : List[str] = pronunciation_embed_dim
snake_case__ : List[str] = pronunciation_vocab_size
snake_case__ : int = shape_embed_dim
snake_case__ : Dict = shape_vocab_size
snake_case__ : int = concat_input
snake_case__ : Optional[int] = position_embedding_type
snake_case__ : int = classifier_dropout
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 38 |
'''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None ) -> Any:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
metadata={"help": "The csv file to plot."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
_lowerCamelCase =list_field(
default=UpperCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} )
def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
try:
int(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
try:
float(SCREAMING_SNAKE_CASE_ )
return True
except ValueError:
return False
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a__ : Optional[int] ):
UpperCAmelCase = args
UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
UpperCAmelCase = csv.DictReader(a__ )
for row in reader:
UpperCAmelCase = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
UpperCAmelCase = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
UpperCAmelCase = float(row['''result'''] )
def __snake_case ( self : Dict ):
UpperCAmelCase, UpperCAmelCase = plt.subplots()
UpperCAmelCase = '''Time usage''' if self.args.is_time else '''Memory usage'''
UpperCAmelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
UpperCAmelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
UpperCAmelCase = self.result_dict[model_name]['''result''']
((UpperCAmelCase), (UpperCAmelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
UpperCAmelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
UpperCAmelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a__ , )
else:
UpperCAmelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((UpperCAmelCase), (UpperCAmelCase)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
UpperCAmelCase = np.asarray(a__ , a__ )[: len(a__ )]
plt.scatter(
a__ , a__ , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" )
plt.plot(a__ , a__ , '''--''' )
title_str += f" {label_model_name} vs."
UpperCAmelCase = title_str[:-4]
UpperCAmelCase = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(a__ )
plt.xlabel(a__ )
plt.ylabel(a__ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase = Plot(args=SCREAMING_SNAKE_CASE_ )
plot.plot()
if __name__ == "__main__":
main()
| 51 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ = {
'''configuration_longformer''': [
'''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''LongformerConfig''',
'''LongformerOnnxConfig''',
],
'''tokenization_longformer''': ['''LongformerTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['''LongformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LongformerForMaskedLM''',
'''LongformerForMultipleChoice''',
'''LongformerForQuestionAnswering''',
'''LongformerForSequenceClassification''',
'''LongformerForTokenClassification''',
'''LongformerModel''',
'''LongformerPreTrainedModel''',
'''LongformerSelfAttention''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFLongformerForMaskedLM''',
'''TFLongformerForMultipleChoice''',
'''TFLongformerForQuestionAnswering''',
'''TFLongformerForSequenceClassification''',
'''TFLongformerForTokenClassification''',
'''TFLongformerModel''',
'''TFLongformerPreTrainedModel''',
'''TFLongformerSelfAttention''',
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 39 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Tuple = logging.get_logger(__name__)
def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
print('''Loading config file...''' )
def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ):
UpperCAmelCase = []
for k, v in d.items():
UpperCAmelCase = parent_key + sep + k if parent_key else k
if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() )
else:
items.append((new_key, v) )
return dict(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = argparse.Namespace()
with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file:
try:
UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader )
UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ )
for k, v in flat_cfg.items():
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except yaml.YAMLError as exc:
logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) )
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = MobileViTVaConfig()
UpperCAmelCase = False
# dataset
if task_name.startswith('''imagenet1k_''' ):
UpperCAmelCase = 1_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-1k-id2label.json'''
elif task_name.startswith('''imagenet21k_to_1k_''' ):
UpperCAmelCase = 21_000
if int(task_name.strip().split('''_''' )[-1] ) == 384:
UpperCAmelCase = 384
else:
UpperCAmelCase = 256
UpperCAmelCase = '''imagenet-22k-id2label.json'''
elif task_name.startswith('''ade20k_''' ):
UpperCAmelCase = 151
UpperCAmelCase = 512
UpperCAmelCase = '''ade20k-id2label.json'''
UpperCAmelCase = True
elif task_name.startswith('''voc_''' ):
UpperCAmelCase = 21
UpperCAmelCase = 512
UpperCAmelCase = '''pascal-voc-id2label.json'''
UpperCAmelCase = True
# orig_config
UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ )
assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 )
assert (
getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 )
if "_deeplabv3" in task_name:
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 )
UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 )
# id2label
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = val
def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int:
"""simple docstring"""
if base_model:
UpperCAmelCase = ''''''
else:
UpperCAmelCase = '''mobilevitv2.'''
UpperCAmelCase = []
for k in state_dict.keys():
if k[:8] == "encoder.":
UpperCAmelCase = k[8:]
else:
UpperCAmelCase = k
if ".block." in k:
UpperCAmelCase = k_new.replace('''.block.''' , '''.''' )
if ".conv." in k:
UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' )
if ".norm." in k:
UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' )
if "conv_1." in k:
UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." )
for i in [1, 2]:
if f"layer_{i}." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." )
if ".exp_1x1." in k:
UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' )
if ".red_1x1." in k:
UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' )
for i in [3, 4, 5]:
if f"layer_{i}.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." )
if f"layer_{i}.1.local_rep.0." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." )
if f"layer_{i}.1.local_rep.1." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." )
for i in [3, 4, 5]:
if i == 3:
UpperCAmelCase = [0, 1]
elif i == 4:
UpperCAmelCase = [0, 1, 2, 3]
elif i == 5:
UpperCAmelCase = [0, 1, 2]
for j in j_in:
if f"layer_{i}.1.global_rep.{j}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." )
if f"layer_{i}.1.global_rep.{j+1}." in k:
UpperCAmelCase = k_new.replace(
f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." )
if f"layer_{i}.1.conv_proj." in k:
UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." )
if "pre_norm_attn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' )
if "pre_norm_attn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' )
if "pre_norm_ffn.0." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' )
if "pre_norm_ffn.1." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' )
if "pre_norm_ffn.3." in k:
UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' )
if "classifier.1." in k:
UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' )
if "seg_head." in k:
UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' )
if ".aspp_layer." in k:
UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in k:
UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' )
rename_keys.append((k, k_new) )
return rename_keys
def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase = []
for k in state_dict.keys():
if k.startswith('''seg_head.aux_head.''' ):
keys_to_ignore.append(SCREAMING_SNAKE_CASE_ )
for k in keys_to_ignore:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __snake_case ( ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load original state_dict
UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
# load huggingface model
if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ):
UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
else:
UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
UpperCAmelCase = False
# remove and rename some keys of load the original model
UpperCAmelCase = checkpoint
remove_unused_keys(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load modified state_dict
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ )
# verify classification model
if task_name.startswith('''imagenet''' ):
UpperCAmelCase = outputs.logits
UpperCAmelCase = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] )
assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(f"Saving model {task_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task',
default='imagenet1k_256',
type=str,
help=(
'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '
'\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n '
),
choices=[
'imagenet1k_256',
'imagenet1k_384',
'imagenet21k_to_1k_256',
'imagenet21k_to_1k_384',
'ade20k_deeplabv3',
'voc_deeplabv3',
],
)
parser.add_argument(
'--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
a__ : str = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 51 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.